The influence of double deck T-gate on LG=0.2 μm AlN/GaN/AlGaN HEMT is analysed in this paper. The T-gate supported with Silicon Nitride provides a tremendous mechanical reliability. It drops off the crest electric-field at gate edges and postponing the breakdown voltage of a device. A 0.2-μm double deck T-gate HEMT on Silicon Carbide substrate offer fMAX of 107 Giga Hertz, fT of 60 Giga Hertz and the breakdown voltage of 136 Volts. Furthermore, it produces the maximum-transconductance and drain-current of 0.187 Siemens/mm and 0.41 Ampere/mm respectively. In addition, the lateral electric-field noticed at gate-edge shows 2.1×106 Volts/cm. Besides, the double deck T-gate AlN/GaN HEMT achieves a 45 % increment in breakdown voltage compared to traditional GaN-HEMT device. Moreover, it reveals a remarkable Johnson figure-of-merit of 7.9 Tera Hertz Volt. Therefore, the double deck T-gate on AlN/GaN/AlGaN HEMT is the superlative device for 60 GHz V-band satellite application.