To aid readers in interpreting the data we report here, results on the feed utilization, growth performance, fillet quality, intestinal histopathology and gene expression, which have been reported elsewhere [43-45], are summarized as the following. In brief, there was lack of evidence that the insect meal diet negatively affected the feed utilization, growth performance or fillet quality of Atlantic salmon. Profiling of genes related to lipid metabolism, immune responses, barrier functions and stress responses in the proximal and distal intestine showed little evidence of diet effect. Histopathological examination of intestinal segments showed enterocyte steatosis in the proximal and mid intestine in both diet groups, but it was less severe in the proximal intestine of fish fed the insect meal diet.
Hereafter, different sample groups are named based on the combination of diet (REF vs. IM) and sample origin (DID vs. DIM). Hence, in addition to the extraction blanks, library blanks and mock, we have four different sample types, i.e., REF-DID, REF-DIM, IM-DID and IM-DIM.
qPCR
Since Cq values of most mucosa DNA templates were out of the linear range of the standard curve, the raw Cq value was used as a proxy of 16S rRNA gene quantity in the diluted DNA templates (Figure S1). On average, REF-DID showed the highest 16S rRNA gene quantities (mean Cq = 24.7), followed by the mocks (mean Cq = 26.1) and IM-DID (mean Cq = 28.4). Irrespective of diet, mucosa DNA templates (REF-DIM, IM-DIM) showed similar 16S rRNA gene quantities (mean Cq = 30) that were close to extraction blanks (mean Cq = 32.4).
Characteristics of the sequence data
The high-throughput sequencing generated a total number of 9.6 million raw reads for biological samples. The median of raw reads per sample was 140602, with the minimum and maximum value being 24076 and 204621, respectively. After the sequence denoising and ASV filtering, a total number of 1620 unique ASVs was generated. The number of effective sequences retained for the downstream data analysis was 3.6 million. The median of effective sequences per sample was 46372, with the minimum and maximum value being 951 and 106591, respectively.
Taxonomic composition
All the eight bacterial species included in the mock were successfully identified at genus level with E. faecalis, L. fermentum, L. monocytogenes and S. aureus further being annotated at the species level (Figure S2A). At the genus level, the average Pearson's r between the expected and observed taxonomic profile of the mock was 0.33, whereas the Pearson's r between the observed taxonomic profile of the mock was 0.98. The relative abundance of most Gram-positive bacteria, L. monocytogenes and E. faecalis in particular, were underestimated. In contrast, the relative abundance of Gram-negative bacteria was overestimated. Most ASVs (97.5% - 99.9%) in the extraction and library blanks were classified as Pseudomonas (Figure S2B), which was the main contaminating taxon removed from the biological samples. Other contaminating ASVs removed from the biological samples were classified as Curtobacterium, Jeotgalicoccus, Modestobacter, Cutibacterium, Hymenobacter, Brevundimonas, Micrococcus, Sphingomonas, Devosia, Sphingomonas aurantiaca and Marinobacter adhaerens. The exact sequence and taxonomy of the contaminating ASVs and their relative abundance in the extraction and library blanks are available in Table S1.
The taxonomic composition of mucosa samples showed higher similarity than that of the digesta samples, which were more diet-dependent (Figure 1). At the phylum level, the dominant taxa of mucosa samples for both diets were Spirochaetes (REF-DIM, 72%; IM-DIM, 47%) (mean relative abundance), Proteobacteria (REF-DIM, 21%; IM-DIM, 23%), Firmicutes (REF-DIM, 1%; IM-DIM, 11%), Tenericutes (REF-DIM, 4%; IM-DIM, 8%) and Actinobacteria (REF-DIM, 1%; IM-DIM, 9%). For digesta samples, the dominant taxa of REF-DID were Tenericutes (33%), Proteobacteria (31%), Firmicutes (25%) and Spirochaetes (9%), whereas IM-DID was dominated by Firmicutes (45%), Actinobacteria (25%), Proteobacteria (17%), Tenericutes (7%) and RsaHF231 (4%) (Figure 1A). At the genus level, the dominant taxa of mucosa samples for both diets were Brevinema (REF-DIM, 52%; IM-DIM, 25%), Spirochaetaceae (REF-DIM, 20%; IM-DIM, 22%), Aliivibrio (REF-DIM, 18%; IM-DIM, 18%) and Mycoplasma (REF-DIM, 4%; IM-DIM, 8%). For digesta samples, the dominant taxa of REF-DID were Mycoplasma (33%), Aliivibrio (20%), Photobacterium (10%), Brevinema (6%) and Lactobacillus (5%), whereas IM-DID was dominated by Aliivibrio (15%), Lactobacillales (14%), Corynebacterium 1 (13%), Bacillus (8%), Mycoplasma (7%) and Actinomyces (5%) (Figure 1B).
Core ASVs
In total, 339 ASVs were identified as core ASVs based on their prevalence in each sample type (Figure 2; Table S2). Three ASVs, classified as Aliivibrio, Brevinema andersonii, and Mycoplasma respectively, were identified as core ASVs in all the sample types. The Brevinema andersonii ASV was universally present in all the samples. Additionally, 11 ASVs were identified as core ASVs for digesta samples (REF-DID and IM-DID), which were classified as Geobacillus (1 ASV), Lactobacillus (3 ASVs), Mycoplasma (2 ASVs), Photobacterium (3 ASVs), Streptococcus (1 ASV) and Weissella (1 ASV). Two additional core ASVs were identified for the mucosa samples (REF-DIM and IM-DIM), which were classified as Brevinema andersonii and Spirochaetaceae, respectively. Six additional core ASVs were identified for fish fed the insect meal diet (IM-DID and IM-DIM), which were classified as Actinomyces, Corynebacterium 1, Corynebacterium aurimucosum ATCC 70097, Lactobacillales, RsaHF23 and Spirochaetaceae, respectively. No additional core ASVs were identified for fish fed the reference diet (REF-DID and REF-DIM). Lastly, 308 ASVs were found to be more prevalent in IM-DID than in any other sample type.
Alpha-diversity
Regardless of diet, all the alpha-diversity indices were higher in digesta samples than mucosa samples (p < 0.05) (Figure 3). Independent of sample origin, all the alpha-diversity indices were higher in fish fed the IM diet than those fed the REF diet (p < 0.05). A significant interaction between the diet and sample origin effect was detected for the observed ASVs (p < 0.001) and Faith’s phylogenetic diversity (p < 0.001), both of which showed a stronger diet effect in digesta samples than mucosa samples.
Beta-diversity
The PCoA plots built on the Jaccard and unweighted UniFrac distance matrix showed clear separations of samples belonging to different dietary groups and sample origins (Figure 4A-B). However, the average distance between samples from different dietary groups was dependent on sample origin. Specifically, mucosa samples from different dietary groups formed clusters close to each other, whereas digesta samples from different dietary groups were far apart. The PCoA plots built on the Aitchison and PHILR transformed Euclidean distance matrix also showed separations of samples belonging to different dietary groups and sample origins (Figure 4C-D). Again, the average distance between samples from different dietary groups was dependent on sample origin. Mucosa samples from different dietary groups formed clusters boarding (Figure 4C) or overlapping (Figure 4D) each other, whereas digesta samples from different dietary groups were more clearly separated.
The PERMANOVA and its following conditional contrasts largely confirmed the PCoA results. Regardless of the distance matrix used, both main factors had significant effects on the beta-diversity and their interaction was significant as well (p < 0.05) (Table 1). Results on the tests of homogeneity of multivariate dispersions are shown in Table 2. For Jaccard distance, significant differences in the multivariate dispersions were observed between digesta and mucosa samples for both diets (REF-DID VS. REF-DIM, p = 0.045; IM-DID VS. IM-DIM, p = 0.002), and between diets for digesta samples (REF-DID VS. IM-DID, p = 0.002). For unweighted UniFrac distance, IM-DID showed lower multivariate dispersions than other sample types resulting in significant differences compared to REF-DID (p = 0.002) and IM-DIM (p = 0.002). For Aitchison distance, REF-DIM showed lower multivariate dispersions than other sample types resulting in significant differences compared to REF-DID (p = 0.046) and IM-DIM (p = 0.046). For PHILR transformed Euclidean distance, the differences in the multivariate dispersions among the sample types were not significant (p > 0.05).
Significant associations between microbial clades and sample metadata
The multivariate association analysis identified 53 taxa showing significant associations with the metadata of interest (Figure 5A). The diagnostic plots showing the raw data underlying the significant associations are shown in Figures S3-8. Forty-seven differentially abundant taxa were identified for the sample origin effect, 45 of which, including Bacillus, Enterococcus, Flavobacterium, Lactobacillus, Lactococcus, Leuconostoc, Mycoplasma, Peptostreptococcus, Photobacterium, Staphylococcus, Streptococcus, Vagococcus and Weissella, showed lower relative abundances in the mucosa than the digesta (Figure S3). In contrast, two taxa belonging to the Spirochaetes phylum, Brevinema andersonii and Spirochaetaceae, were enriched in the mucosa (Figure 5B). Thirty-six differentially abundant taxa were identified for the diet effect, 26 of which showed increased relative abundances in fish fed the IM diet (Figure S4). Among these 26 taxa, some were enriched in both intestinal digesta and mucosa which included Actinomyces, Bacillaceae, Bacillus, Beutenbergiaceae, Brevibacterium, Corynebacterium 1, Enterococcus, Lactobacillales, Microbacterium, Oceanobacillus and RsaHF231 (partially illustrated as Figure 5C). For the histological scores, the relative abundance of Sphingobacteriaceae and RsaHF231 were found to increase and decrease, respectively, in fish scored abnormal regarding lamina propria cellularity (LPC) in distal intestine (Figure S5). The relative abundance of Acinetobacter and Pseudomonas were negatively correlated with the distal intestine somatic index (DISI) (Figure S6). Six taxa, including Actinomyces, Brevinema andersonii, Kurthia, Lysobacter, Microbacterium and the Sphingobacteriaceae, were found to associate with the expression of genes related to immune responses (Figure S7). Notably, the relative abundance of Brevinema andersonii showed a clear positive correlation with the expression levels of immune genes (Figure 5D), which decreased as the PC1 of the PCA increased. Furthermore, 3 taxa including Cellulosimicrobium, Glutamicibacter and the Spirochaetaceae were found to associate with the expression of genes related to barrier functions (Figure S8). The relative abundance of the Spirochaetaceae showed a negative correlation with the expression levels of barrier function relevant genes (Figure 5E), which decreased as the PC1 of the PCA increased.