Our study obtained the following findings: (1) women with singleton and twin pregnancies reached the peak levels of LA volume index, E/e', and BNP/NT-proBNP at PP1; (2) women with twin pregnancies had higher LA volume index, E/e', and BNP/NT-proBNP level and smaller s' than those with singleton pregnancies at PP1; (3) women with twin pregnancies had significantly higher serum creatinine level and significantly lower eGFR than those with singleton pregnancies in the third trimester; (4) the BNP/NT-proBNP level had a significantly positive correlation with the LA volume index and E/e', (5) the BNP/NT-proBNP level at PP1 predicted diastolic function recovery at PP2 in women with singleton pregnancy.
The LA volume index, E/e', and BNP/NT-proBNP variables reached their peak at PP1. Therefore, regardless of the number of fetuses, the maximal cardiac volume load occurred at PP1 and not during the late stages of pregnancy. This concept is consistent with our previous reports [11,24], which suggested that the maximum cardiac volume load occurred at PP1 in normotensive as well as hypertensive women with singleton pregnancies. These results are also consistent with Burlingame et al.’s study [12] and explain the likelihood of heart failure at PP1 among women with structural heart diseases [27]; peripartum cardiomyopathy is also often observed during the postpartum period [5]. Interstitial fluid retention occurs physiologically even in normotensive singleton pregnancies, wherein approximately 40% women exhibit pitting edema during the third trimester [28]. The decrease in systemic vascular resistance [10] causes an increase in reserved blood at the splanchnic venous reservoir [29]. Parturition is thought to reverse this process. In contrast, the increase in systemic vascular resistance during the postpartum period [10] can actively expel splanchnic blood into the systemic circulation [29], resulting in a maximal volume load in the early postpartum period.
In this study, the LA volume index, E/e', and BNP/NT-proBNP level were higher in women with twin pregnancies than in those with singleton pregnancies at PP1. Thus, twin pregnancy is a prominent risk factor for peripartum cardiomyopathy [5]. In Ghi et al.’s study, LV diastolic function recovered 6 months after childbirth, but LV contractility decreased [17]. Consistent with their findings, our results showed that e' was similar to that in singleton pregnancy but s', which is the contractility in the longitudinal direction, was lower than that in singleton pregnancy until PP2 [17]. Moreover, Orabona et al. reported a reduction in preload reserve in twin pregnancy [18]. Considering that the circulating blood volume was higher in twin pregnancies than in singleton pregnancies [1], this result was caused by the fact that the volume load during pregnancy exceeded the physiological limit of reversible adaptation.
To our knowledge, this study is the first to report that women with twin pregnancies had significantly higher serum creatinine levels and lower eGFRs than those with singleton pregnancies during third trimester (Table 4 and Fig. 3). The lower eGFR in women with twin pregnancies involves certain mechanisms. For instance, the central venous pressure may be higher in women with twin pregnancies than in those with singleton pregnancies owing to the smaller IVC diameter (compressed by the enlarged uterus) in women with twin pregnancies (Fig. 2) despite higher blood volume expansion [1]. Despite the higher blood volume expansion in women with twin pregnancies than in those with singleton pregnancies [1], the third-trimester cardiac outputs were similar between these two groups with similar heart rates (Fig. 2); although in some studies, women with twin pregnancies had a higher cardiac output than those with singleton pregnancies [13-16]. Therefore, blood flow velocities were slower in twin pregnancies than in singleton pregnancy, resulting in lower eGFRs in the former than in the latter.
Moreover, the BNP/NT-proBNP level significantly positively correlated with the LA volume index and E/e' (Fig. 4), implying that BNP is secreted by tension applied to the myocardium with volume and pressure overload [30]. Nonhemodynamic factors such as catecholamines and other neuroendocrines synthesize BNP [31]. In pregnant women, the mechanism of BNP secretion is insufficiently understood, but BNP may be secreted by diuretic action to reduce the volume and pressure overload on the myocardial wall [32,33]. In the present study, in singleton pregnancies, the higher the BNP level immediately after childbirth was, the lower the E/e' at PP2 (Fig. 5). Therefore, BNP has a cardioprotective effect in healthy pregnant women with singleton pregnancies. In addition, a higher BNP level immediately postpartum predicted diastolic function recovery at PP2, as evidenced by E/e' decrease as an index of the LV filling pressure (Fig. 5). This phenomenon may also mean that BNP is actively secreted to protect cardiac function from the cardiac volume load immediately postpartum. However, this trend was not observed in women with twin pregnancies because of the limited sample size and because catecholamine production from postoperative pain affected BNP, considering that 95% of women had undergone cesarean section [34].
We found two reports of hemodynamic comparison between monochorionic and dichorionic twin pregnancies [18, 35]. Ghi et al. reported that monochorionic twin pregnancies had lower cardiac output, higher systemic vascular resistance, and higher E/A than dichorionic twin pregnancies [35], but our study found no differences in echocardiographic parameters and cardiac biomarkers between monochorionic and dichorionic twin pregnancies (Table 5), as in the results of Orland et al. [18]. Ghi et al. [35] attributed the difference to the lower circulating blood volume of the monochorionic twin pregnancies, compared with that of the dichorionic twin pregnancies, but our study had no data to complement their findings. This result may also be associated with sample size issues; hence, further investigation is required.
This study has few limitations. First, we missed the first-trimester twin pregnancy data. As a regional core center, our hospital often accepts referred women with twin pregnancies after the first trimester. Second, twin pregnancies had a higher cesarean section rate than singleton pregnancies. Given that cesarean delivery results in a greater intravascular burden after childbirth than vaginal delivery [11], cesarean section may influence the postpartum course of twin pregnancies. Third, our study had a limited study population and was conducted at a single center, potentially limiting the generalizability of our findings.