1. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019 May 1;20(5):e253–61.
2. Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Research. 2010 Jul 27;12(4):R56.
3. Gavrielides MA, Gallas BD, Lenz P, Badano A, Hewitt SM. Observer variability in the interpretation of HER2/neu immunohistochemical expression with unaided and computer-aided digital microscopy. Arch Pathol Lab Med. 2011 Feb;135(2):233–42.
4. Tizhoosh HR, Pantanowitz L. Artificial Intelligence and Digital Pathology: Challenges and Opportunities. J Pathol Inform. 2018 Nov 14;9(1):38.
5. Parasuraman R, Sheridan TB, Wickens CD. A model for types and levels of human interaction with automation. IEEE Trans Syst Man Cybern - Part Syst Hum. 2000 May;30(3):286–97.
6. Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, et al. Artificial Intelligence in Pathology. J Pathol Transl Med. 2018/12/28 ed. 2019 Jan;53(1):1–12.
7. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019 Jan;25(1):30–6.
8. Sarwar S, Dent A, Faust K, Richer M, Djuric U, Van Ommeren R, et al. Physician perspectives on integration of artificial intelligence into diagnostic pathology. NPJ Digit Med. 2019 Apr 26;2(1):28–28.
9. Houssami N, Kirkpatrick-Jones G, Noguchi N, Lee CI. Artificial Intelligence (AI) for the early detection of breast cancer: a scoping review to assess AI’s potential in breast screening practice. Expert Rev Med Devices. 2019 May 4;16(5):351–62.
10. Vourgidis I, Mafuma SJ, Wilson P, Carter J, Cosma G. Medical Expert Systems – A Study of Trust and Acceptance by Healthcare Stakeholders. In: Lotfi A, Bouchachia H, Gegov A, Langensiepen C, McGinnity M, editors. Advances in Computational Intelligence Systems. Cham: Springer International Publishing; 2019. p. 108–19. (Advances in Intelligent Systems and Computing).
11. Somashekhar SP, Kumarc R, Rauthan A, Arun KR, Patil P, Ramya YE. Abstract S6-07: Double blinded validation study to assess performance of IBM artificial intelligence platform, Watson for oncology in comparison with Manipal multidisciplinary tumour board – First study of 638 breast cancer cases. Cancer Res. 2017 Feb 15;77(4 Supplement):S6-S6-07.
12. Jha S, Topol EJ. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. JAMA. 2016 Dec 13;316(22):2353–4.
13. Holzinger A, Malle B, Kieseberg P, Roth PM, Müller H, Reihs R, et al. Towards the Augmented Pathologist: Challenges of Explainable-AI in Digital Pathology. arXiv:171206657 [cs, stat] [Internet]. 2017 Dec 18 [cited 2021 Feb 22]; Available from: http://arxiv.org/abs/1712.06657
14. Tschandl P. Human-computer collaboration for skin cancer recognition. Nat Med. 2020 Aug 1;26(8):1229–34.
15. Feldman RC, Aldana E, Stein K. Artificial intelligence in the health care space: how we can trust what we cannot know. Stanf Law Policy Rev. 2019;30:399.
16. Parkes A. The effect of individual and task characteristics on decision aid reliance. Behav Inf Technol. 2017 Feb;36(2):165–77.
17. Colling R, Pitman H, Oien K, Rajpoot N, Macklin P, Snead D, et al. Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. J Pathol. 2019;249(2):143–50.
18. Park SH, Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology. 2018 Jan 8;286(3):800–9.
19. Luo X, Tong S, Fang Z, Qu Z. Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases. Mark Sci. 2019 Sep 20;38(6):937–47.
20. Gretton C. Trust and Transparency in Machine Learning-Based Clinical Decision Support. In: Zhou J, Chen F, editors. Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent [Internet]. Cham: Springer International Publishing; 2018. p. 279–92. Available from: https://doi.org/10.1007/978-3-319-90403-0_14
21. Dietvorst BJ. Algorithm aversion: People erroneously avoid algorithms after seeing them err. J Exp Psychol Gen. 2015 Feb 1;144(1):114–26.
22. Logg JM, Minson JA, Moore DA. Algorithm appreciation: People prefer algorithmic to human judgment. Organ Behav Hum Decis Process. 2019;151(Complete):90–103.
23. Hoff KA, Bashir M. Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust. Hum Factors. 2015 May 1;57(3):407–34.
24. Petitgand C, cile, Motulsky A, Denis J-L, Ré, Gis C. Investigating the Barriers to Physician Adoption of an Artificial Intelligence- Based Decision Support System in Emergency Care: An Interpretative Qualitative Study. Digital Personalized Health and Medicine. 2020;1001–5.
25. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019 Nov;16(11):703–15.
26. Lee JD, See KA. Trust in Automation: Designing for Appropriate Reliance. Hum Factors. 2004 Mar 1;46(1):50–80.
27. Patrzyk PM, Link D, Marewski JN. Human-like machines: Transparency and comprehensibility. Behav Brain Sci [Internet]. 2017 ed [cited 2021 Feb 22];40. Available from: http://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/humanlike-machines-transparency-and-comprehensibility/5A1BCA43DEE578220D66B3089F8DED46
28. Hancock PA, Billings DR, Schaefer KE, Chen JYC. A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Hum factors. 2011 Oct 1;53(5):517–27.
29. Nagpal K, Foote D, Liu Y, Chen P-HC, Wulczyn E, Tan F, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. npj Digit Med. 2019 Jun 7;2(1):48.
30. Zenodo [Internet]. [cited 2021 Feb 22]. Available from: https://zenodo.org/record/3715938/preview/ThePANDAchallenge_ProstatecANcergraDeAssessmentusingtheGleasongradingsystem.pdf
31. Pathcore [Internet]. [cited 2021 Apr 28]. Available from: https://www.pathcore.com/
32. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific reports. 2018 Aug;8(1):1–11.
33. Samaratunga H, Delahunt B, Gianduzzo T, Coughlin G, Duffy D, LeFevre I, et al. The prognostic significance of the 2014 International Society of Urological Pathology (ISUP) grading system for prostate cancer. Pathology. 2015 Oct 1;47(6):515–9.
34. Ström P, Kartasalo K, Olsson H, Solorzano L. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 2020 Feb 1;21(2):222–32.
35. Epstein JI, Allsbrook WCJ, Amin MB, Egevad LL. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol. 2005 Sep;29(9):1228–42.
36. Printz C. Artificial intelligence platform for oncology could assist in treatment decisions. Cancer. 2017;123(6):905–905.
37. Lehman CD, Wellman RD, Buist DSM, Kerlikowske K, Tosteson ANA, Miglioretti DL, et al. Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection. JAMA Intern Med. 2015 Nov;175(11):1828–37.
38. Yu K-H, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019 Mar 1;28(3):238–41.
39. Jungmann F, Jorg T, Hahn F, Santos DP dos, Jungmann SM, Düber C, et al. Attitudes Toward Artificial Intelligence Among Radiologists, IT Specialists, and Industry. Academic Radiology [Internet]. 2020; Available from: https://www.sciencedirect.com/science/article/pii/S1076633220302038
40. Scheetz J, Rothschild P, McGuinness M, Hadoux X, Soyer HP, Janda M, et al. A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Scientific Reports. 2021 Mar 4;11(1):5193.
41. Verma P, Ford JA, Stuart A, Howe A, Everington S, Steel N. A systematic review of strategies to recruit and retain primary care doctors. BMC Health Services Research. 2016;16.