1. Zaidi A, Khan MS, Amil M. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron. 2003;19(1)15-21. doi:10.1016/S1161-0301(02)00015-1.
2. Lee CC, Sharon JA, Hathwaik LT, Glenn GM, Imam SH. Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. J Soil Sci Plant Nutr. 2016;16(2):525-536. doi:10.4067/s0718-95162016005000043.
3. Yarzábal LA, Pérez E, Sulbarán M, Ball MM. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Bio Biochem. 2007;39(11)2905-2914. doi:10.1016/j.soilbio.2007.06.017.
4. Shi GY, Mo YM, Cen ZL, Zeng Q, Yu GM, Yang LT, et al. Identification of an inorganic phosphorus-dissolving bacterial strain BS06 and analysis on its phosphate solubilization ability. Microbiol China. 2015;42(7):1271-1278. doi:10.13344/j.microbiol.china.140721.
5. Yang J, Ruan XH. Soil circulation of phosphosrus and its effects on the soil loss of phosphorus. Soil Environ Sci. 2001;10(3):256-258. doi:1008-181X (2001) 01-0256-03.
6. Islam MT, Deora A, Hashidoko Y, Rahman A, Ito T, Tahara S. Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Z Naturforsch C J Biosci. 2007;62(1-2):103-110. doi:10.1515/znc-2007-1-218.
7. Farhat MB, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, et al. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol. 2009;191(11):815-824. doi:10.1007/s00203-009-0513-8.
8. Kumari P, Sagervanshi A, Nagee A, Kumar A. Media optimization for inorganic phosphate solubilizing bacteria isolated from anand argiculture soil. Int J Pharm Sci Res. 2012;2(3):245-255.
9. Goldstein AH, Krishnaraj PU. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett. 2001;205(2):215-220. doi:10.1016/S0378-1097(01)00472-4.
10. Viruel E, Erazzú LE, Martínez Calsina ML, Ferrero MA, Lucca ME, Siñerizet F. Inoculation of maize with phosphate solubilizing bacteria: effect on plant growth and yield. J Soil Sci Plant Nutr. 2014;14(4):819-831. doi:10.4067/s0718-95162014005000065.
11. Li XL, Luo LJ, Yang JS, Li BZ, Yuan HL. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl Biochem Biotechnol. 2015;175(5):2755-2768. doi:10.1007/s12010-014-1465-2.
12. Wang Z, Xu GY, Ma PD, Lin YB, Yang XN, Cao CL. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage (Brassica campestriss ssp.chinensis). Front Microbiol. 2017;8:1270. doi:10.3389/fmicb.2017.01270.
13. Hanif MK, Hameed S, Imran A, Naqqash T, Shahid M, Van Elsas JD. Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Front Microbiol. 2015;6:583. doi:10.3389/fmicb.2015.00583.
14. Gong AD, Zhu ZY, Lu YN, Wan HY, Wu NN, Cheelo D, et al. Functional analysis of Burkholderia pyrrocinia WY6-5 on phosphate solubilizing, antifungal and growth-promoting activity of maize. J Integr Agric. 2019c;52(9):1574-1586. doi:10.3864/j.issn.0578-1752.2019.09.009.
15. Abdelhay A, Ferdaouss EHA, Saida A, Abderrazak R, Amin L, Arakrak M, et al. Screening of phosphate solubilizing bacterial isolates for improving growth of wheat. Europen J Biotechnol Biosci. 2017;5(6):07-11. doi:10.22271/bioscience.
16. Saeed A, Zarei M, Aminzadeh S, Zolgharnein H, Safahieh A, Daliri M, et al. Characterization of a chitinase with antifungal activityfrom a native Serratia marcescens B4A. Braz J Microbio. 2011;42(3):1017-1029. doi:10.1590/S1517-83822011000300022.
17. Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K. Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis. 2000;84(3):334-340. doi:10.1094/PDIS.2000.84.3.334.
18. Tripura C, Sashidhar B, Podile AR. Ethyl methanesulfonate mutagenesis–Enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Curr Microbiol. 2007;54(2):79-84. doi:10.1007/s00284-005-0334-1.
19. Lavania M, Nautiyal CS. Solubilization of tricalcium phosphate by temperature salt tolerant Serratia marcescens NBRI1213 isolated from alkaline soils. Afr J Microbiol Res. 2013;7(34):4403-4413. doi:10.5897/AJMR2013.5773.
20. Mohamed EAH, Farag AG, Youssef SA. Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. J Environ Prot. 2018;9,266-277. doi:10.4236/jep.2018.93018.
21. Archana K. Molecular characterization of mineral phosphate solubilization in Serratia marcescens and Methylobacterium sp. Mol biol biotechnol. 2011;1:47-50.
22. Gong AD, Li HP, Shen L, Zhang JB, Wu AB, He WJ, et al. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Front Microbiol. 2015;6:1091. doi:10.3389/fmicb.2015. 01091.
23. Gong AD, Dong FY, Hu MJ, Kong XW, Wei FF, Gong SJ, et al. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. Food Control. 2019a; doi:10.1016/j.foodcont.2019.106718.
24. Gong AD, Wu NN, Kong XW, Zhang YM, Hu MJ, Gong SJ, et al. Inhibitory effect of volatiles emitted from Alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front Microbiol. 2019b; doi:10.3389/fmicb.2019.01419.
25. Papazlatani C, Rousidou C, Katsoula A, Kolyvas M, Genitsaris S, Papadopoulou KK, et al. Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils. Eur J Plant Pathol. 2016;146(2):391-400. doi:10.1007/s10658-016-0926-6.
26. Piechulla B, Lemfack MC, Kai M. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ. 2017;40(10):2042-2067. doi:10.1111/pce.13011.
27. Woo PCY, Teng JLL, Wu JKL, Leung FPS, Tse H, Fung AMY, Lau SKP, et al. Guidelines for interpretation of 16S rRNA gene sequence-based results for identification of medically important aerobic Gram-positive bacteria. J Med Microbiol. 2009;58(8):1030-1036. doi:10.1099/jmm.0.008615-0.
28. Jenkins C, Ling CL, Ciesielczuk LH, Lockwood J, Hopkins S, DMcHugh T, et al. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical Practice. J Med Microbiol. 2012;61(4):483-488.10. doi:10.1099/jmm.0.030387-0.
29. Abel E, Ibrahim N, Huyop F. Identification of Serratia marcescens SE1 and determination of its herbicide 2,2-dichloropropionate (2,2-DCP) degradation potential. Malays J Microbiol. 2012;8(4):259-265. doi:10.21161/mjm.44412.
30. Liu M, Liu X, Cheng BS, Ma XL, Lyu XT, Zhao XF, et al. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Span J Agric Res. 2016;14(4):10-11. doi:10.5424/sjar/2016144-9714.
31. Gao X, Massawe VC, Hanif A, Farzand A, Mburu DK, Ochola DK, et al. PLoS One. Phytopathology. 2018;108(12). doi:10.1094/PHYTO-04-18-0118-R.
32. Yuan J, Raza W, Shen Q, Huang Q. Antifungal Activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol. 2012;78(16):5942-5944. doi:10.1128/AME.01357-12.
33. Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, et al. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology. 2011;101(7):859-869. doi:10.1094/PHYTO-09-10-025