CHECKLIST OF NEUROPATHOLOGICAL PROCEDURES FOR THE EXAMINATION OF THE BRAINSTEM IN SIUDS
- Histopathological protocol
A scheme of the methodology for the brainstem examination is represented in Figure 1. At the right, the sampling of four specimens is shown. The first specimen includes the upper portion of the pons until the caudal mesencephalon. The second is focused essentially on the caudal pons. A third sample is taken from the medulla oblongata in correspondence of the obex. A fourth specimen extends from the caudal medulla to the rostral spinal cord.
Technical details
All the samples are transversely cut every 60 micron. Serial histological sections, 5 microns in thickness, are carried out at each level. Two of these sections are at first stained by hematoxylin-eosin and Klüver-Barrera and examined by using a light microscope with a system of objective lenses to progressively magnify the images. Figure 1, at the left, shows the representative histological sections obtained from the above-described specimens, indicating the main nuclei and structures to be examined, given their frequent involvement in SIUDS in terms of delayed development (hypoplasia/agenesis). These nerve centers are more easily recognizable in histological sections stained with the Klüver-Barrera method. The Cresyl Violet technique can be used additionally to highlight the nuclear tigroid substance (Nissl bodies). The Gless-Marsland, consisting in a silver impregnation, can be applied to stain axons and dendrites. Essentially, the centers represented in Figure 1, at the left, are: hypoglossus, dorsal motor vagus, tractus solitarii, ambiguus, inferior olivary, pre-Bötzinger, arcuate, obscurus raphé nucleus in the medulla oblongata; locus coeruleus, facial/parafacial complex, retrotrapezoid and Kölliker-Fuse nuclei in the pons; substantia nigra, and red nucleus in the mesencephalon. In the spinal cord the intermediolateral nucleus is of great interest. The histological examination must be focused especially on the Kölliker-Fuse nucleus, the facial/parafacial complex the pre-Bötzinger nucleus and the intermediolateral nucleus since these nerve structures are binded to each other through multiple synapses between their neurons in order to form a network which, through excitatory and/or inhibitory stimulations in relation to the need, is able to control breathing both before and after birth. This network is just called “respiratory network” (RN). Despite being so important, these four centers have a short extension and are completely included in the sampling carried out (Figure 2). Figures 3 to 6 show the cytoarchitecture of these structures in histological sections and the level from which they were taken.
The RN must always be examined in fetuses, even if breathing is not a vital condition in utero. After all, one of its components, the intermediolateral nucleus, is recognized as the primary center used to mediate the occasional respiratory movements aimed to promote the fetal lung development. However, it is not easy to justify a fetal death associated to developmental alterations of the RN. Nevertheless, we can hypothesize that a verification of essential centers for extrauterine life occurs at the final phase of pregnancy. Whenever one of these centers, especially if involved in respiration control, is not well developed and therefore not fully functional, the fetus, without a seemingly understandable reason, eliminates itself in order to avoid, especially to parents, a much more tragic of a newborn death [10].
Further structures to be analyzed are the chemoreceptorial ones as they participate in the physiological control of respiration. The chemoreceptorial centers are able to detect the concentrations of gas and hydrogen in the interstitial fluid and to send information to the RN centers which consequently modulate their activity to maintain these parameters within normal values [11].
Among the numerous chemoreceptorial structures we point out the raphé system, a series of nuclei
located in the midline of the brainstem. They have been gathered in two groups: 1) the “rostral serotonergic raphé group”, confined to the mesencephalon and rostral pons (including the caudal linear raphé nucleus, the dorsal raphé nucleus, the median raphé nucleus) and 2) the “caudal serotonergic raphé group”, extending from the caudal pons to the caudal portion of the medulla oblongata (including the raphé magnus nucleus, the raphé obscurus nucleus and the raphé pallidus nucleus). Figure 7 shows the location of these nuclei in histological sections taken from the brainstem samples. The raphé system neurons produce serotonin, a neurotransmitter involved in numerous functions and especially in the control of respiration.
Immunohistochemical protocol
Further sections obtained from the specimens are treated, according to the needs, with specific immunohistochemical techniques in order to evaluate functional markers whose expression is frequently altered in fetal deaths. Among these biological indicators are worthy of mention: the neuronal nuclear antigen, the nicotinic acetylcholine receptors, the serotonin, the orexin, the apoptosis and gliosis.
- Neuronal nuclear antigen (NeuN)
This antigen shows normally a strong nuclear expression in post-mitotic healthy neurons even in prenatal life (Figure 8A). A decreased immunopositivity of this antigen can be found in fetal brain as consequence of severe injuries, such as hypoxia, and can be indicative of neuronal degeneration in SIUDS [12].
- Nicotinic acetylcholine receptors (nAChRs)
The neuronal nicotinic acetylcholine receptors (nAChRs), a group of receptors which resulted from combination of different subunits, serve to mediate, through synaptic mechanisms, the transport of acetylcholine (ACh), the major cholinergic neurotransmitter which has a fundamental trophic role during brain development. These receptors show a cytoplasmic immunopositivity (Figure 8B). The nAChRs can be activated not only by the ACh, but also by nicotine, (hence the name “nicotinic”). In case of a smoking mother in pregnancy, nicotine, once it has passed the blood-brain barrier of the fetal brain, can mimic the effect of Ach, since its active form is very close to Ach, and incorrectly promote the cholinergic activity of the nAChRs, so leading to neuronal damages [13–15].
Serotonin (5-hydroxytryptamine) is a fundamental neurotransmitter mainly involved in the developmental process of neural vital circuits. It is synthesized, as previously reported, by the neurons of the raphé system (Figure 8C) [16,17].
Numerous studies to date have been focused on the important role of the orexin, a neuropeptide synthesized by neurons of the lateral hypothalamus, in the regulation of the sleep-wake state in infants and in its implications in SIDS pathogenesis, which, as well known, occurs in most cases at awakening from sleep [18]. Its immunopositivity is prevalently expressed in neuronal processes(Figure 8D). Since the orexin system develops during the third trimester of pregnancy, with widespread connections from hypothalamic neurons to various neurotransmitter circuits, this neuropeptide could have additional important regulatory roles in the perinatal period. Then, it is advisable to perform also the immunohistochemical detection of orexin in intrauterine deaths.
The application of immunohistochemical techniques for the study of apoptosis (TUNEL method) and glial fibrillary acid protein (GFAP) can be very useful to obtain information about the presence of brain cell death over the physiological levels, and of reactive gliosis, a process indicative of neuronal degeneration in SIUDS (Figure 8 E and F) [19,20].
B) TOXICOLOGICAL PROTOCOL
For understanding the SIUDS pathogenesis it is very important to collect information particularly related to risk factors such as maternal smoking, maternal alcohol and drug abuse and air pollution in the area where the mother lives. So, for each case of unexplained intrauterine death, all available information about pregnancy and fetal development, besides information related to the potential risk factors must be collected and categorised during post-mortem family interviews.
-Main risk factors for unexplained fetal death
Exposure to maternal tobacco smoke during pregnancy is associated with intrauterine growth retardation, abruptio placentae, low birth weight and a significantly higher risk of perinatal mortality [21,22]. Mothers of stillbirths must be asked to report on their smoking habit before and during pregnancy. In addition, the removal of a lock of victims’ hair during the autopsy is needed to perform the toxicological search for the cotinine, the main metabolite of nicotine characterized by a long half-life. This test is aimed especially at verifying the negative assertions of the mothers. It is well known in fact that the retrospective assessment of maternal smoking, if performed after the fatal event, is sometimes unreliable because of feelings of guilt [23,24]. In case of a smoker’s mother during pregnancy, nicotine and carbon monoxide (CO), its main combustion product, pass through the placenta into the fetal circulation where they can reach concentrations even 4 times higher than those present in maternal blood, due to the poor metabolic capacity of the fetal liver. The consequences can be multiple in the fetus. First of all, the carboxyhemoglobin, resulted by the binding of CO with hemoglobin, inhibits the release of oxygen into fetal tissues, so causing hypoxia especially in the most susceptible organs, including the brain. In addition, nicotine, being one of the few fat-soluble substances able to easily pass the blood-brain barrier by passive diffusion, giving its high affinity for nicotinic (acetylcholine) receptors as previously indicated, promptly binds to them, thus preventing the regular transmission of acetylcholine. It can also directly interfere with the expression of genes involved in the development of the nervous system, also inducing molecular alterations in DNA, RNA, and antigenic proteins of the neurons [25–27].
The involvement of persistent pollutants such as pesticides and insecticides, a category of harmful agents belonging to the “endocrine disrupting compounds” (i.e. exogenous substances able to alter the functions of the endocrine system and, consequently, to affect the whole organism) has been highlighted in SIUDS [28–30]. Traces of highly toxic chemicals, as organochlorine and organophosphate pesticides (α and γ-chlordane, chlorfenvinfos, chlorpyrifos, p,p-DDT, p,p-DDE, endrin, α- and β-endosulfans) have been directly detected in brain samples of fetuses died in agricultural areas where they are used. These findings testify the possibility that such toxicants, like nicotine, easily pass the placental barrier into the fetus and then, through the blood brain barrier, into the fetal brain, so interfering with normal ANS development.
Genetic investigations are an important component of fetal autopsies, not only in cases of congenital malformations, but also in case of unexplained intrauterine death. The use of the Polymerase Chain Reaction (PCR) is recommended in order to identify genes involved in neuronal dysgeneses. In particular, the serotonin transporter gene (5-HTT),, the regulator of the synaptic serotonin concentration, the PHOX2B gene, a transcriptional factor involved in Congenital Central Hypoventilation Syndrome (CCHS) and the mitochondrial DNA (mtDNA),, an important indicator of the cellular metabolisms, should be evaluated in SIUDS as they can offer important information on the pathogenetic mechanism of sudden death [17,31].