1. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1–11 (2016).
2. Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020-Bending the curve of biodiversity loss. (2020).
3. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science (80-. ). 354, (2016).
4. Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science (80-. ). 360, 791–795 (2018).
5. Baisero, D., Visconti, P., Pacifici, M., Cimatti, M. & Rondinini, C. Projected Global Loss of Mammal Habitat Due to Land-Use and Climate Change. One Earth 2, 578–585 (2020).
6. Beyer, R. M. & Manica, A. Historical and projected future range sizes of the world’s mammals, birds, and amphibians. Nat. Commun. 11, (2020).
7. Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).
8. Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Chang. 5, 317–335 (2014).
9. Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
10. Watson, J. E. M. et al. Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Curr. Biol. 26, 2929–2934 (2016).
11. Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).
12. Potapov, P. et al. The last frontiers of wilderness : Tracking loss of intact forest landscapes from 2000 to 2013. 1–14 (2017).
13. Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
14. Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
15. CBD. Zero draft of the post‐2020 global biodiversity framework. in (CBD Montreal, 2020).
16. Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).
17. Hurtt, G. C. et al. Harmonization of Global Land-Use Change and Management for the Period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. Discuss. 1–65 (2020). doi:10.5194/GMD-2019-360
18. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215 (2019).
19. Williams, B. A. et al. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 3, 371–382 (2020).
20. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
21. Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U. S. A. 109, 8606–8611 (2012).
22. Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Chang. Biol. 26, 2944–2955 (2020).
23. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
24. Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, 1–7 (2018).
25. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).
26. Santini, L. et al. Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24, 181–186 (2013).
27. Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205–208 (2017).
28. Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Chang. Biol. 13, 1672–1684 (2007).
29. Chown, S. L., Slabber, S., McGeoch, M. A., Janion, C. & Leinaas, H. P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. R. Soc. B Biol. Sci. 274, 2531–2537 (2007).
30. Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science (80-. ). 320, 800–803 (2008).
31. Ordonez, A., Williams, J. W. & Svenning, J.-C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Chang. 6, 1104–1109 (2016).
32. Pacifici, M. et al. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 11, 1–10 (2020).
33. Brito-Morales, I. et al. Climate Velocity Can Inform Conservation in a Warming World. Trends Ecol. Evol. 33, 441–457 (2018).
34. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).
35. Burrows, M. T. et al. The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science (80-. ). 334, 652–655 (2011).
36. Beaumont, L. J. & Duursma, D. Global Projections of 21st Century Land-Use Changes in Regions Adjacent to Protected Areas. PLoS One 7, 1–8 (2012).
37. Melbourne-Thomas, J. et al. Poleward Bound: Adapting to climate-driven species redistribution. Rev. Fish Biol. Fish. In Review, (2020).
38. Allan, J. R., Venter, O. & Watson, J. E. M. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Sci. Data 4, 170187 (2017).
39. Jones, C., Giorgi, F. & Asrar, G. The Coordinated Regional Downscaling Experiment: CORDEX–an international downscaling link to CMIP5. CLIVAR Exch. 16, 34–40 (2011).
40. Williams, K. D. et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 8, 1509–1524 (2015).
41. Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. (2013). doi:10.1002/jame.20038
42. Knudsen, E. M. & Walsh, J. E. Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M). Geosci. Model Dev. 9, 2335–2355 (2016).
43. R Core Team. R: A language and environment for statistical computing. (2013).
44. Ordonez, A., Martinuzzi, S., Radeloff, V. C. & Williams, J. W. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat. Clim. Chang. 4, 811–816 (2014).
45. Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw 42, 1–28 (2011).
46. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, (2015).
47. UNEP‐WCMC & IUCN. Protected planet: The world database on protected areas (WDPA). (2018).
48. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, (2007).
49. Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience 51, (2001).
50. Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl. Acad. Sci. U. S. A. 117, 9906–9911 (2020).
51. R Core Team. R Development Core Team. R A Lang. Environ. Stat. Comput. 55, 275–286 (2016).
52. García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: An package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
53. Bowers, J., Fredrickson, M. & Hansen, B. RItools: Randomization inference tools. R Package. version 0.1-11 (2010).