1. Jones DL (1995) Palms - Google Scholar.
2. Purseglove JW (1972) Tropical crops: monocotyledons. - Google Scholar.
3. Peters HA, Pauw A, Silman MR, Terborgh JW. Falling palm fronds structure amazonian rainforest sapling communities. Proc Biol Sci. 2004 Aug 7;271 Suppl 5:S367–9.
4. Baker WJ, Norup MV, Clarkson JJ, Couvreur TLP, Dowe JL, Lewis CE, et al. Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae). Ann Bot. 2011 Dec;108(8):1417–1432.
5. Rugman-Jones PF, Hoddle CD, Hoddle MS, Stouthamer R. The lesser of two weevils: molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS One. 2013 Oct 15;8(10):e78379.
6. Mckenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol. 2015 Oct;40(4):835–880.
7. McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci USA. 2009 Apr 28;106(17):7083–7088.
8. Abdel Farag El-Shafie H, Romeno Faleiro J. Red Palm Weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae): Global Invasion, Current Management Options, Challenges and Future Prospects. In: El-Shafie H, editor. Invasive Species - Introduction Pathways, Economic Impact, and Possible Management Options. IntechOpen; 2020.
9. Scientific Consultation and High-Level Meeting on Red Palm Weevil Management,.
10. Host Palms [Internet]. [cited 2021 Jun 1]. Available from: https://www.savealgarvepalms.com/weevil-facts/host-palm-trees?lang=en
11. Rochat D, Malosse C, Lettere M. Identification of new pheromone-related compounds from volatiles produced by males of four Rhynchophorinae weevils (Coleoptera, Curculionidae). Comptes rendus de …. 1993;
12. Dyer MD, Neff C, Dufford M, Rivera CG, Shattuck D, Bassaganya-Riera J, et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One. 2010 Aug 9;5(8):e12089.
13. König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell. 2008 Oct 3;135(1):49–60.
14. Rizzetto L, Cavalieri D. Friend or foe: using systems biology to elucidate interactions between fungi and their hosts. Trends Microbiol. 2011 Oct;19(10):509–515.
15. Bonetta L. Protein-protein interactions: Interactome under construction. Nature. 2010 Dec 9;468(7325):851–854.
16. Liu X, Liu B, Huang Z, Shi T, Chen Y, Zhang J. SPPS: a sequence-based method for predicting probability of protein-protein interaction partners. PLoS One. 2012 Jan 26;7(1):e30938.
17. Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C. Computational meta'omics for microbial community studies. Mol Syst Biol. 2013 May 14;9:666.
18. Sturdevant DE, Virtaneva K, Martens C, Bozinov D, Ogundare O, Castro N, et al. Host-microbe interaction systems biology: lifecycle transcriptomics and comparative genomics. Future Microbiol. 2010 Feb;5(2):205–219.
19. Liu Z-P, Chen L. Proteome-wide prediction of protein-protein interactions from high-throughput data. Protein Cell. 2012 Jul;3(7):508–520.
20. Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol. 2007 Apr 27;3(4):e43.
21. Lewis ACF, Saeed R, Deane CM. Predicting protein-protein interactions in the context of protein evolution. Mol Biosyst. 2010 Jan;6(1):55–64.
22. Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and Host. Nat Rev Micro. 2012 Sep;10(9):618–630.
23. Galperin MY, Koonin EV. Who's your neighbor? New computational approaches for functional genomics. Nat Biotechnol. 2000 Jun;18(6):609–613.
24. Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA. 1999 Mar 16;96(6):2896–2901.
25. Liu Z-P, Wang J, Qiu Y-Q, Leung RKK, Zhang X-S, Tsui SKW, et al. Inferring a protein interaction map of Mycobacterium tuberculosis based on sequences and interologs. BMC Bioinformatics. 2012 May 8;13 Suppl 7:S6.
26. Aloy P, Ceulemans H, Stark A, Russell RB. The relationship between sequence and interaction divergence in proteins. J Mol Biol. 2003 Oct 3;332(5):989–998.
27. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA. 1999 Apr 13;96(8):4285–4288.
28. Barker D, Pagel M. Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS Comput Biol. 2005 Jun 24;1(1):e3.
29. Wang F, Liu M, Song B, Li D, Pei H, Guo Y, et al. Prediction and characterization of protein-protein interaction networks in swine. Proteome Sci. 2012 Jan 10;10(1):2.
30. Shin CJ, Davis MJ, Ragan MA. Towards the mammalian interactome: Inference of a core mammalian interaction set in mouse. Proteomics. 2009 Dec 1;9(23):5256–5266.
31. Schleker S, Garcia-Garcia J, Klein-Seetharaman J, Oliva B. Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes. Chem Biodivers. 2012 May;9(5):991–1018.
32. Krishnadev O, Srinivasan N. Prediction of protein-protein interactions between human host and a pathogen and its application to three pathogenic bacteria. Int J Biol Macromol. 2011 May 1;48(4):613–619.
33. Pu Y-C, Ma T-L, Hou Y-M, Sun M. An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Pest Manag Sci. 2017 Jul;73(7):1494–1502.
34. Hussain A, Rizwan-ul-Haq M, Al-Ayedh H, Ahmed S, Al-Jabr AM. Effect of Beauveria bassiana infection on the feeding performance and antioxidant defence of red palm weevil, Rhynchophorus ferrugineus. Biocontrol. 2015 Dec;60(6):849–859.
35. Jalinas J, Güerri-Agulló B, Mankin RW, López-Follana R, Lopez-Llorca LV. Acoustic Assessment of Beauveria bassiana (Hypocreales: Clavicipitaceae) Effects on Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) Larval Activity and Mortality. J Econ Entomol. 2015 Apr;108(2):444–453.
36. Search: GCA_014462685.1 - NLM [Internet]. [cited 2021 May 30]. Available from: https://www.ncbi.nlm.nih.gov/search/all/?term=GCA_014462685.1
37. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015 Jun;10(6):845–858.
38. Weng G, Wang E, Wang Z, Liu H, Zhu F, Li D, et al. HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res. 2019 Jul 2;47(W1):W322–W330.
39. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput. 2015 Aug 11;11(8):3696–3713.
40. Kutzner C, Páll S, Fechner M, Esztermann A, de Groot BL, Grubmüller H. More bang for your buck: Improved use of GPU nodes for GROMACS 2018. J Comput Chem. 2019 Oct 15;40(27):2418–2431.
41. Graham SC, Bond CS, Freeman HC, Guss JM. Structural and functional implications of metal ion selection in aminopeptidase P, a metalloprotease with a dinuclear metal center. Biochemistry. 2005 Oct 25;44(42):13820–13836.
42. Ramelot TA, Cort JR, Goldsmith-Fischman S, Kornhaber GJ, Xiao R, Shastry R, et al. Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J Mol Biol. 2004 Nov 19;344(2):567–583.
43. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013 Apr 1;29(7):845–854.
44. Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In: Markidis S, Laure E, editors. Solving Software Challenges for Exascale. Cham: Springer International Publishing; 2015. p. 3–27.
45. Huang Y, Chen W, Wallace JA, Shen J. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water. J Chem Theory Comput. 2016 Nov 8;12(11):5411–5421.
46. Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov. 2018;13(1):23–37.
47. Kutzner C, Páll S, Fechner M, Esztermann A, de Groot BL, Grubmüller H. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. J Comput Chem. 2015 Oct 5;36(26):1990–2008.
48. Prakash A, Dixit G, Meena NK, Singh R, Vishwakarma P, Mishra S, et al. Elucidation of stable intermediates in urea-induced unfolding pathway of human carbonic anhydrase IX. J Biomol Struct Dyn. 2018 Jul;36(9):2391–2406.