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Abstract

Unlike chronological age, biological age is a strong indicator of health risk and reflects the physiological
state of an individual. However, the molecular fingerprint associated with biological age is ill-defined. To
define a high-resolution molecular signature of biological age, we analyzed the metabolome, circulating
senescence markers and the interaction between them during biological aging from a cohort of healthy
and rapid agers. We report that the balance between two fatty acid oxidation mechanisms, B-oxidation
and w-oxidation, determines the extent of healthy aging. Furthermore, a panel of 18 metabolites, Healthy
Aging Metabolic (HAM) index, can predict healthy agers regardless of gender, smoking and race
(ROC_AUC =0.95). Although not the best predictor of biological age, rapid agers have elevated levels of
MCP-1, Cystain C, CRP and IL-6. Our findings indicate that biological age is associated with a network of
metabolic processes. Hence, intervention strategies to improve healthspan should target multiple
metabolic pathways.

Introduction

Aging is a complex biological process often defined as a progressive loss in physiological function over
time. Epigenetic, genetic, environmental and lifestyle factors can all impact the aging process and
therefore individuals with similar lifespans exhibit varying levels of physiological function’. Thus,
chronological age (years since birth) is a poor measure of the rate of aging in an individual. In this
context, the biological age, which reflects the functional ability and the state of health of an individual
may act as a better measure of aging?. Therefore, understanding biological aging is the key to improve
and preserve the health and quality of life of older adults. A number of studies have identified signals that
measure aging in general, with an attempt to reflect biological age. Candidate markers for biological
aging measures include individual phenotypic parameters such as low-grade inflammation, muscle mass
and strength, frailty, neuroendocrine function and immune markers3~®. While these markers are
successful in depicting the individual events in the aging process, they do not truly represent the
complexity of biological aging.

The use of molecular signatures as potential indicators to accurately predict the risk of age-related
diseases and mortality has gained a lot of interest. In this light, several DNA methylation clocks based on
CpG methylation rates have been established to represent epigenomic aspects of the aging process’?%.
Such clocks have strong predictive abilities. The second-generation clocks, PhenoAge and GrimAge,
integrate DNA methylation profiles with clinical biomarkers and are predictive of mortality and age-related
diseases®'0. The shortening of telomere length has also been used for predicting chronological age'’.
Recently, use of artificial intelligence (Al) has been gaining popularity for integrating aging clocks. For
example, deep learning clocks based on transcription signatures from muscle-tissues provided target
candidates for pharmaceutical intervention in sarcopenia’?. Similarly, a plasma proteomics clock was
developed using 373 age-associated proteins'3. However, clear associations between the aging proteome

nd envirnnmental factors could not he identified.
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Although the ‘clocks’ mentioned above have provided a deeper insight into aging, gaps exist in our
understanding of biological age. For example, the rationale behind the mechanism of DNA methylation
that forms the basis of epigenetic clocks still remains unclear. In addition, most of these indicators are
trained with chronological age and undermine the differences between predicted and chronological age
impacting the overall sensitivity'#. Disentangling chronological age from biological age is quite
challenging and necessitates a complex experimental design right from careful selection of cohorts to
employing high-resolution approaches to predict high-accuracy composite markers.

Metabolomics is a powerful tool that has the ability to capture the complete set of metabolites produced
and is particularly suited to account for biological aging. One potential advantage of metabolomics over
other ‘omic’ approaches is that metabolites are the final downstream products and changes are more
closely related to the immediate (patho)physiologic state of an individual. The dimensionality of
metabolites in capturing both genetic and non-genetic features often influenced by disease, environment,
microbiome and lifestyle factors makes it an ideal candidate for measuring a complex process such as
aging'®. Furthermore, a number of interventions that have shown some promise and are directed to
improve healthspan, such as calorie restriction, time-restricted feeding, and intermittent fasting are known
to target metabolic pathways'®~"8. Metabolomic profiling is also advantageous over the widely studied
DNA and protein-based clocks because they provide information on metabolic pathways in addition to
biomarkers predicting age-related morbidity, which could be further explored to tailor interventions.

In addition to metabolomic alterations, changes in senescence-associated inflammatory markers are
another important but underexplored drivers of biological age. When cells encounter stochastic
macromolecular damage or stress, they can enter a state of permanent cell cycle arrest known as
senescence' %20, It is evident that there is an increase in the number of senescent cells with age. These
senescent cells primarily secrete multiple inflammatory cytokines and elicit low-grade inflammation. This
pro-inflammation status leads to subsequent age-related diseases and morbidity?'. Indeed, modulation of
secretory pathways and clearance of senescent cells has emerged as an attractive therapeutic strategy
for aging?223. However, translation to human applications is impeded by the fact that we do not know
how prevalent senescent cells are in vivo and whether these cells promote biological aging in humans.
Although the senescence associated secretory phenotype (SASP) secretome is thought to be a major
contributor to aging pathology many of the SASP cytokines individually have also been associated with
stress, pathogenic infection and other non age-related diseases. Therefore, none of the currently available
markers are sufficient on their own for conclusively identifying the burden of senescent cells.

While there is some evidence for metabolic changes and inflammation with chronological age, do these
changes contribute to either rapid biological aging or healthy aging is unclear. Early identification of
accelerated biological age is critical for clinical decisions in order to delay the onset of age-related
diseases, increase well-being and reduce healthcare costs. Identifying the unique molecular markers
responsible for early biological aging would be crucial for understanding the biopathophysiology of the

aqing process and to quide appropriate intervention strategies. We adopted an integrated approach in
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this study, and simultaneously measured SASP factors and metabolites from serum samples to generate
a fingerprint unique to accelerated and healthy biological aging.

Results

Biological age, not chronological age, captures one’s physical and functional ability and is a determinant
of healthspan (years lived in good health). We took an integrated approach encompassing high-
resolution metabolomics combined with a panel of SASP and proinflammatory markers in the serum, to
define a molecular index for biological aging. Walking ability, reflects an integrated assessment of
cardiovascular fitness, muscle strength, and neurological and joint function and is currently the single
best predictor in humans of hospitalization, functional decline, disability, surgical complications,
institutionalization and death?4~2/. The ‘SOLVE-IT’ cohort consisted of 196 total participants, 98
individuals above 75 years old that showed good walking ability (walk up a flight of stairs and walk for
15 minutes without resting). These individuals were physically active and hence classified as “healthy”
agers. The remaining 98 were classified as “rapid” agers as they displayed poor walking ability despite
being chronologically younger than the healthy agers?® (Fig. 1a). Additionally, multiple measures such as
gait, function, mental status, strength, activity and comorbidity index were included in our study.
Phenotypic age is an effective predictor of overall health risks and it is strongly associated with the
chronological age??. However, one of the unique features of the ‘SOLVE-IT’ study is that the biologically-
aged individuals are readily distinguishable from chronologically-aged individuals. In this study cohort,
frailty, comorbidities, impaired cognitive ability (defined by poor Montreal Cognitive Assessment scores)
and higher body mass index (BMI) are negatively associated with chronological age and more prevalent
in rapid agers. Such an inverse association of biological age and chronological age, as demonstrated in
this cohort, offers an advantage in delineating specific signatures of healthy aging (Fig. 1b). It is to be
noted that incidence of declining organ functions such as heart, kidney, and liver failures, as well as,
cancer were alike in both rapid and healthy agers (Fig. 1b), thereby strengthening the unique
appropriateness of the cohort for identification of markers associated with functional aging.

To define the molecular fingerprint associated with biological aging, we performed high-resolution
metabolomics by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-
MS/MS). We used serum samples for our study since it is minimally invasive, affordable, and has
reduced overall risk for patients. In addition, several recent studies with heterochronic parabiosis, as well
as blood/serum transfusions in animal models suggest that systemic circulating factors in blood, drives
the aging phenotype3C. A total of 1327 serum metabolites were identified that belonged to 9 different
super pathways as defined by KEGG analysis. Majority of the identified metabolites were lipids (32%),
followed by xenobiotics (17%) and amino acids (16%). The identified metabolite super pathways were
further summarized into sub pathways. Long and medium-chain acylcarnitines (40), fatty acid
dicarboxylate (31), sphingomyelins (29), diacylglycerols (29) and lysophospholipids (25) were
predominant groups among lipids. Leucine, Isoleucine and Valine Metabolism (33), Arginine and Proline

Aatahaliem (92} Trnintanhan Matahaliem (23) and Methionine, Cysteine, SAM, and Taurine Metabolism
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(22) were some of the sub pathway profiles for amino acid metabolism that were identified (Fig. 1c). The
inter-relationship between the identified metabolites revealed 1481 highly correlated (Spearman’s p > 0.8)
‘metabolite pairs’. Over 200,000 significant correlations were observed among metabolite pairs, with
33,763 lipid-lipid pairs and 23,761 lipid-amino acid pairs. Interestingly, choline derivatives of long and
very long-chain free fatty acids (16—22 carbons) displayed remarkably high correlations. The identified
fatty acylcholines (36) had a minimum p > 0.606; for example, palmitoylcholine (16:0) and steroylcholine
(18:0) showed an exceptionally high correlation p = 0.94 (Fig. 1d), suggesting a controlled acylcholine
synthesis irrespective of heterogenous traits. Overall, our metabolomic analysis from this cohort
generated a rich set of metabolite data that included several metabolic pathways.

Differential metabolome pattern associated with biological age.

We used Orthogonal partial least square-discriminant analysis (OPLS-DA), a multivariate supervised
classification method with 7-fold cross validation consisting of 200 iterations in each round to
distinguish metabolic differences between healthy and rapid agers. OPLS-DA analysis produced a model
with R? (cumulative) = 0.76, Q? (cumulative) = 0.40 with a predictive power of 95.9%, fisher pvalue =1.45
x 10™ 4% and a root mean square cross validation error RMSE = 0.386. The model separated healthy and
rapid agers demonstrating a clear difference in the metabolome associated with biological age (Fig. 2a).
To identify metabolites that are associated with healthy and rapid agers, we used receiver operative
characteristic (ROC) analysis based on a logistic regression model. We noted that higher levels of some
of the metabolites were predictive of healthy agers, Area Under the Curve (AUC) value for healthy aging
ROC curve, ROC_AUC;,>0.5) and some were predictive of rapid agers (AUC value for rapid aging ROC
curve, ROC_AUCR,>0.5). Therefore, we combined these ROC_AUC scores to create a single variable
AUC_, 1, (see methods). Metabolites with AUC values more than 0.5 were considered indicators of
healthy agers while, less than 0.5 were associated with rapid agers. There were (331) metabolites that
significantly distinguished healthy and rapid agers, with (125) metabolites as predictors of healthy aging
and (206) as predictors of rapid aging (g-value<0.05) (Fig. 2b). Eicosenoylcarnitine (C20:1), an
acylcarnitine was one of the most influential metabolites in discriminating healthy agers from rapid agers
(AUC.,mp=0.72). Beside acylcarnitines, healthy agers were also distinguished by beta-cryptoxanthin
(AUC,,mp=0.70), a precursor of vitamin A, important for general growth, development and immune
response. Gut microbiome-metabolite, 1H-indole-7-acetic acid (AUC_,y,,=0.70) was also elevated in
healthy agers. In contrast, dicarboxylic fatty acids (DCA) such as pimelate (C7) (AUC.,mp=0.30), suberate
(C8), sebacate (C10) (AUC,mp=0.33) and undecanedioate (C11) (AUC.,yp=0.31) were elevated in rapid
agers. Similarly, glutamate and mannose also elevated in rapid agers (AUC,,,,,=0.33) (Fig. 2b, source
data).

To understand biological pathways associated with either healthy or rapid agers, we analyzed
metabolites that significantly separated the two groups at p-value < 0.05, using Ingenuity Pathway
Analysis (IPA). We found that Hypoxia-inducible factor 1-alpha (HIF1a) signaling, 4-hydroxyproline

tion, and citrulline metabolism were mainly associated with
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accelerated biological age (Fig. 2c). Consistent with our results, other studies have shown that
upregulated HIF1a signaling impairs mitochondrial biogenesis and accelerates aging. Sirtuins are the
main class of enzymes that destabilize HIF1a thereby promoting mitochondrial health during aging®”.
Similar to these reports, healthy agers positively associated with sirtuin signaling pathways, generally
linked to longevity (supplementary Fig. 1). Choline degradation, carnitine metabolism, gamma-glutamyl
cycle were some of the other pathways associated with healthy agers (supplementary Fig. 1). In addition
to general metabolic pathways, IPA was used to provide disease and biofunction predictions.
Disease/injury associated metabolites were related to gastrointestinal disease, skeletal and muscular
disorders, organismal injury and neurological diseases (Fig. 2D). This data suggests that certain co-
morbidities may exhibit metabolic profiles which may indicate underlying conditions, although they were
not clinically observed in rapid agers at the time of sample collection. Collectively, these results show that
metabolites and associated pathways can differentiate healthy and rapid biological agers.

Balance of fatty acid oxidation pathways predicts healthy agers.

Next, we sought to identify specific metabolite signatures that can serve as potential indicators for
healthy aging. Acylcarnitines, especially long chain acylcarnitines and dicarboxylic acids (DCAs) were the
two important classes that were identified both in the OPLS-DA and ROC analysis (Fig. 3a). Acylcarnitines
play a major role in regulating lipid metabolism by shuttling fatty acids into mitochondria. Under
physiological conditions, oxidation of long- and medium-chain fatty acids is primarily carried out by
mitochondrial B-oxidation (Fig. 3b). We observed 9 acylcarnitines, mostly long chain forms with
ROC_AUC 5 values 0.6—0.72 (Fig. 3a). An alternate, subsidiary pathway to B-oxidation is w-oxidation

occurring in endoplasmic reticulum (ER) microsomes32. w-oxidation of fatty acids generates dicarboxylic
fatty acids (DCAs) and is an alternate pathway used when mitochondrial B-oxidation is impaired

(Fig. 3b). Our analysis detected 3 important DCAs: pimelate, undecanediote and suberate with
ROC_AUCRk, values 0.6—0.7. In healthy agers, the acylcarnitines levels were higher than in rapid agers
suggesting that B-oxidation is predominantly active in the former. On the other hand, rapid agers showed
higher levels of DCAs compared to healthy agers indicating increased w-oxidation (Fig. 3a). The
predictive power obtained from the difference in acylcarnitines and DCAs improved by 0.06 compared to
the best individual predictor (eicosenoylcarnitine) (Fig. 3c, d). These results suggest a balance between B-
oxidation and w-oxidation pathways can potentially influence biological age.

Identification of Healthy Aging Metabolic (HAM) index

Aging is a complex process that cannot be realized through one metabolic pathway or a metabolite class.
Indeed, several reports have implicated the roles of multiple pathways affecting the aging process. For
example, dysregulation of the carnitine shuttle and vitamin E pathways have been associated with
frailty®® whereas, tryptophan metabolism, particularly, kynurenine pathway is implicated in age-related
chronic inflammation and memory impairment3*. Therefore, we hypothesized that a combination of

metabolites from different pathways could possibly be a better molecular indicator for biological age,
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rather than a single metabolite/pathway. The combinatorial approach can overcome the moderate
predictive power presented by the individual metabolites. In order to identify a panel of metabolites that
are better predictors of healthy biological aging we chose all known endogenous metabolites from OPLS-
DA analysis with Variable Importance of the Projection (VIP) score > 1 and fit a linear regression model.
We used LASSO regression method with 10-fold cross validation with 1000 bootstrapping steps in each
validation. LASSO regression model eliminates the collinear variables and retains only the significant
variables (p< 0.05). The final model retained a panel of 18 metabolites with a Pearson’s r=0.74 and p<
0.0001 (Fig. 3e). The model consisted of metabolites primarily related to fatty acid metabolism, the TCA
cycle, amino acids and glutathione metabolism and strongly predicted healthy biological agers.
Importantly, based on the model values we derived a healthy aging indicator “Healthy Aging Metabolic
(HAM) Index”. The HAM index was significantly different between the healthy agers and rapid agers (p<
0.0001) and showed a ROC_AUC 5 value of 0.95 in identifying healthy agers (Fig. 3f, g). Compared to
some of the biological age indices such frailty index, gait speed, MOCA score (supplementary Fig. 2), the
HAM index outperformed these indices in predicting healthy agers from rapid agers (Fig. 3h). This
predictive power from a combination of metabolites points out that several different pathways are
involved in maintaining a healthy biological age.

SASP markers associated with rapid agers.

Circulating factors such as senescence-associated secretory phenotype (SASP) and pro-inflammatory
markers can reflect the state of aging cells. Senescence-associated ‘secretome’ could be a valuable
marker for aging and age-associated diseases. With this in mind, we wanted to investigate age-
associated proinflammatory markers in the context of biological age. To test this we measured multi-
analyte SASP markers in serum using Luminex High Performance Assay. The list of SASP and
proinflammatory markers examined were based on evidence from several studies (supplementary table
1). Interestingly, Cystatin C and CCL-2/MCP-1 were found to be elevated in rapid agers compared to
healthy agers (Fig. 4a). Serum Cystatin C belongs to the family of Cystatin protease inhibitors and
consistent with our analysis, has been shown to increase significantly with age, even in the absence of
clinical risk factors for renal dysfunction3®. Similarly, monocyte chemoattractant protein 1 (MCP1) is a
key chemokine that is important for infiltration of macrophages and monocytes. These data suggest that
a subset of SASP factors track with increased biological age independent of chronological age.

Next, we examined the metabolomic profiles associated with CCL-2/MCP-1 and Cystatin C. As shown in
Fig. 4c and source data, CCL-2/MCP-1 was associated with 57 metabolites (FDR-correlated p < 0.2) with
majority (56%) contributed by lipids, particularly, lysophospholipids (11), diacylglycerols (6) and
phosphatidyl glycerol (6). In contrast to CCL-2/MCP-1, Cystatin C showed positive association with
metabolites that belonged to both lipids (175) and amino acids (150) (Fig. 4d, source data). A panel of
serum metabolites that displayed remarkable correlation with Cystatin C is shown in Fig. 4e. Interestingly,
the levels of CCL-2/MCP-1 and Cystatin C levels were random among the age groups and did not
influence one another as suggested from Spearman’s p with a p-value >0.05.
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In addition to Cystatin C and CCL-2/MCP-1, C-reactive protein (CRP) and interleukin-6 (IL-6) were also
elevated in rapid agers (Fig. 4b). Tryptophan (4), Tyrosine (4) metabolism, fibrinogen cleavage peptide (7),
vitamin E metabolism, androgenic steroids (7) showed positive association with CRP whereas ceramides
(5) were negatively associated with CRP. Cleaved fibrinogen products, as well as, higher levels of
Tryptophan metabolism products such as kynurenine and indole-3-carboxylates suggest chronic
inflammation in rapid agers (supplementary table 2). Metabolites associated with IL-6, particularly
DSGEGDFXAEGGGVR, Fibrinopeptide B (1-13), ADSGEGDFXAEGGGVR and Fibrinopeptide A (3—16) also

support the prevalence of a low-grade inflammation with accelerated biological age®®.

In order to understand the relationship between metabolites/metabolic pathways and circulating
secretory factors in aging, we looked for common metabolites that were associated with secretory factors
and biological age groups. Five classes of metabolites- acylcarnitine, oleoyl/linoleoyl glycerol
phosphocholine, carotene diol, y-glutamyl glutamine and nicotinamide that were strongly associated with
healthy aging were found to be negatively associated with Cystatin C, MCP-1, CRPR, as well as, IL-6
(supplementary Fig. 3). Similarly, dicarboxylic acids (DCAs), key products of w-fatty oxidation that were
strongly associated with rapid agers were positively associated with MCP-1 and IL-6 (supplementary

Fig. 4). An enrichment of correlated metabolites with these secretory factors suggest a synergistic
interaction between senescence-associated secretome, metabolism and biological aging.

Metabolites display sexual dimorphism independent of biological age.

Several factors can influence biological age, one such is gender. It is well known that life expectancies for
women are usually higher than men3738_ Here we probed the metabolome of our study cohort to
understand the implications of sexual dimorphism in biological aging. Consistent with the previous
reports3?, there was a clear metabolomic difference between the males and females in the SOLVE-IT
cohort (Fig. 5a). Among females, sphingomyelins were significantly increased compared to males.
Similarly, the levels of one of the major endocannabinoids, arachidanoyl glycerol and its precursor
stearoyl arachidanoyl glycerol were higher in females (Fig. 5b). On the other hand, as expected in males,
the male hormone, androgen-derived metabolites such as androstenediol disulfate (1), androstenediol
monosulfate, androstenediol disulfate (2) were found to be elevated. Examining the SASP and
proinflammatory factors, it was clear that matrix metalloproteinase (MMP-1) and plasminogen activator
inhibitor-1 (PAI-1) were significantly increased in females compared to males. Taking our previous results
into consideration (Fig. 4a), we observed that irrespective of the gender, both CCL-2/MCP-1, and Cystatin
C were unaltered suggesting biological aging-associated senescence may not be influenced by gender.
Interestingly, we did not see any significant differences among the proinflammatory markers in both the
sexes (Fig. 5d).

Next, we sought to understand the impact of gender in biological age-associated metabolic signatures
(Fig. 5e). For this, we compared the ROC curves of males versus females in predicting healthy and rapid
agers. This enables a direct comparison between the sexes by factoring age groups but without

alysis. The analysis identified four groups of metabolites:

c
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Cluster |- metabolites that were elevated in male rapid agers, but lower in female rapid agers (Male
AUC_,mp<0.5 and female AUC_,,,> 0.5, upper left quadrant); Cluster |- metabolites elevated in healthy
agers of both the sexes (Male AUC,,,;, > 0.5 and Female AUC.,;, >0.5, upper right quadrant); Cluster III-
metabolites elevated in male healthy and female rapid agers (Male AUC,,,,,>0.5 and female
AUC.,mp<0.5, lower right quadrant) and Cluster IV- metabolites elevated in rapid agers of both the sexes
(Male AUC,p < 0.5 and Female AUC_,,,5<0.5, lower left quadrant). A total of 113 metabolites were
identified, with 57 metabolites mapping to Cluster 1 (male rapid agers, linked to female healthy agers).
Six acetylated metabolites namely, N2-acetyl, N6-methyllysine, N2-acetyl, N6, N6-dimethyllysine, N-
acetylcitrulline, N-acetyl phenylalanine, N-acetylarginine, N-acetyl-3-methylhistidine belonged to Cluster I.
Likewise, very-long-chain (C >22) acylcarnitines such as nervonoylcarnitine, cerotoylcarnitine,
behenoylcarnitine, ximenoylcarnitine correlated remarkably well with female healthy agers but not with
male healthy agers. However, long chain acylcarnitines (18 < C < 22) were associated with both male and
female healthy agers. This suggests that even though acylcarnitines are universal markers of aging3?,
gender can have a significant impact. Similarly, some male healthy aging-associated metabolites (24)
were identified with female rapid agers. For example, oxidized methionine, methionine sulfone showed
the highest difference in the AUC_,,;, values with 0.70 in males and 0.39 in females. A few amino acid
metabolites such as ornithine, 5-(galactosylhydroxy)-L-lysine, C-glycosyltryptophan, 3-methyl glutaryl
carnitine, cystathionine, dimethylguanidino valeric acid (DMGV), hydantoin-5-propionate and
hydroxyasparagine were also identified with healthy agers in males but not with females.

We identified 16 metabolites that were associated with healthy agers in both males and females but with
significant differences in their power of association (Cluster Il). The top metabolites in this group were
long chain acylcarnitines like octadecanedioylcarnitine, octadecenedioylcarnitine, which are strong
predictors of male healthy agers but weak predictors of female healthy agers. Similarly, gamma-
glutamylcitrulline and S-methyl methionine could predict the male healthy agers with an AUC,,,,, value
of 0.80 but this value was reduced to 0.61 and 0.63 respectively, in female healthy agers. On the other
hand, levels of two major glycolytic metabolites; glucose and pyruvate were strong predictors of male
rapid agers but their predictive power was significantly lower for female rapid agers (Cluster IV) (Fig. 5e,
source data). Overall, these results suggest a decisive role of sexual dimorphism in the metabolism
associated with aging. Of note, none of the biomarkers from the healthy aging metabolomic (HAM) index
was affected by gender differences, pointing to the robustness of the HAM index in predicting healthy
agers.

Metabolites associated with race.

Another demographic feature that can influence aging is race. There is strong evidence supporting racial
differences in health and life expectancies*°. We wanted to understand the impact of race on biological
aging. So, we analyzed the metabolome of African Americans and Caucasians in the ‘SOLVE-IT' cohort
(supplementary Fig. 5). OPLS-DA model showed a marked distinction in the metabolomic profiles of

frinan Amarinane and Cannaciane [Cia &a) Top predictive metabolites largely belonged to lipids.
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Hydroxyproline, N6-methyl lysine and xenobiotics sulfate of piperine metabolite (2), sulfate of piperine
metabolite (3) were also among top metabolite predictors (Fig. 6b). Plasmalogens containing poly-
unsaturated fatty acids (PUFAs)- arachidonic acid and linoleic acids, as well as, lysoplasmalogens were
significantly elevated in the African Americans (Fig. 6¢). Plasmalogens are unique glycerophospholipids
with a vinyl ether moiety at the sn-1-position of the glycerol backbone and are involved in protecting cells
from reactive oxygen species (ROS)-induced damage®'. Interestingly, some studies have shown lower
systemic F2-Isoprostanes (a validated ROS index) in African American population, suggesting lower
oxidative stress*2. Our data suggests, that elevated levels of plasmalogens in African Americans may
possibly be linked to their reduced oxidative stress status. We did not observe any significant difference
among the SASP factors (Fig. 6d. Interestingly, IL-6 and soluble IL-6 receptor (sIL-6r) levels were
significantly increased in African Americans and Caucasians, respectively. IL-6 is a clear marker of
inflammation, whereas slL-6r is associated with percent body-fat composition*344 (Fig. 6e). Tryptophan
levels were increased in African American rapid agers but not altered among Caucasians. Similarly, the
levels of hydroxy lysine and azelate (nonanedioate; C9), a DCA, were reduced among African American
healthy agers but significantly increased in Caucasian healthy agers. On the other hand, N-
acetylcarnosine was increased in African American healthy agers but decreased in Caucasian healthy
agers. Another significantly important metabolite, bromotryptophan was identified with African American
rapid agers and not among Caucasians (Fig. 6e, source data). It has been reported that the levels of
serum 6-bromotryptophan is a risk factor for chronic kidney disease (CKD) progression*®. Considering
this, rapid agers of the African American descent in this study cohort may be at a higher risk for CKD.
These findings suggest that age-associated metabolites may be influenced by race.

Metabolites associated with smokers.

Biological aging can be influenced by lifestyle choices such as smoking. Cigarette smoke produces
numerous (~ 4000) compounds with varying levels of toxicity and is known to increase the risk of COPD,
cardiovascular disease and other age-related diseases. Previous studies have established differences in
metabolome of smoked and never-smoked individuals*®. However, the effect of smoking on the
metabolites associated with biological age remains unexplored. Therefore, we analyzed the effect of
smoking on the metabolome of the SOLVE-IT cohort. Our OPLS-DA analysis demonstrated a moderate
separation between the smoked and never-smoked individuals (Fig. 7a). This separation was
predominantly due to xenobiotics related to benzoates and caffeine metabolism. Some of the major
metabolites in this list includes, 3-methyl catechol sulfate(s), 3-ethyl catechol sulfate(s), and caffeine
(Fig. 7b). It is important to note that about 91% of the ‘smoked’ population had quit smoking (average
years since they quit was 31 years). We did not observe any changes in both SASP (Fig. 7c) and
proinflammatory markers (Fig. 7d) suggesting a ‘prior smoking status’ did not induce prolonged low-
grade inflammation.

We then compared the impact of smoking on metabolites associated with biological age. Over all 67

metabolites were significantly altered by the smoking status in the context of biological aging. Cyclic
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AMP (cAMP) was strongly associated with healthy agers among the smokers but not the never-smokers.
cAMP is known to slow aging process by binding to sirtuins 1 and 3%’ Interestingly, it has been reported
that cAMP levels increase during smoking®®. Therefore, one possible explanation of our data is that the
healthy biological aging of some of the smokers in our study cohort may be linked to the increase in their
cAMP levels. Similarly, choline, urea, guanidinosuccinate were strongly associated with the healthy agers
of smoked population but they were fairly distributed among healthy and rapid agers of non-smokers.
Metabolites such as trigonelline, 3-ethylcatechol sulfate and methyl 3-catechol sulfate were elevated
among healthy agers of ‘never smoked’ population but were not observed in the ‘smoked’ population
(Fig. 7e, source data). These metabolites are usually from food; but, it is postulated that smoking can
enhance its biological conversion*%°%. Our results indicate that trigonelline, 3-ethylcatechol sulfate and
methyl 3-catechol sulfate may not be affected long-term by smoking. Taken together, our results suggest
that smoking status possibly affects some metabolites long-term but their effect on biological age is
moderate.

Discussion

Chronological age is the principal risk factor for several chronic diseases. However, at a population level,
individuals do not exhibit phenotypic aging at the same rate. Rapid agers display a faster rate of
biological or phenotypic aging relative to their chronological age. Detecting a rapid ager early on will not
only present intervention opportunities, but also reduce the socio-economic burden on society. In a society
with an ever-increasing aging population, it is therefore critical to identify molecular markers that reflect
rapid biological aging. However, it is challenging to differentiate biological age from chronological age.
Using a unique cohort of chronologically younger, but biologically rapid agers, and vice versa, here we
report metabolic biomarkers for rapid and healthy biological aging. We identified a panel of 18
metabolites that could predict healthy agers with AUC = 0.95. This metabolite panel was not affected by
demographic factors such as gender, race or smoking status (supplementary Fig. 6), which should be
contrasted with the availability of other metabolites that do differentiate individuals based on gender
(Fig. 5), race (Fig. 6) and smokers from non-smokers (Fig. 7). Additionally, in this study we also examined
a SASP and proinflammatory panel to identify markers of biological age. This approach provides a
unique molecular fingerprint associated with rapid and healthy aging.

A few aging indicators using ‘omics’ data have been identified in recent years, but the most accurate way
to assess biological age remains unclear. In this study, we have carefully selected a cohort that offers a
possible approach to distinguish chronological aging from biological aging. Our groups were clearly
separated by chronological age, with all rapid agers between 65—-75 years of age and healthy agers over
75 years of age. To the best of our knowledge, this is the first study to use a cohort that has a negative
relationship between biological and chronological aging. Although this is unusual in a normal population,
this separation allows us to extract out the true metabolic changes that occur during biological aging.

Our study identified that the difference between utilization of the B-oxidation (acylcarnitines) pathway
Loading [MathJax]/jax/output/CommonHTML/jaxjs |c acids) has a greater predictive power than the best
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individual predictor (eicosenoylcarnitine) for detecting biological age. B-oxidation is the major catabolic
pathway by which medium and long chain fatty acids enter mitochondria via carnitine shuttle. The
oxidation steps eventually produce acetyl CoA to fuel the TCA cycle and high energy molecules that feed
into the respiratory chain. An alternative to B-oxidation is the w-fatty acid oxidation that primarily occurs
in microsomes of the ER and generates DCAs. DCAs may conjugate with carnitines and enter
mitochondria for completion of oxidation steps. However, the low levels of acylcarnitines among the
rapid agers with subsequent increase in DCAs suggests impaired B-oxidation. Our findings indicate that
imbalances in the fatty acid oxidation pathways could possibly lead to accelerated aging. Indeed,
whether the impairment of B-oxidation or a preference for w-oxidation drives rapid aging needs to be
further explored. Several reports in model organisms indicate the importance of fatty acid metabolism in
maintaining healthspan and longevity. For example, over-expression of a B-oxidation enzyme, dodecenoyl
CoA delta isomerase in Drosophilla extended lifespan®'. Similarly, in C. elegans lipid binding protein
signaling increases mitochondrial B-oxidation, decreases lipid storage and promotes longevity, thus
implying the role of B-oxidation in healthy aging®2. While w-oxidation is considered to be an alternative to
B-oxidation during low carnitine conditions, it is inefficient in the handling of ROS®3. The enzyme
monooxygenase cytochrome P450 involved in w-oxidation is one of the major producers of H,0, in

microsomes and could therefore possibly drive cellular oxidative stress®* thus contributing to rapid aging.

We combined two powerful techniques of statistical analysis to derive a metabolic index of healthy
aging. OPLS-DA has been shown to be an efficient multivariate analytical techniques for the identification
of the most important class predictor. However, the OPLS-DA model has to be used with caution®®.
Therefore, we used OPLS-DA for the initial metabolite selection (i.e., feature selection) followed by
modeling using LASSO linear regression, thus resulting in a panel of 18 metabolites (generated through
several pathways), and which we refer to as the healthy aging metabolic (HAM) index. Two important
metabolites involved in the energy production, citrate and isocitrate of the TCA cycle, were predictors of
healthy biological aging. The interconversion of citrate to isocitrate is catalyzed by aconitase. Previous
reports suggest that aconitase shows a decline with chronological age®®. Our study suggests that in
people who can possibly maintain aconitase activity have improved healthspan. Metabolites involved in
carnitine biosynthesis and B-oxidation such as N6,N6,N6-trimethyllysine, a precursor of carnitine and
eicosenoylcarnitine (C20:1), a mono-unsaturated fatty acid (MUFA) carnitine, were both strong predictors
for healthy biological aging. Subsequently, several lipid biomarkers, such as cortisone and 1-stearoyl-2-
docosahexaenoyl-GPE (18:0/22:6), were also identified as strong predictors of healthy aging. 1-stearoyl-2-
docosahexaenoyl-GPE is the major reservoir of docosahexaenoic acid (DHA) and DHA deficiency is
strongly associated with cognitive decline during aging®’. In addition to lipids, the other metabolite that is
positively associated with healthy biological aging was B-cryptoxanthin, a precursor to vitamin A.
Interestingly, lower serum levels of B-cryptoxanthin in the MARK-AGE cohorts was associated with
increased risk of cognitive frailty®. The HAM index also consists of metabolites with a negative
association with healthy aging. For example, among the metabolites with negative coefficients were two

of the well-known collagen degradation products, hydroxylproline and prolylhydroxyproroline.
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Degradation of collagen is one of the pathologies identified with chronological aging®®. Similarly,
pimelate, a DCA, and an intermediate product of w-oxidation was another metabolite that increased in
rapid agers. In all, the HAM index strongly predicted healthy biological agers and was not affected by the
demographic and lifestyle factors such as gender, race, and smoking status.

The role of fixed factors, such as gender, in aging is well known. However, the effect of gender differences
on the age-related metabolite is understudied. Our ROC analysis illustrated the influence of sexual
dimorphism on aging. The key result of this analysis is the identification of very long chain acylcarnitines
in female healthy agers. Very long chain acylcarnitines are present in peroxisomes and mediate -
oxidation of very long chain saturated fatty acids (VLSFA). Peroxisomes are crucial organelles that
govern cell aging by maintaining homeostasis of ROS and metabolic homeostasis®®. Increase of VLSFA
carnitines in female healthy agers suggested active peroxisomal activity which may also aid in longer life
expectancies. Supporting this, studies have shown that increased circulating levels of VLSFA reduce the
risk of coronary heart disease®'92. Accumulation of oxidized proteins increase with chronological aging
and it has been shown that gender differences influence the process of protein oxidation during aging®3.
Our results indicate that degraded products of oxidized proteins such as methionine sulfone are higherin
healthy male agers, suggesting effective degradation and removal of accumulated oxidized proteins in
healthy agers.

Senescence-associated secretory phenotype (SASP) factors are secreted by senescent cells that
accumulate with chronological age and drive multiple age-related pathologies?2. Here we analyzed a
spectrum of SASP factors for potential indicators of rapid biological aging. Out of SASP factors
analyzed, two were significantly increased in the rapid agers compared to healthy agers, CCL-2/MCP-1
and Cystatin C. CCL-2/MCP-1 is a crucial component of the SASP in some senescent cell types and
treatment with a senolytic (intervention to eliminate senescent cells) has been shown to significantly
reduce MCP1%4. Additionally, MCP1 was found to be significantly higher in frail older adults compared to
non-frail adults®®. Our study identified that CCL-2/MCP-1 was strongly associated with several
metabolites including two phospholipid classes (PLC); lysophospholipids and diacylglycerols. Consistent
with this, lysophosphatidic acid, has been shown to upregulate CCL-2/MCP-1 levels®®. Our study
introduced additional lysophospholipids to this chart, such as lysophosphatidylethanolamine and
lysophosphatidylcholine. Similarly, the role of CCL-2/MCP-1 inducing PLC to produce diacylglycerol has
been observed in a previous study®’, suggesting that MCP-1 associated metabolites need to be further
examined for their role in biological age.

Cystatin C is a protease inhibitor primarily involved in the pathology of renal dysfunction. Plasma
Cystatin C was recently identified as an effective marker in the assessment of kidney function compared
to the traditional creatinine®®. In addition, Cystatin C is associated with, cardiovascular diseases®?,
neurological disorders’? and cancer’". Considering the strong association of Cystatin C with renal
dysfunction, increased levels of Cystatin C with rapid aging may suggest underlying renal dysfunction,
escence. Another interesting observation is the extremely

-
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high correlation of Cystatin C with the various metabolites. For example, given the heterogeneous sample
set, the R? value of 0.69 between hydroxyaspargine and Cystatin C is very rare among unrelated
metabolites. This strong association is indicative of a close biological interaction between two
biomolecules. To the best of our knowledge, the direct relationship between Cystatin C and the highly
correlated metabolites is not reported in literature. From this panel, C-glycosyltryptophan, pseudouridine,
O-sulfotyrosine, N-acetylthreonine, N-acetylserine, N6-carbamoylthreonyladenosine, and N6-acetyllysine
were previously reported to be associated with impaired renal function’2. In addition to these SASP
factors, two other proinflammatory factors, IL-6 and CRP, were also increased in rapid agers. The
PolSenior study showed the correlation between the two cytokines and chronological age’3. Recently it
was shown that a panel of 7 SASP factors could predict frailty and adverse outcomes in patients,
suggesting SASP acts as an indicator of biological age’4. However, in their study biological age is closely
associated with chronological age, suggesting that SASP cannot act solely as an accelerated aging
indicator. Our study indicates that although the association of several inflammatory markers with rapid
agers confirms their relationship with biological aging, they were not predictive enough to be included in
the HAM index. On the other hand, our results suggest a potential interrelationship between senescence-
associated secretome, metabolism and biological aging. Further studies would help us understand the
mechanistic role of senescence in regulating age-associated metabolites/metabolism.

Our study does have certain limitations, such as the sample size, leading to the well-known “n< p”
situation. We employed internal cross-validation, which was the best possible technique within the
confines of the sample size. However, potential model overfitting cannot be entirely ruled out, therefore,
the results need to be further validated in another data set not used in model development. The study
design had aimed to maximize the separation between healthy and rapid agers, and the same level of
predictive power may not be realized in a general real world older population where many individuals fall
somewhere between the two clearly defined groups. Furthermore, our study is cross sectional and may
miss positive and negative changes over time that could impact the results in healthy or rapid agers.
Nonetheless, the classified groups in the SOLVE-IT study were separated, thus precisely distinguishing
rapid and healthy biological aging. Despite the limited number of participants, much of our study
demonstrated high statistical validity indicating that the findings may be extrapolated to broader
populations. Another potential limitation is that over the counter (OTC) medications might have had an
impact on the overall metabolome. In addition, the impact of intestinal microbiome and dietary
information can influence the analysis. Any unknown metabolites that were not included in the panel
could benefit from the identification of chemical structures to provide new information.

In conclusion, the present findings confirm that individuals showing signs of early or rapid aging have a
distinct metabolome compared to healthy agers. We showed that the difference in fatty acid oxidation
pathways better represent the biological aging process than any individual metabolic pathway. Our
findings suggest that a balance between the two closely related fatty acid oxidation pathways is required
in maintaining a healthy biological aging process. If the balance tips towards w-oxidation pathway, a

necihla dieriintinn in ROS hamenetacie can gccelerate aging process. However, why and at what point
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this balance gets disrupted and whether this is a cause or consequence remains to be addressed. A
proposed Healthy Aging Metabolic Index (HAM), an index derived from 18 metabolites distinguishes
between healthy and early agers with AUC = 0.95. Each of these metabolites represents individual age-
associated pathways, further reinforcing the involvement of a coordinated metabolic network in defining
the biological aging rates. Therefore, any therapeutic intervention to enhance the healthy life span of the
elderly population should target a combination of metabolic processes rather than a single pathway.

Materials And Methods
Participants

The Solve-IT participants were recruited from several sources. Most were recruited through the University
of Pittsburgh Claude D. Pepper Older Americans Independence Center, which maintains a registry of more
than 2500 older adults who live in the greater Pittsburgh area and are interested in participating in clinical
research. Print and radio ads were also used. Respondents were screened with a standardized phone
interview. This study was approved by Institutional Review Board of University of Pittsburgh and
complies with all relevant ethical regulations. An informed written consent was obtained from all
participants. “Rapid” agers were age 65—-75 years who could not walk up a flight of stairs or walk for 15
minutes without resting. “Healthy” agers were age 75 years and older who could walk up a flight of stairs
or walk for 15 minutes without resting. We excluded participants with a history of a major cancer.
Functional assessments on the cohort are further described in 28

Cytokine and SASP analysis

CCL-2/MCP-1, IL1a, MMP1, PAI1, Cystatin C were quantified using multiplex magnetic bead
immunoassays (R&D Systems) based on Luminex xMAP multianalyte profiling platform (Luminex®
100/200™ System) according to the manufacturer's protocol and analyzed on Bio-Rad Bio-Plex Manager
6.1. Cytokine biomarkers analyzed included C-reactive protein (CRP), tumor necrosis factor alpha (TNFa)
and its receptors (TNFa-R1 and TNFa-R2), interleukin 6 (IL-6) and its soluble receptor (sIL-6R), and
interleukin 10 (IL-10) as previously described’®. For all proteins, more than 80% of the samples were
within the detectable range. Undetectable targets were replaced with the lowest value for each protein.

Sample preparation. Samples were prepared by Metabolon, Inc. using the automated MicroLab STAR®
system from Hamilton Company. Briefly, following addition of various internal standards, samples were
deproteinated with methanol under vigorous shaking. The resultant extract was divided into five fractions,
vacuum dried briefly to remove the organic solvents and stored under the nitrogen.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS): Mass
spectrometry analysis was performed as described earlier. All methods utilized a Waters ACQUITY ultra-
performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate
mass spectrometer interfaced with a heated electrospray ionization (HESI-Il) source and Orbitrap mass
Loading [MathJax]/jax/output/CommonHTML/jaxjs ). One aliquot was analyzed using acidic positive ion
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conditions, using C18 column (Waters UPLC BEH C18-2.1 x 100 mm, 1.7 ym) with a gradient of water and
methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot
was also analyzed using the same column but with a high organic gradient of methanol, acetonitrile,
water, 0.05% PFPA and 0.01% FA. Other two aliquots were analyzed using basic negative ion optimized
conditions: 1) using C18 column (Waters UPLC BEH C18-2.1 x 100 mm, 1.7 ym) eluted with gradient of
methanol and water containing 6.5 MM Ammonium Bicarbonate at pH 8 2) using a HILIC column (Waters
UPLC BEH Amide 2.1 x 150 mm, 1.7 ym) eluted with a gradient consisting of water and acetonitrile with
10 mM Ammonium Formate pH 10.8. Data dependent MS/MS analysis was performed with dynamic
exclusion. The scan range varied slightly between methods but covered 70-1000 m/z.

Data processing: mass spec files were analyzed using Metabolon’s inbuilt Laboratory Information
Management System (LIMS). Compounds were identified by comparison to library entries of purified
standards or recurrent unknown entities. Biochemical identifications were based on three criteria:
retention index within a narrow Rl window of the proposed identification, accurate mass match to the
library + 10 ppm, and the MS/MS forward and reverse scores between the experimental data and
authentic standards. Peaks were quantified using area-under-the-curve and corrected for batch variations
and normalized to the median value. The missing values were replaced with the lowest value for each
sample.

Statistical analysis
Correlation matrix and chord diagram:

We computed Spearman’s rank correlation coefficients (p), and false discovery rate (FDR) method to
correct p-values for multiplicity. A threshold of corrected p <0.05 was used to identify correlations
between super pathways. R functions rcorr in package HMISC, p.adjust and chordDiagram in circularize
were used for analysis.

Orthogonal projection of partial least square discriminant analysis (OPLS-DA)

Data were classified into rapid and healthy agers as described 22 and OPLS-DA modeling included 7-fold
cross validation with 200 iteration in each step. Both predictive and orthogonal scores of the best model
were extracted and plotted. Metabolites with Variable Importance of the Projection (VIP) score more than
1 was used in subsequent analyses such as the model prediction. For rapid and healthy agers, we used
the data set excluding unknown metabolites whereas in other analysis, the entire set of 1327 metabolites
were used. Sartorius SIMCA 16.0 software (Sartorius stedim biotech, Goettingen, Germany) was used for
analysis.

Receiver Operator Characteristic (ROC) curve analysis: was performed using roc function in pROC
package. We used healthy and rapid agers as the dichotomous dependent variable. Excess of area under

the curve (AUC) over 0.5 was interpreted as representing the strength of the association, 95% confidence
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bands for AUC were constructed, and bootstrap methods were used for comparison of AUCs. R packages
ggplot2 and roc function in fbroc, and roc.test function in pROC package were used for analysis.

Calculation of AUC ., Values.

We first defined healthy agers as cases and rapid agers as controls and calculated the ROC_AUC values
(ROC_AUC,), then the controls and cases were reversed and the ROC_AUC values for predicting rapid

agers (ROC_AUCg,) was calculated. Since ROC_AUC 5 = 1-ROC_AUCR,,we combined these values into
one variable named AUC_,,;, as follows:

ROC_AUC},if, ROC_AUC;, > 0.5
1 — (ROC_AUCR)if, ROC_AUCg, > 0.5
ROC_AUC};,0rROC_AUCR,if, ROC_AUCy, = ROC_AUCg, = 0.5

AUC

comb =

As a result, AUC_,,,,>0.5 will denote greater predictive power of a metabolite towards heathy agers and
AUC.,,<0.5 will denote greater predictive power towards rapid agers and AUC,,,,,, = 0.5 indicates no
predictive capacity.

Statistical modeling of healthy aging. 253 known metabolites with VIP > 1 in separating healthy from
rapid agers were selected for building a mathematical model of healthy aging. In order to identify a more
easily interpretable and a relatively less correlated subset of metabolites we used LASSO linear
regression for developing the model. The A parameter that results in the lowest cross validation error
following 10-fold cross validation was chosen to build the model. We used 1000 internal bootstrapping
replicates with 5 external bootstrapping cycles. The final model consisted of 18 metabolites including, 1-
stearoyl-2-docosahexaenoyl-GPE (18:0/22:6), 3,4-dihydroxybutyrate, 3-hydroxyhexanoylcarnitine, 5-
hydroxylysine, 5-oxoproline, beta-cryptoxanthin, citrate, cortisone, eicosenoylcarnitine (C20:1),
glucuronate, isocitrate, isoleucine, N6,N6,N6-trimethyllysine, N-acetylaspartate (NAA), N-acetyl-beta-
alanine, pimelate (C7-DC), prolylhydroxyproline, and vanillylmandelate (VMA). Using the the coefficients
form the model we define the healthy aging metabolic index (HAMI) as \(HAMI= %i="8._, a; m, where
aq...ag are the LASSO coefficients, and m...m,g are the concentrations of metabolites as shown in

Fig. 3e. R packages elasso and glmnet were used for analysis.

Pathway enrichment analysis. The Puchem ID of significant metabolites and the p-values were used as
the input for the Ingenuity Pathway Analysis (IPA). Pathway-enrichment analysis was performed using
Qiagen Ingenuity Pathway Analysis (Qiagen, Redwood city, CA). IPA and interpretation were based on the
comprehensive and manually curated content of the Ingenuity Knowledge Base, which organizes
biological interactions and functional annotations created from primary literature and public and third-
party databases.

Loading [MathJax]/jax/output/CommonHTML/jax.js

Page 17/34



The source data underlying Figs. Figures 2b, 4c, 4d, 5e, 6e, 7e are provided within the supplied Source
Data file. All data are available from the corresponding author upon reasonable request.

Code availability

Details of R functions and packages used in this study were described in methods section.
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Figure 1

Global metabolic profiling of SOLVE-IT study cohort. a. Study design: A total of 196 participants were
recruited through the Claude D. Pepper Older Americans Independence Center at University of Pittsburgh.
All study participants were medically-stable volunteers who were independently mobile. Both groups were
controlled for demographic and clinical features. Using their performance-based mobility measures, the

articipants were grouped as “rapid” or “healthy” agers. Serum metabolite profiling was performed using
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high resolution LC-MS/MS-based untargeted metabolomics analysis. SASP was measured by Luminex
High Performance Assay and proinflammatory markers were measured as previously described75. The
data from clinical features of phenotypic aging, SASP, cytokines and metabolites were integrated using
statistical approaches to generate a molecular index for Biological Aging. b. Heat map shows the
Spearman’s rank correlations (p) among the demographic and clinical parameters of the SOLVE-IT cohort.
Teal indicates positive and Pink indicates negative associations. MOCA — Montreal Cognitive
Assessment; SF-36 — Short Form 36. c. Stacked donut chart showing the distribution of metabolites in
super (inner donut) and sub metabolic (outer donut) pathways as identified in KEGG (refer supplementary
table 1). d. Number of connections deemed important (FDR corrected p-value for p <0.2) between the
metabolites is highlighted in the chord diagram. The thickness of the chord is proportional to the number

of relationships.
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Metabolomic differences between healthy and rapid agers. a. Difference in metabolomic profiles between
healthy and rapid agers as evidenced from Orthogonal partial least square-discriminant analysis (OPLS-
DA) score plot. b. Receiver operating curve analysis (ROC) was performed to identify metabolites
associated with healthy and rapid agers. Metabolites with AUCcomb (combined area under the curve)
value >0.5 and adjusted q <0.05 were predictive of healthy agers, whereas metabolites with an AUCcomb<
0.5 and q <0.05 were predictive of rapid agers; grey spots represent non-significant metabolites c.
Pathway-enrichment analysis was performed using Qiagen Ingenuity Pathway Analysis (IPA). Network of
enriched pathways in rapid agers shows alterations in amino acid (AA) biosynthesis. d. Major disease
and biofunction pathways associated with predictors of rapid agers are depicted in the bubble plot.
Pathways are represented in y-axis and the size of the bubble indicates the number of metabolites
identified in each pathway. The g-values were obtained following Benjamini-Hochberg correction of p-
values.
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Figure 3

Identification of Healthy Aging Metabolic (HAM) Index. a. ROC curves for acylcarnitines and dicarboxylic
acids (DCA) and their distribution profile in healthy (HA) and rapid agers (RA). Acylcarnitines are
increased in healthy agers whereas dicarboxylic acids are decreased. AUCHA =AUC value of ROC curve
generated for HA (RA as controls); AUCRA =AUC value of ROC curve generated for RA (HA as controls). b.
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oxidation (primarily in mitochondria) and w-oxidation (microsomes, ER). The FFA are shuttled into
mitochondria via acylcarnitines; consequently, increased levels of acylcarnitines indicate active B-
oxidation. Similarly, DCAs are intermediary products of w-oxidation and can serve as indicators of active
w-oxidation. d. ROC curve and distribution of the difference in acylcarnitines and DCAs in healthy and
rapid agers. e. List of metabolites and its coefficients identified from the model. Healthy Aging Metabolic
(HAM) index, was developed using the model parameters. f. HAM index showed a significant difference
between rapid agers and healthy agers g. high predictive power (AUCHA = 0.95). h. The AUC value of
HAM index is significantly higher than other physiological aging indices. The AUC values of each
physiological aging indices were subjected to pair-wise comparison with the AUC value of HAM index as
described in DeLong et al.76 The number above each bar represents the p-value of the individual
physiological aging index’s vs. HAM index.
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Figure 4

Senescence associated secretome linked with biological age. a. Distribution of SASP and b.
proinflammatory factors in healthy and rapid agers. CCL2-/MCP-1, Cystatin C, CRP and IL-6 levels were
increased in rapid agers compared to healthy agers. Bonferroni corrected p <0.05 = *; p<0.01 = **. c-d. The
number of metabolites significantly associated with each super pathway are represented as bubble plots
for c. CCL2/MCP-1 and d. Cystatin C. Lipids were further divided into its sub pathways in both c. and d.
Amino acids were further classified in d. Metabolites with FDR>0.2 for partial Spearman’s p controlling for
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age and gender were designated as significantly correlated metabolites. e. Scatter plot displaying the top
10 highly correlating metabolites with Cystatin C (R2>0.5).
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female population. Bonferroni corrected p<0.01 = **; p<0.001 = *** e. Bubble plot showing the AUCcomb
of metabolites that significantly differ between male and female groups in predicting healthy agers.
AUCcomb > 0.5 values = healthy agers, AUCcomb <0.5 values = rapid agers. Metabolites are color coded
based on their super pathways and the sizes represent the p-value. Cluster I: metabolites elevated in
female-healthy agers but decreased in male-healthy agers. Cluster Il metabolites elevated in healthy
agers of both genders. Cluster lll: metabolites that were elevated in female- and male-rapid agers. Cluster
IV: metabolites that were decreased in female-rapid agers but increased in male-rapid agers. The ROC
curves of metabolites were compared using bootstrap method. Significant metabolites (p< 0.05) were
plotted.
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Race-specific changes in metabolites and senescence associated secretome. a. A clear segregation
between African-American and Caucasian population is shown in the OPLS-DA score plot and b. the top
predictive metabolites that differentiate the two ethnicities is represented as a bar chart. The major group
of metabolites belonged to plasmalogens (light brown). c. The distribution of different plasmalogen
species are represented. g-values for all plasmalogen species represented are significant (<0.01). Dots
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population. Bonferroni corrected p<0.01 = ** f. Bubble plot showing the differences in AUCcomb of
metabolites from this group in predicting healthy agers.
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Effect of smoking on biological aging. a. OPLS-DA score plot shows a moderate separation of smokers
and non-smokers. b. The top predictive metabolites that differentiate smokers and non-smokers are
represented as a dot plot. Most metabolites belonged to xenobiotics. Influence of c. SASP and d.
proinflammatory markers in smoking and non-smoking groups are shown as dot plots. e. Differences in
AUC of metabolites among the smoking and non-smoking population and its influence on predicting

healthy aging is shown as a bubble plot.
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