1. Wu, H.L., et al., Misoprostol for medical treatment of missed abortion: a systematic review and network meta-analysis. Sci Rep, 2017. 7(1): p. 1664.
2. Alves, C. and A. Rapp, Spontaneous Abortion, in StatPearls. 2021: Treasure Island (FL).
3. Fang, J., et al., Biochemical clinical factors associated with missed abortion independent of maternal age: A retrospective study of 795 cases with missed abortion and 694 cases with normal pregnancy. Medicine (Baltimore), 2018. 97(50): p. e13573.
4. Crha, I., et al., Uterine microbiome and endometrial receptivity. Ceska Gynekol, 2019. 84(1): p. 49-54.
5. Koedooder, R., et al., Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update, 2019. 25(3): p. 298-325.
6. Garcia-Grau, I., C. Simon, and I. Moreno, Uterine microbiome-low biomass and high expectationsdagger. Biol Reprod, 2019. 101(6): p. 1102-1114.
7. Watts, G.S., et al., 16S rRNA gene sequencing on a benchtop sequencer: accuracy for identification of clinically important bacteria. J Appl Microbiol, 2017. 123(6): p. 1584-1596.
8. Kitaya, K., et al., Characterization of Microbiota in Endometrial Fluid and Vaginal Secretions in Infertile Women with Repeated Implantation Failure. Mediators Inflamm, 2019. 2019: p. 4893437.
9. Leonardi, M., et al., Endometriosis and the microbiome: a systematic review. BJOG, 2020. 127(2): p. 239-249.
10. Laniewski, P., Z.E. Ilhan, and M.M. Herbst-Kralovetz, The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol, 2020. 17(4): p. 232-250.
11. Beckers, K.F. and J.L. Sones, Maternal microbiome and the hypertensive disorder of pregnancy, preeclampsia. Am J Physiol Heart Circ Physiol, 2020. 318(1): p. H1-H10.
12. Tao, L.C., Direct intrauterine sampling: the IUMC Endometrial Sampler. Diagn Cytopathol, 1997. 17(2): p. 153-9.
13. Edgar, R.C., UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013. 10(10): p. 996-8.
14. Quast, C., et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 2013. 41(Database issue): p. D590-6.
15. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004. 32(5): p. 1792-7.
16. Li, B., et al., Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Res, 2013. 47(13): p. 4207-16.
17. Lozupone, C. and R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol, 2005. 71(12): p. 8228-35.
18. Lozupone, C., et al., UniFrac: an effective distance metric for microbial community comparison. ISME J, 2011. 5(2): p. 169-72.
19. Segata, N., et al., Metagenomic biomarker discovery and explanation. Genome Biol, 2011. 12(6): p. R60.
20. Vivas-Mejia, P., et al., c-Jun-NH2-kinase-1 inhibition leads to antitumor activity in ovarian cancer. Clin Cancer Res, 2010. 16(1): p. 184-94.
21. Zhao, L., H. Yang, and G. Liu, Relationship between age at menarche and chromosome numerical abnormalities in chorionic villus among missed abortions: A cross-sectional study of 459 women in China. J Obstet Gynaecol Res, 2020.
22. Zhi, Z., et al., Early missed abortion is associated with villous angiogenesis via the HIF-1alpha/VEGF signaling pathway. Arch Gynecol Obstet, 2018. 298(3): p. 537-543.
23. Li, Y., et al., The Expression of PDCD4 in Patients With Missed Abortion and Its Clinical Significance. Reprod Sci, 2017. 24(11): p. 1512-1519.
24. Luo, M., et al., The expression and clinical significance of three lncRNAs in patients with a missed abortion. Exp Ther Med, 2021. 21(1): p. 8.
25. Maruvada, P., et al., The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe, 2017. 22(5): p. 589-599.
26. Zeng, H., et al., Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int J Mol Sci, 2019. 20(5).
27. Sochocka, M., et al., The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review. Mol Neurobiol, 2019. 56(3): p. 1841-1851.
28. Straub, T., M. Reynaud, and M. Yaron, [Intrauterine device and pelvic inflammatory disease: Myth or reality?]. Gynecol Obstet Fertil Senol, 2018. 46(4): p. 414-418.
29. Hernandes, C., et al., Microbiome Profile of Deep Endometriosis Patients: Comparison of Vaginal Fluid, Endometrium and Lesion. Diagnostics (Basel), 2020. 10(3).
30. Bracewell-Milnes, T., et al., Investigating the effect of an abnormal cervico-vaginal and endometrial microbiome on assisted reproductive technologies: A systematic review. Am J Reprod Immunol, 2018. 80(5): p. e13037.
31. Verstraelen, H., et al., Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. PeerJ, 2016. 4: p. e1602.
32. Chen, C., et al., The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun, 2017. 8(1): p. 875.
33. Witkin, S.S. and I.M. Linhares, Why do lactobacilli dominate the human vaginal microbiota? BJOG, 2017. 124(4): p. 606-611.
34. Akiyama, K., et al., Molecular detection of microbial colonization in cervical mucus of women with and without endometriosis. Am J Reprod Immunol, 2019. 82(2): p. e13147.
35. Hu, J., et al., Intrauterine Growth Restriction Is Associated with Unique Features of the Reproductive Microbiome. Reprod Sci, 2021. 28(3): p. 828-837.
36. Walther-Antonio, M.R., et al., Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med, 2016. 8(1): p. 122.