Adams GE, Chandru A, Cowley SM (2018) Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem J 475:3921-3932. doi: 10.1042/BCJ20170314
Aref R, Schüller HJ (2020) Functional analysis of Cti6 core domain responsible for recruitment of epigenetic regulators Sin3, Cyc8 and Tup1. Curr Genet 66:1191-1203. doi: 10.1007/s00294-020-01109-4
Carrozza MJ, John S, Sil AK, Hopper JE, Workman JL (2002) Gal80 confers specificity on HAT complex interactions with activators. J Biol Chem 277:24648-24652. doi: 10.1074/jbc.M201965200
Conlan RS, Gounalaki N, Hatzis P, Tzamarias D (1999) The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem 274:205-210. doi: 10.1074/jbc.274.1.205
Courey AJ, Jia S (2001) Transcriptional repression: the long and the short of it. Genes Dev 15:2786-2796. doi: 10.1101/gad.939601
Davie JK, Edmondson DG, Coco CB, Dent SY (2003) Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278:50158-50162. doi: 10.1074/jbc.M309753200
De Antoni A, Gallwitz D (2000) A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae. Gene 246:179-185. doi: 10.1016/s0378-1119(00)00083-4
DeVit MJ, Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9:1231-1241. doi: 10.1016/s0960-9822(99)80503-x
Han BK, Emr SD (2011) Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1. Genes Dev 25:984-995. doi: 10.1101/gad.1998611
Huang M, Zhou Z, Elledge SJ (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94:595-605. doi: 10.1016/s0092-8674(00)81601-3
Jäschke Y, Schwarz J, Clausnitzer D, Müller C, Schüller HJ (2011) Pleiotropic corepressors Sin3 and Ssn6 interact with repressor Opi1 and negatively regulate transcription of genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 285:91-100. doi: 10.1007/s00438-010-0589-5
Jiang F, Frey BR, Evans ML, Friel JC, Hopper JE (2009) Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol Cell Biol 29:5604-5610. doi: 10.1128/MCB.00632-09
Johnston M, Flick JS, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14:3834-3841. doi: 10.1128/mcb.14.6.3834-3841.1994
Johnston SA, Salmeron JM Jr, Dincher SS (1987) Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50:143-146. doi: 10.1016/0092-8674(87)90671-4
Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709-719. doi: 10.1016/0092-8674(92)90146-4
Kliewe F, Engelhardt M, Aref R, Schüller HJ (2017) Promoter recruitment of corepressors Sin3 and Cyc8 by activator proteins of the yeast Saccharomyces cerevisiae. Curr Genet 63:739-750. doi: 10.1007/s00294-017-0677-8
Kumar PR, Yu Y, Sternglanz R, Johnston SA, Joshua-Tor L (2008) NADP regulates the yeast GAL induction system. Science 319:1090-1092. doi: 10.1126/science.1151903
Kuchin S, Carlson M (1998) Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol Cell Biol 18:1163-1171. doi: 10.1128/MCB.18.3.1163
Lavy T, Kumar PR, He H, Joshua-Tor L (2012) The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes Dev 26:294-303. doi: 10.1101/gad.182691.111
Leuther KK, Johnston SA (1992) Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333-1335. doi: 10.1126/science.1598579
Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9:777-787. doi: 10.1096/fasebj.9.9.7601342
Ma J, Ptashne M (1987) The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137-142. doi: 10.1016/0092-8674(87)90670-2
Malavé TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84: 437-443. doi: 10.1139/o06-073
Melcher K (2005) Mutational hypersensitivity of a gene regulatory protein: Saccharomyces cerevisiae Gal80p. Genetics 171:469-476. doi: 10.1534/genetics.105.045237
Melcher K, Johnston SA (1995) GAL4 interacts with TATA-binding protein and coactivators. Mol Cell Biol 15:2839-2848. doi: 10.1128/MCB.15.5.2839
Mennella TA, Klinkenberg LG, Zitomer RS (2003) Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein. Eukaryot Cell 2:1288-1303. doi: 10.1128/EC.2.6.1288-1303.2003
Nehlin JO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373-3377.
Nehlin JO, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J 9:2891-2898.
Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D (2002) Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9:1297-1305. doi: 10.1016/s1097-2765(02)00545-2
Papamichos-Chronakis M, Gligoris T, Tzamarias D (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 5:368-372. doi: 10.1038/sj.embor.7400120
Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307-1317. doi: 10.1016/s1097-2765(02)00557-9
Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408-411. doi: 10.1126/science.272.5260.408
Thoden JB, Ryan LA, Reece RJ, Holden HM (2008) The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. J Biol Chem 283:30266-30272. doi: 10.1074/jbc. M805200200
Thoden JB, Sellick CA, Reece RJ, Holden HM (2007) Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem 282:1534-1538. doi: 10.1074/jbc.C600285200
Traven A, Jelicic B, Sopta M (2006) Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 7:496-499. doi: 10.1038/sj.embor.7400679
Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92:3132-3136. doi: 10.1073/ pnas.92.8.3132
Trumbly RJ (1988) Cloning and characterization of the CYC8 gene mediating glucose repression in yeast. Gene 73:97-111. doi: 10.1016/0378-1119(88)90316-2
Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821-831. doi: 10.1101/gad.9.7.821
Varanasi US, Klis M, Mikesell PB, Trumbly RJ (1996) The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16:6707-6714. doi: 10.1128/MCB.16.12.6707
Vidal M, Strich R, Esposito RE, Gaber RF (1991) RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11:6306-6316. doi: 10.1128/mcb.11.12.6306-6316.1991
Wagner C, Dietz M, Wittmann J, Albrecht A, Schüller HJ (2001) The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol Microbiol 41:155-166. doi: 10.1046/ j.1365-2958.2001.02495.x
Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY (2000) Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14:2737-2744. doi: 10.1101/gad.829100
Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H (2008) Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601. doi: 10.1186/1471-2164-9-601
Williams FE, Trumbly RJ (1990) Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10:6500-6511. doi: 10.1128/mcb.10.12.6500-6511.1990
Wong KH, Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525-2539. doi: 10.1101/gad.179275.111
Wu J, Suka N, Carlson M, Grunstein M (2001) TUP1 utilizes histone H3/H2B specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7:117-126. doi: 10.1016/s1097-2765(01)00160-5
Wu Y, Reece RJ, Ptashne M (1996) Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 15:3951-3963.
Yano K, Fukasawa T (1997) Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:1721-1726. doi: 10.1073/pnas.94.5.1721
Zhang L, Guarente L (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136:813-817
Zhang Z, Varanasi U, Trumbly RJ (2002) Functional dissection of the global repressor Tup1 in yeast: dominant role of the C-terminal repression domain. Genetics 161:957-969