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Abstract
Background

Several species of the medicinally valuable genus Lobelia (Campanulaceae) exhibit neuroprotection.
While the neuroprotective mechanisms of some components (e.g. lobeline, lobelanine, and lobelanidine)
belonging to the L. nicotianaefolia or L. inflata are extensively characterized, there remains the need to
study and elucidate the mechanism of action of other species and their active components. In this work,
we have studied the neuroprotective mechanism of the pharmacokinetically favorable active compounds
of 17 Lobelia species.

Methods

Network pharmacology approach and molecular modeling were employed. We have conducted drug-
likeness evaluation, oral bioavailability prediction followed by the Gene Ontology (GO) terms and
pathways enrichment analysis, protein-protein and protein-compound interaction network construction
and analysis, and molecular docking studies. Five neurodegenerative diseases viz. Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, epilepsy, and Amyotrophic lateral sclerosis along with the
common neuroprotection mechanism-associated genes were evaluated.

Results

We revealed the neuroprotective mechanism of the active ingredients of Lobelia species. Our study
strongly indicates that 12 unique active ingredients viz. luteolin, kaempferol, acacetin, chryseriol,
norlobelanine, lobelanine, 2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-yl]-1-
phenylethanone, hydroxygenkwanin, lobelanidine, quercetin, and diosmetin regulates 31 targets within
multiple signaling pathways. The nitric oxide synthase, brain (NOS1), androgen receptor (ANDR), sodium-
and chloride-dependent GABA transporter 1 (SC6A1), apoptosis regulator Bcl-2 (BCL2), RAC-alpha
serine/threonine-protein kinase (AKT1), cellular tumor antigen p53, apoptosis regulator BAX, and tumor
necrosis factor (TNFA) were identified as the majorly regulated genes. A majority of these target proteins
act via several cancer-related pathways proven to have cross-talks with the pathogenesis of
neurodegenerative diseases.

Conclusions

This study explains how the active ingredients of the Lobelia species exhibit their neuroprotective actions
and provide a reference basis to investigate their pharmacological effects in detail. 

Background
Neuronal injury is a pathological hallmark of some of the most commonly-known neurodegenerative
diseases. In general, the severity of the neuronal damage determines the consequences such as neuronal
degeneration or death (1). The etiology and progression of the common neurodegenerative and neuronal
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disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), epilepsy,
and Amyotrophic lateral sclerosis (ALS) are some well-known examples of the severe consequences of
the neuronal damages. The oxidative stress, excitotoxicity, neuroinflammation, mitochondrial
dysfunction, and protein aggregations in the brain have been reported to play the central role in the
neuronal damages (2).

Neuroprotective strategies and mechanisms that aim to limit the neuronal loss and/or rescue the
neuronal damage progression and/or regenerate the neuronal structural and functional integrity are
commonly used in several neurodegenerative diseases. Several investigations are also currently
underway to find novel ways to protect the nervous system from injury and damage (3). The concept of
intervening the neurotransmission receptors by the agonist or antagonist of the natural neurochemical
modulators to exhibit the neuroprotection effects has been long-established (4). For example, caffeine, an
A2 receptor antagonist was found to protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced neuronal toxicity in the experimental model of PD (5). Other
neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA), and glutamate are also
associated with regulating the inhibition and excitation of motor neurons. For example, drugs like
flumazenil interact with the GABAergic system and alter motor behavior (6). Other pharmacological
interventions are also known to provide neuroprotection as well as disease-modifying activities.

The neurotransmitter receptors modulation, anti-inflammatory responses, and anti-oxidative stress are
well-studied pharmacological intervention approaches to protect the neurons. Due to the complex
pathways associated with the pathogenesis of neurodegenerative diseases, the paradigm of multi-target-
directed ligands (MTDLs) has been long warranted and has been well-researched in recent years (7–9).
Several novel MTDLs with synthetic optimizations have been published in recent years (10, 11). In this
respect, the herbal medicine or natural products provide an unprecedented advantage of exerting multiple
effects on different biological targets (12–14). For example, Crocus sativus, Nigella sativa, Coriandrum
sativum, and Ferula assafoetida, Curcuma longa, to name a few, showed neuroprotective effects by
regulating multiple disease-associated targets and signaling pathways (15). Curcumin, the major
constituent of Curcuma longa, exerts a neuroprotective role in PD via multiple mechanisms including the
restoration of the GSH decreased levels, mediation of the overexpression of BCl-2 (inducible nitric oxide
synthase (iNOS) antagonist) (16), reduction of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α,
total nitrite generation, and decreased activation of NF-κB (17, 18).

Lobelia (Campanulaceae) is a genus of flowering plant natives to the temperate and warmer regions with
450 species currently known. Several Lobelia species were traditionally used for medicinal purposes and
several species have been continuously evaluated for their distinct pharmacological activities (19).
Lobelia chinensis is reported to have anti-oxidative (20), anti-inflammatory (21), anti-viral (21), anti-cancer
(22, 23) and anti-diabetic properties (24). Lobelia inflata, also known as Indian tobacco, has a long
history of use in the treatment of severe breathing problems including asthma, whooping cough, and
bronchitis. Amongst the chemical constituents of the Lobelia species, a majority of the research has been
performed on pyridine alkaloids such as lobeline, lobelanine, and lobelanidine (25–27). For example, Li et
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al., (28) reported the dopaminergic neuroprotective effects of lobeline against the MPTP-induced
dopaminergic neuron death. The lobeline extracted from the leaf of Lobelia nicotianaefolia was shown to
have antiepileptic activity by modulating the GABAergic mechanism (29).

Several other chemical classes such as glycosides, lignans, flavonoids, flavonoid, and amino acids
endowed with diverse pharmacological effects were revealed (30–34). In a recent study, Ge et al., (24)
studied the anti-diabetic mechanism of the metabolites extracted from Lobelia chinensis using network
pharmacology approaches. Their study revealed 5-hydroxymethylfurfural and acacetin as two major
active ingredients modulating the insulin resistance signaling pathway and diabetic pathway. Moreover,
their study also provided a basis for the further study of the active constituents of the Lobelia chinensis
in other diseases and their pharmacological mechanisms.

In this study, we performed network pharmacology and molecular modeling analysis of the active
ingredients and corresponding targets of 17 herbs of the genus Lobelia. The aim was to decipher their
neuroprotective mechanism of action and provide a rationale for future pharmacological studies. The
relationships between the active ingredients and potential targets/pathways were established and
presented systematically.

Materials And Methods

Active Ingredients and Biological Targets
A total of 17 herbs of the genus Lobelia were studied. A total of 233 known active ingredients were
retrieved from the Natural Product Activity and Species Source Database (NPASS) (35). The chemical
structures and the corresponding targets were mapped to the ChEMBL database (36). Additionally, TCM
systems pharmacology database and analysis platform (TCMSP) (37) was also used for the mapping.
Three ADME-related properties including OB (oral bioavailability) ≥ 30%, drug-likeness (DL) ≥ 0.18, and
half-life (HL) ≥ 4 were used to screen the active constituents. The open-source cheminformatics package
RDKit (http://www.rdkit.org) was used to standardize the chemical structures and determine the
pharmacokinetic parameters (whenever necessary). After that, 49 distinct chemical ingredients and their
411 corresponding targets were selected. Finally, 12 targets that belonged to the cytochrome 450 families
were discarded.

Neuroprotection and Neurodegenerative Disease-Related
Gene
The associated-genes of five neurodegenerative diseases viz. AD, ALS, epilepsy, HD, and PD along with
the genes associated with the common neuroprotection mechanism were collected. The gene databases
viz. GeneCards (38), The Comparative Toxicogenomics Database (CTD) (39), Human Genome
Epidemiology (HuGE) Navigator (40) and The Online Mendelian Inheritance in Man (OMIM) (41) were
used. Many custom filtering criteria were applied. For example, only the genes annotated to have ≥ 20
publications associated with them were retrieved from the HuGE navigator database. Only the genes
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annotated with the “protein-coding” function were retrieved from the GeneCards database. Only the genes
annotated with the label “M” and/or “T” were retrieved from the CTD database. Finally, the total genes
collected from the various databases were filtered using the NCBI Gene database and only the “protein-
coding” genes were selected.

Enrichment Analysis of Genus Lobelia Targets
The overlapping targets of genus Lobelia related to the neuroprotection and neurodegenerative diseases
were mapped into Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGGs) and
REACTOME Pathway (42). The GO functional annotations were carried for the biological process (BP),
molecular function (MF), and cellular components (CC) terms (43).

Compound-Target Network Analysis
The Cytoscape v3.7.2 (44, 45) was used to build and analyze the compound-target network. The ECFP4
fingerprints (46) was used to evaluate the chemical diversity of the compounds.

Pharmacology Network Analysis
The STRING v11 (47) was used to construct the protein-protein interaction (PPI) networks of the
overlapping targets related to the genus Lobelia, common neuroprotection, and neurodegenerative
diseases. The analysis and modularization were performed using Cytoscape v3.7.2. The MCODE
algorithm (48) was used to determine highly interconnected regions in the PPI network. The degree cutoff,
node density cutoff, and node score cutoff were kept to 2, 0.1, and 0.2, respectively.

Molecular Docking
The docking studies of the representative compounds and targets were performed with AutoDock 4.2 (49)
using the UNIX automation script. The BIOVIA Discovery Studio (San Diego: Dassault Systèmes) was
used for pre-processing the chemical structures and biomolecules. The metal ions and/or substrate
molecules (if any) were kept in the binding pocket of the targets. The Lamarckian genetic algorithm
search was employed for the docking. The key residues of the binding pocket were kept flexible. The
center of the binding pockets of the individual targets was selected for the grid placement. A total of 60
runs along with 2.5 million energy evaluation steps were employed. The representative pose selection
was done based on the cluster analysis of the docked poses. The PyMOL Molecular Graphics System
(Version 1.8.4.0, Schrödinger, LLC) was used for the visualizations and graphics generations.

Results

Lobelia herbs, Active Ingredients, and Known Targets
In this study, a total of 17 herbs belonging to the genus Lobelia were selected. The criteria of their
inclusion in this study were based on available information related to the metabolites and their biological
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targets. For the herbs are known to have at least one experimentally characterized metabolite and one
corresponding target was included. The collected herbs are listed in Supplementary Table S1. Initially, the
chemical constituents collected from the NPASS database were mapped to the ChEMBL database and
the corresponding bioactivity data were retrieved. A total of 194 compounds were successfully mapped in
this manner. Additionally, the chemical constituents and corresponding biological targets of Lobelia
chinensis were also retrieved from the TCMSP database. A total of 71 chemical constituents were
retrieved from the TCMSP database. The redundant chemical structures between the Lobelia chinensis
collected from both databases were merged into one and the final selection was based on the TCMSP
database. Finally, a total of 233 molecules were subjected to the ADME-filtering. In this study, we used
three ADME-filtering criteria; OB ≥ 30%, DL ≥ 0.18, and HL ≥ 4. The aim of this filtering was to select the
molecules with good absorption, slow metabolism after oral administration, and suitability for the drug-
development. A similar approach has been used in other studies (50). In this work, we did not consider the
blood-brain barrier (BBB) permeability as filtering criteria. The reason was that certain natural products
(e.g. quercetin) with the theoretical prediction of poor BBB permeability when tested experimentally
exhibited satisfactory permeability (51). Following the ADME- filtering, 49 unique chemical compounds
associated with 411 corresponding targets were selected. Out of that, 12 targets related to the
cytochrome 450 families were discarded from further study. Finally, a total of 153 non-reductant targets
were studied.

Neuroprotection and Neurodegenerative Disease-Related
Gene
The candidate genes of the five most common neurodegenerative diseases viz. AD (180 genes), ALS (121
genes), epilepsy (2667 genes), HD (65 genes), and PD (127 genes) along with the genes commonly
associated with the neuroprotection (NP, 101 genes) mechanism were collected. A series of gene
databases (see Material and Methods) were used. Initially, the genes related to each disease and NP
mechanism were compared and analyzed individually with the Lobelia genes (153 genes). For the sake of
simplicity, this set of genes which includes individual diseases will be called Set I. The overlapped genes
of the Set I are shown in Supplementary Figures S1. In the final selection, all the genes associated with
five neurodegenerative diseases mentioned above and those of NP mechanisms were overlapped with
the Lobelia genes. For the sake of simplicity, this set of genes will be called Set II. To be noted that all the
subsequent studies reported in the main paper were performed on Set II. The reason for the selection of
Set II for the detailed analysis was because of the fact that different neurodegenerative diseases
including those mentioned in this study broadly share the common pathogenesis and signaling pathways
related to neuronal damages and protection. Therefore, the genes of the Set II best represented the
neuroprotective mechanism associated with different neurodegenerative diseases. Moreover, the analysis
related to Set I was also performed (see Supplementary Information).

A total of 31 overlapping genes in Set II were retrieved and the IUPHAR classification (52) was performed
on them. The categorical distribution of the overlapped gene is shown in Fig. 1A. As expected, a majority
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of the genes belonged to the enzyme class (56.3%) followed by ion transporter (12.5%), nuclear hormone
receptors (12.5%), other protein (12.5%), and catalytic receptor (6.3%).

We have also performed a clustering analysis to determine the chemical diversity of the collected
chemical constituents. The 49 unique compounds could be represented into 10 well-defined clusters as
shown in Fig. 1B. The representative chemical structure of each cluster is shown in Fig. 1C. The aglycone
part of the flavonoid such as diosmetin and 18 other aglycones constituted the most populated cluster
(Cluster 1).

Enrichment Analysis of the Candidate Genes
All the overlapped genes belonging to Set I and Set II were tested for functional enrichment with three GO
terms (BP, CC, and MF) and KEGG/REACTOME pathways. The result of the GO terms and
KEGG/REACTOME pathways enrichment of genes in Set I are shown in Supplementary Figures S2-S7.
The result of the GO enrichment of the genes in Set II is shown in Fig. 2A. The description is provided in
the following section.

The “positive regulation of transcription from RNA polymerase II promoter”, “positive regulation of
transcription, DNA-templated”, “response to drug”, and “negative regulation of apoptotic process” were
the most significantly enriched terms in the BP. Interestingly, the “response to gamma radiation
(GO:0010332)” was also found to be within the top ten most enriched BP terms. The ionizing radiation
has been shown to have a debilitating impact on neurodegenerative diseases. Several studies reported
that radiation inhibits neurogenesis through different mechanisms such as neuroinflammation, elevate
reactive oxygen and nitrogen species, oxidative stress, protein degradation, and mitochondrial
dysfunctions, among others (53–56). The major cellular components such as nucleus, cytosol,
cytoplasm, mitochondria along with synapse were indicated as the location of the overlapped genes in
Set II.

The KEGG/REACTOME pathways analysis of overlapped genes were analyzed with BH-corrected P-
values < 0.05 (Fig. 2B). The enrichment of the overlapped genes was mostly found in the pathways in
cancer, hepatitis B, Akt signaling pathway, proteoglycans in cancer, MAPK signaling pathway, HTLV-1
infection, prostate cancer, colorectal cancer, influenza A, thyroid hormone signaling pathway, tuberculosis,
Chagas disease, endometrial cancer, Amyotrophic lateral sclerosis, and bladder cancer, among other.
Indeed, a number of studies supported the intriguing cross-talks between cancer and neurodegeneration
(57–59). The key candidate pathways-targets interaction network is shown in Fig. 2C.

Compound-Target Networks
The compound-target network was constructed to establish the role of the active ingredients of the genus
Lobelia and the overlapped targets found in Set I and Set II. The compound-network diagram diagrams of
the overlapped genes in AD, ALS, epilepsy, HD, NP, and PD are shown in Supplementary Figures S8-S13
and for Set II is shown in Fig. 3.
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According to the analysis, 12 unique compounds viz. quercetin (MOL000098), luteolin (MOL000006),
kaempferol (MOL000422), acacetin (MOL001689), chryseriol (MOL003044), norlobelanine (MOL012216),
lobelanine (MOL012208), 2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-yl]-1-
phenylethanone (MOL012209), hydroxygenkwanin (MOL005530), lobelanidine (MOL012207), and
diosmetin (MOL002881) were found associated with the 31 target proteins in Set II. Among these
compounds, quercetin (degree: 26), luteolin (degree: 10), kaempferol (degree: 7), acacetin (degree: 5), and
chryseriol (degree: 4) were found to be a high-degree association (≥ 4 proteins). Among the targets, nitric
oxide synthase, brain (NOS1, degree: 5), androgen receptor (ANDR, degree: 5), sodium- and chloride-
dependent GABA transporter 1 (SC6A1, degree: 4), BCL2 (degree: 3), AKT1 (degree: 3), P53 (degree: 3),
BAX (degree: 3), and TNFA (degree: 3) were found to be associated with at least three compounds. The
candidate compounds and target relationships are listed in Supplementary Table S2-S8.

Certain species of Lobelia, such as Lobelia inflata and Lobelia cardinalis are extensively characterized
and the pharmacological properties of their chemical constituents are well-studied (60). Among them, the
pyridine alkaloids lobeline and lobinaline were thoroughly investigated (27, 61–63). However, due to the
structural complexity of the glycosidic components, the evaluation of their bioactivities has been
continuing to prove highly challenging. Thus, our study establishing the relationship between the active
ingredients of the Lobelia species to their potential targets should aid a tremendous value in elucidating
their mechanism of actions in neuroprotection.

Construction and Analysis of Target Proteins PPI Network
The PPI network was constructed to understand the interrelation between the neuroprotection associated
candidate genes of the genus Lobelia. The constructed PPI network is shown in Fig. 4. The network edges
were first created based on the molecular interaction by keeping the interaction score to ≥ 0.400. A total
of 31 nodes and 249 edges were found in the network with an average node degree of 16.1. As expected,
AKT1, TP53, MYC, TNF, EGF, EGFR were amongst the central targets in the PPI network. In the next step,
the highly interconnected regions in the PPI network were analyzed using the MCODE algorithm. A well-
organized and highly interconnected hub region with 20 nodes were retrieved. The targets ESR1, MYC,
IL1B, IFNG, CXCL8, CASP9, IL2, CCL2, EGF, EGFR, FOS, MMP2, HSPB1, AKT1, TP53, BCL2L1, AR, HIF1A,
TNF, and CCND1 constituted the cluster. Interestingly, all the targets associated in this cluster had an
association score ≥ 0.9, which in turn suggests the high confidence in their interactions. The topological
parameters of the PPI network are shown in Table 1.
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Table 1
The topological parameters of the PPI network.

Genes Degree Betweenness
Centrality

Average Shortest Path
Length

Closeness Centrality

BCL2L1 24 0.02054442 1.20689655 0.82857143

TP53 24 0.02054442 1.20689655 0.82857143

AKT1 28 0.10602706 1.03448276 0.96666667

GSK3B 13 0.00616809 1.5862069 0.63043478

EGFR 21 0.01242899 1.31034483 0.76315789

EGF 22 0.01542304 1.27586207 0.78378378

BAX 9 0.00049759 1.72413793 0.58

CASP9 19 0.01023331 1.37931034 0.725

CXCL8 19 0.00330769 1.37931034 0.725

IL1B 19 0.02195186 1.34482759 0.74358974

MYC 24 0.02054442 1.20689655 0.82857143

BCL2 11 0.00269961 1.65517241 0.60416667

ESR1 21 0.01045047 1.31034483 0.76315789

CCND1 20 0.01077983 1.34482759 0.74358974

TNF 25 0.04919786 1.13793103 0.87878788

HIF1A 17 0.00428457 1.44827586 0.69047619

AR 17 0.00730507 1.44827586 0.69047619

FOS 23 0.05947999 1.20689655 0.82857143

CCL2 17 0.00290018 1.44827586 0.69047619

IL2 16 0.00504994 1.48275862 0.6744186

IFNG 14 0.00054133 1.55172414 0.64444444

SOD1 16 0.02218413 1.44827586 0.69047619

CTSD 11 0.0013186 1.65517241 0.60416667

HSPB1 17 0.00420332 1.44827586 0.69047619

PRKCB 9 0.00992863 1.68965517 0.59183673

NOS1 7 0.00356263 1.75862069 0.56862745
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Genes Degree Betweenness
Centrality

Average Shortest Path
Length

Closeness Centrality

MMP2 20 0.00586964 1.34482759 0.74358974

SLC6A3 6 0.02548675 1.79310345 0.55769231

MAOB 2 0 2.62068966 0.38157895

ACHE 7 0.04447572 1.75862069 0.56862745

 

Molecular docking
Molecular docking was carried out to elucidate the binding modes of the 12 active ingredients to the 15
targets (NOS1, BCL2, AR, AKT1, AChE, IL2, EGFR, ER, MAOB, PRKCB, CTSD, MMP2, GSK3B, SOD1, and
HIF1A) for which crystal structures were known. Interestingly, most of the Lobelia compounds showed a
relatively much higher binding affinity against targets such as MAOB (monoamine oxidase B), PRKCB
(protein kinase C beta type), AR (androgen receptor), AChE (acetylcholinesterase), and ER (estrogen
receptor) than the other 10 targets. For example, the pyridine alkaloid lobelanidine interacted with MAOB
with a docking score of -11.12 kcal/mol. (2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-
yl]-1-phenylethanone) interacted with AChE with a docking score of -11.911, which should be deemed as
a potent binding. The docking score of the best-ranked molecules against the selected targets is shown in
Table 2. The molecular interactions and binding mode of the selected molecules are shown in Figs. 5–7.
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Table 2
Docking results of the best-ranked candidate compounds.

Protein PDB
ID

Compound ID Docking score
(kcal/mol)

MAOB 2BK3
(119)

MOL012207 (lobelanidine) -11.12

    MOL012209 (2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-
methylpiperidin-2-yl]-1-phenylethanone)

-10.506

    MOL002881 (diosmetin) -10.488

    MOL000098 (quercetin) -10.164

    MOL012208 (lobelanine) -10.006

PRKCB 2I0E
(120)

MOL005530 (hydroxygenkwanin) -8.264

    MOL000098 (quercetin) -8.189

    MOL000006 (luteolin) -8.141

AR 2PIU
(121)

MOL000006 (luteolin) -9.38

    MOL003044 (chryseriol) -9.224

    MOL000098 (quercetin) -9.101

    MOL000422 (kaempferol) -9.012

AChE 4EY7
(122)

MOL012209 (2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-
methylpiperidin-2-yl]-1-phenylethanone)

-11.911

    MOL012207 (lobelanidine) -11.756

    MOL012216 (norlobelanine) -10.967

    MOL001689 (acacetin) -9.233

ER 5TOA
(123)

MOL000006 (luteolin) -9.985

    MOL000098 (quercetin) -9.948

    MOL012207 (lobelanidine) -9.782

 

Interestingly, the inhibitory effects of some of the compounds revealed in this study against their targets
were reported. For example, quercetin and diosmetin were reported to have MAO inhibitory IC50 values of
90 µM ((64) and 2.10 µM (65), respectively. Both quercetin and luteolin were reported to have inhibitory
activity on protein kinase C (66, 67). Luteolin, quercetin, and kaempferol were reported to suppress the
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function of the AR receptor in different cancer cells (68–70). Likewise, acacetin as well several acacetin
derivatives such as linarin (acacetin-7-O-β-d-rutinoside), acacetin-7-O-methyl ether Mannich base
derivatives and acacetin-7-O-β-D-galactopyranoside were reported to exhibit AChE inhibition (71–73).
Quercetin was reported to stimulate cancer cell proliferation via the estrogen receptor (74).

Discussion
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,
epilepsy, and Amyotrophic lateral sclerosis are some of the most pressing burdens on the global
healthcare system. The high rate of the mortality and morbidity associated with these diseases,
particularly in the elderly population, demands novel therapies. Unfortunately, to date, not much success
has been achieved in developing effective therapeutics. However, tremendous progress has been made in
unraveling the causative mechanism and pathogenesis of these diseases.

One very critical causative mechanism of the most neurodegenerative diseases is the neuronal damage
(1). It is now well-established that acute as well as chronic neuronal damage initiates and helps in the
progression of neurodegenerative diseases. Thus newer therapeutic strategies to protect the neurons
from the damages are needed to be developed (3). In this direction, the use of multi-component herbal
products offers a great alternative. Several herbal medicines or natural products are known to exhibit
neuroprotection and provide beneficial effects in the treatment of neurodegenerative diseases (12–14).
However, there have been several clinical concerns that hinder a wide-adoption of herbal/natural products
in the prevention and therapy of neurodegenerative diseases. The lack of scientific evidence or support
for patient safety and their efficacy has been often touted as the main reason. Thus, studying the
rationale for the explanation of the molecular mechanism of actions of the pharmacokinetically suitable
herbal components are of paramount importance.

In this study, through integrated network pharmacology and molecular modeling approach, we aimed to
provide an explanation for the neuroprotective mechanism of the chemical constituents of a medically
valuable genus called Lobelia. We studied a total of 17 herbs belonging to this genus and their impact on
the five neurodegenerative diseases viz. Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,
epilepsy, and Amyotrophic lateral sclerosis. Since the neuronal damages associated with the initiation
and progression of these diseases share the common mechanism, the overlapped genes associated with
these diseases and those related to the genus Lobelia were studied and presented.

After filtering the compounds with favorable ADME-properties, 49 compounds associated with 153
unique target proteins were selected and studied. The results of the network pharmacology (Fig. 3)
indicated that 12 compounds viz. quercetin, luteolin, kaempferol, acacetin, chryseriol, norlobelanine,
lobelanine, 2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-yl]-1-phenylethanone,
hydroxygenkwanin, lobelanidine, and diosmetin were majorly associated with 31 unique target proteins
related to the neuroprotective mechanism. The major targets among them were found to be nitric oxide
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synthase, brain (NOS1), androgen receptor (ANDR), sodium- and chloride-dependent GABA transporter 1
(SC6A1), apoptosis regulator Bcl-2 (BCL2),

RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53, apoptosis regulator BAX,
and tumor necrosis factor (TNFA).

KEGG/REACTOME pathways analysis results showed that the candidate genes involved in enriched
pathways were related to the relevant pathways in cancer (Fig. 2). Several studies established the cross-
talks between the etiology of cancer and neurodegenerative diseases. For example, the role of the cancer-
associated enriched targets in this analysis such as the AKT serine/threonine kinase (AKT1) (75, 76),
BCL2 associated X apoptosis regulator (BAX) (77), apoptosis regulator (BCL2) (78–80), C-X-C motif
chemokine ligand 8 (CXCL8) (81–84), Fos proto-oncogene, AP-1 transcription factor subunit (FOS) (85),
androgen receptor (AR) (86, 87), caspase 9 (CASP9) (88–90), cyclin D1(CCND1) (91, 92), epidermal
growth factor receptor (EGFR) (93, 94), epidermal growth factor (EGF) (93, 94), glycogen synthase kinase
3 beta (GSK3B) (95–98), hypoxia inducible factor 1 alpha subunit (HIF1A) (99, 100), matrix
metallopeptidase 2 (MMP2) (101–104), protein kinase C beta (PRKCB) (105–107), and tumor protein p53
(TP53) (108, 108–110) in neurodegenerative diseases are well-established. These results suggested that
the active ingredients of genus Lobelia included in this study may act by targeting the signaling
pathways that are common to cancer. Interestingly, the nitric oxide synthase 1 (NOS1) (111, 112), tumor
necrosis factor (TNF) (113–115), superoxide dismutase 1 (SOD1) (116–118) associated with ALS
pathways have their role also associated with neurodegenerative diseases. The analysis of the PPI
network (Fig. 4 and Table 1) further confirmed that the majority of these target proteins have molecular
interactions with each other and participate in the signaling cascade. Further, the molecular docking
studies (Figs. 5–7) performed on the 15 target proteins provide a rationale for the molecular mechanism
of the binding of the compounds.

Conclusions
Neurodegenerative diseases have complex mechanisms with several intertwined signaling pathways and
multiple targets associated with it. Therefore, targeting based on multi-ingredient–multi-target–multi-
pathway is highly desirable. In this work, we provide the neuroprotective mechanisms of the 17 herbs
belonging to the genus Lobelia. We establish the relationship between their active ingredients and target
proteins and signaling pathways. We further provided theoretical validation of the binding mechanism of
the compounds with the target proteins. Although our theoretical findings are consistent with other
biological reports, further experimental validation of the pharmacological effects would be highly
valuable. Moreover, this study provides adequate background and confidence to do so.
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Figure 1

Property analysis of the compounds related to genus Lobelia and targets associated with neuroprotection
mechanism. A) IUPHAR classification of the overlapped genes (Set II) shown in terms of percentage; B)
chemical diversity of the collected compounds belonging to the genus Lobelia. ECFP4 fingerprint was
used. The numbering of the cluster is shown in descending order of the cluster size; C) chemical structure
of the representative compound in each cluster.
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Figure 2

Gene Ontology (GO) term and signaling pathway enrichment analysis of the overlapped genes (Set II)
related to the neuroprotective mechanism of the genus Lobelia. (A) GO analysis of the terms biological
process, molecular function, and cellular component. (B) KEGG/ REACTOME pathways enrichment of the
overlapped genes. (C) Key candidate pathways-targets interaction network.
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Figure 3

The compound-target network of the active ingredients of the genus Lobelia and the targets related to the
neuroprotective mechanism.
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Figure 4

The PPI network of the neuroprotection associated candidate genes of the genus Lobelia.
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Figure 5

The binding pose of the selected ligands. A) Lobelanidine docked into the binding cavity of the protein
MAOB; B) 2-[(2R,6S)-6-[(2R)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-yl]-1-phenylethanone docked into
the binding cavity of the protein MAOB; C) Hydroxygenkwanin docked into the binding cavity of the
protein PRKCB; D) Quercetin docked into the binding cavity of the protein PRKCB. The ligand is shown in
cyan color and sticks representation. The active site residues are shown as orange sticks. The main
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atoms involved hydrogen bonds are indicated as yellow dashes. The key residues participating in
hydrogen bonds and hydrophobic interactions are labeled.

Figure 6

The binding pose of the selected ligands. A) Luteolin docked into the binding cavity of the protein ANDR;
B) Chryseriol docked into the binding cavity of the protein ANDR; C) 2-[(2R,6S)-6-[(2R)-2-hydroxy-2-
phenylethyl]-1-methylpiperidin-2-yl]-1-phenylethanone docked into the binding cavity of the protein AChE;
D) Lobelanidine docked into the binding cavity of the protein AChE. The ligand is shown in cyan color and
sticks representation. The active site residues are shown as orange sticks. The main atoms involved
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hydrogen bonds are indicated as yellow dashes. The key residues participating in hydrogen bonds and
hydrophobic interactions are labeled.

Figure 7

The binding pose of the selected ligands. A) Acacetin docked into the binding cavity of the protein AChE;
B) Luteolin docked into the binding cavity of the protein ERβ; C) Quercetin docked into the binding cavity
of the protein ERβ. The ligand is shown in cyan color and sticks representation. The active site residues
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are shown as orange sticks. The main atoms involved hydrogen bonds are indicated as yellow dashes.
The key residues participating in hydrogen bonds and hydrophobic interactions are labeled.
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