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 25 

Abstract 26 

This study compared precipitation projections of Coupled Model Intercomparison Project 5 27 

(CMIP5) and 6 (CMIP6) GCMs over Yulin City, China. The performance of CMIP5 and CMIP6 28 

GCMs in replicating Global Precipitation Climatology Centre (GPCC) precipitation climatology 29 

of the city was evaluated using different statistical metrics. The best performing GCMs common 30 

to both CMIP5 and CMIP6 were selected and subsequently downscaled to GPCC resolution 31 

using linear scaling method to spatiotemporal changes in precipitation. The study revealed 32 

BCC.CSM1.1(m), IPSL.CM5A.LR, MRI.CGCM3 and MIROC5 of CMIP5 and their equivalents 33 

BCC-CSM2-MR, IPSL-CM6A-LR, MRI.ESM2.0 and MIRCO6 of CMIP6 as the most suitable 34 

GCMs for the projection of rainfall in Yulin. Changes in precipitation were in the range of -14.0 35 

− 0.0% and -22.0 − 0.2% during 2021−2060 for RCP4.5 and SSP2-4.5 respectively. The highest 36 

decrease of -29.7  ̶  -22.0% was projected by MRI-ESM-2-0 for SSP2-4.5, while -28.0  − -20.0% 37 

by MIROC5 for RCP4.5. For RCP8.5 and SSP5-8.5, precipitation was projected to decrease in 38 

the range of -17.0  ̶  -2.0% and -32.0  ̶  0.0%, respectively during 2021  ̶  2060 by most of the 39 

GCMs. An increase in precipitation up to 12.3% was projected only by IPSL-CM5A-LR for 40 

RCP8.5 for this period. The highest decrease was projected by MIROC5 (-40.2 − -29.0%) for 41 

RCP8.5 and IPSL-CM6A-LR (-40.2 − -26.0%) for SSP5-8.5. Overall, the results revealed a 42 

higher decrease in precipitation in Yulin city by CMIP6 GCMs compared to those projected by 43 

their corresponding GCMs of CMIP5 for both scenarios.   44 

Keywords: CMIP6, climate change, global circulation model, statistical indices, Yulin 45 
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1. Introduction  47 

        Climate change has been an issue of concern over several decades due to its devastating 48 

impacts. It has increased the risks of flooding (Manawi et al., 2020; Rahman et al., 2019), 49 

occurrences of droughts (Alamgir et al., 2019; Ayugi et al., 2020; Shiru et al., 2019a), heatwaves 50 

(Kang and Eltahir, 2018; Khan et al., 2019; Satyanarayana and Rao, 2020) and ecosystem 51 

damages (Kim et al., 2019; Pérez-Ruiz et al., 2018). Many sectors including water resources, 52 

agriculture, energy and health among others have also been affected by the changing climate.       53 

       Like many other parts of the globe, China is also experiencing the impacts of climate change. 54 

Flooding is a common occurrence in different parts of China including cities like Yulin (Huang 55 

et al., 2015; Yang et al., 2017) and it often causes damages to sectors such as power, agriculture, 56 

health and sometimes leads to loss of lives (He et al., 2018). In 2003, heavy precipitation caused 57 

river flooding leading to the destruction of 17,438 acres of farmlands, destruction of roads, and 58 

damages to about 1,458 houses (He et al., 2018). Heavy precipitation affected more than 150,000 59 

people in 2012 with 15 people missing and11 deaths, destruction of roads and disruption of 60 

aviation due to the heavy rain (China-Daily 2012). The disaster caused a direct economic loss in 61 

the Yulin and Yan’an region up to 134 million yuan ($21 million). Similarly, the flood in 2016 62 

affected more than 21,000 people and evacuation of about 1200 persons (He et al., 2018). The 63 

flood led to the damage of more than 850 houses, destruction of more than 1100 kilometers of 64 

roads, damages to 30 bridges and culverts, and caused 11 landslides and other related geological 65 

disasters. The economic implication of the disaster was about 150 million yuan. The region is 66 

also known to be affected by droughts (Wang et al., 2020; Yin et al., 2020).  67 

         Understanding the expected changes in climate is crucial for the areas susceptible to 68 

disasters in order to develop adaptation and mitigation plans against climate change. This is 69 

particularly important using the recently released global climate models (GCM) of the Coupled 70 

Model Inter-comparison Phase 6 (CMIP6). It is also crucial to assess how the CMIP6 differ in 71 

projection from the previous Coupled Model Inter-comparison Phase 5 (CMIP5) in order to 72 

streamline the existing adaptation measures based on CMIP5 projections (Jiang et al., 2020; 73 

Song et al., 2021).  74 

        GCMs are developed by different institutions and have different performances in different 75 

parts of the globe (Chen et al., 2017). Hence, the selection of the most realistic ones for a reliable 76 

projection of climate for a region is crucial. The assessment of the performances of GCMs has 77 
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been conducted using different statistical indices (Rivera and Arnould, 2020; Sreelatha and 78 

Anand Raj, 2019). However, due to contradictory outputs from different statistical measures, 79 

supporting such outputs with other measures can be beneficial in reaching a compromise.  80 

         As GCMs are characterized by coarser spatial resolutions, their applications in climate 81 

projections and climate change impact studies at local and regional scales can be unreliable 82 

(Onyutha et al., 2016; Pour et al., 2018; Salman et al., 2018). Therefore, they are required to be 83 

downscaled (Almazroui et al., 2020a; Sa’adi et al., 2019; Shiru et al., 2020) using either the 84 

dynamical downscaling or the statistical downscaling (SD) methods. The SD method is known to 85 

have the advantages of computational efficiency and cost-effectiveness, the possibility of 86 

incorporation of observations directly into methods, and provision of point-scale climatic 87 

projections from GCM-scale (Fowler et al., 2007).         88 

          An array of statistical metrics was used to select the best performing GCMs for the 89 

projection of precipitation in the study area. Equivalent GCMs of the CMIP5 and CMIP6 for 90 

selected for the comparison of projections. The selected GCMs were downscaled using linear 91 

scaling method. This study employs only the GCMs which can reliably simulate the exiting 92 

climate of the study area and thus, capable to provide a trustworthy comparison of CMIP5 and 93 

CMIP6 projects. It is expected that the comparison of precipitation projections of CMIP5 and 94 

CMIP6 would help in streamlining the existing adaptation measures formulated based on CMIP5 95 

projections or deriving new measures based on new scenarios of CMIP6.  96 

 97 

2. Study Area and Datasets 98 

2.1. Study Area  99 

The study area, Yulin (Figure 1) is located in the northern Shaanxi province of China (Longitude: 100 

10715ʹ47ʺ−11114ʹ44ʺE; Lattitude: 3649ʹ07ʺ−3934ʹ47ʺN). Yulin covers a total area of 385 km 101 

by 263 km (Zha, et al. 2008). The terrain of the area descends from 1,907 m in the east to 585 m 102 

in the west above the mean sea level. Yulin has a semi-arid temperate continental monsoon type 103 

climate which is characterized by dry and little precipitation in spring and winter and high 104 

precipitation during summer and autumn. The annual average precipitation in Yulin is around 105 

450 mm. The annual average temperature in the area is 9.6C (Wang, 2016).  106 
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 107 

Figure 1 Map of Yulin showing the grid points considered for projection in the study. 108 

2.2. Gauged based gridded precipitation  109 

The GPCC full data reanalysis product of the Deutscher Wetterdienst (Becker et al., 2013; 110 

Schneider et al., 2014) was used in this study as the reference data. The GPCC precipitation 111 

amongst most other precipitation products has the advantages of (1) good data quality for 112 

hydrological studies, (2) availability for a longer period, (3) better performance as being 113 

developed using the highest number of collected precipitation records, and (4) completeness of 114 

time series for the recent decades (Ahmed, et al. 2017; Spinoni, et al. 2014). This study used the 115 

monthly precipitation data for the period 1961 – 2005. Data were collected from a total of 100 116 

grid points to cover the whole Yulin. The location of the grid points is shown in Figure 1. 117 

 118 

2.3 Global Climate Models   119 

This study uses the historical and future simulations of GCMs of CMIP5 and CMIP6. The 120 

CMIPs are sets of globally coordinated GCM simulations which comprises of historical and 121 

future climate simulations assembled from different climate modeling groups. The CMIP5 offers 122 
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significant improvements compared to the CMIP3 (Taylor et al., 2012). The CMIP5 comprises of 123 

four scenarios called representative concentration pathways (RCPs). In the CMIP6, the four RCP 124 

scenarios of CMIP5, RCP2.6, RCP4.5, RCP6.0 and RCP8.5 have been updated as Shared 125 

Socioeconomic Pathways (SSPs) scenarios, SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5 126 

respectively. Each GCM also considers 2100 radiative forcing levels. The GCMs of CMIP6 are 127 

developed through improved emission scenarios, land use data, physical processes and model 128 

parameterization to provide more realistic projections of future climate (Eyring, et al. 2016; 129 

O'Neill, et al. 2016). In this study, historical and future simulation of 10 GCMs of CMIP5 and 130 

CMIP6 were considered. The GCMs were chosen based on their availability from the same 131 

institution. The first ensemble members for both CMIP5 and CMIP6 were considered. The 132 

GCMs chosen for this study are provided in Table 1.  133 

 134 

Table 1. Descriptions of the GCMs of CMIP5 and CMIP6 used in this study. 135 

Institution - Country CMIP5 Model 

Name 

Resolution 

(lon/lat in ) 
CMIP6 Model 

Name 

Resolution 

(lon/lat in ) 
Australian Community Climate and Earth System 

Simulator - Australia 
ACESS1.3 1.9 × 1.2 ACCESS.ESM1.5 1.9×1.2 

Beijing Climate Center - China BCC.CSM1.1(m) 1.125 × 1.125 BCC.CSM2.MR 1.1× 1.1 

Canadian Centre for Climate Modelling and 

Analysis - Canada 
CanESM2 2.8 × 2.8 CanESM5 2.8×2.8 

NASA Goddard Institute for Space Studies  - 

United States 
GISS.E2.R 2.5 × 2.0 GISS.E2.1.G 2.5 × 2.0 

Marchuk Institute of Numerical Mathematics - 

Russia 
INM.CM4 2 × 1.5 INM.CM4.8 2×1.5 

Institut Pierre-Simon Laplace - France IPSL.CM5A.LR 3.75 × 1.875 IPSL.CM6A.LR 2.5× 1.3 

The University of Tokyo, National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and  Technology - Japan 

MIROC5 1.4 × 1.4 MIROC6 1.4× 1.4 

Max-Planck-Institut für Meteorologie - Germany MPI.ESM.LR 1.9 × 1.9 MPI.ESM1.2.LR 1.9× 1.9 

Meteorological Research Institute - Japan MRI.CGCM3 1.25 × 1.25 MRI.ESM2.0 1.1× 1.1 

Norwegian Meteorological Institute - Norway NorESM1.M 2.5 × 1.875 NORESM2.MM 2.9 x 1.9 

 136 

3. Methodology 137 

The methods used in this study are described in this section. For an unbiased comparison of 138 

model performance, the GPCC and the precipitation simulations of all GCMs were re-gridded to 139 
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a uniform resolution of 1×1 (latitude×longitude) using bilinear interpolation to have a uniform 140 

resolution. Bilinear interpolation is often conducted for transforming spatially coarse GCM data 141 

into finer data through GCM data interpolation from the four nearest neighboring grid points 142 

(Ahmed, et al. 2019; Almazroui, et al. 2020a). After selection of GCMs, the selected GCMs and 143 

the GPCC precipitation data were re-gridded to 0.25 and used for spatiotemporal projection of 144 

precipitation.   145 

3.1 Statistical Indices 146 

The ability of the different GCMs in reproducing the properties of GPCC precipitation at all the 147 

100 grid points of the study area was assessed using four statistical indices: normalized root 148 

mean square error (NRMSE), Percentage of Bias (Pbias), Volumetric Efficiency (VE), and 149 

Coefficient of Determination (R²). Besides, probability density function (pdf) and spatial 150 

relationship of the mean monthly precipitation of the different GCMs were compared with 151 

GPCC precipitation to assess their abilities in replicating the precipitation climatology of the 152 

study area. Details about the statistical metrics used in this study are as follows. The expressions 153 

used to describe statistical metrics used here: xpred,i and xobs,i are the i-th GCM and GPCC data.  154 

The magnitude of the errors in estimation can be summarized by NRMSE (Willmott 1982). It is 155 

a normalized statistic that provides a relative magnitude of the residual variance to the variance 156 

of the measured data. Smaller NRMSE values (preferably zero) indicate better performance of 157 

the model. NRMSE is defined as follows 158 

 𝑁𝑅𝑀𝑆𝐸 = [1𝑛 ∑ (𝑥𝑝𝑟𝑒𝑑,𝑖−𝑥𝑜𝑏𝑠,𝑖)2𝑛𝑖=1 ]1 2⁄1𝑛 ∑ (𝑥𝑝𝑟𝑒𝑑,𝑖)𝑛𝑖=1                                                             (1) 159 

The tendency of GCM to underestimate or overestimate the GPCC precipitation is measured 160 

using Pbias. Model performance is better when the Pbias is closer to zero. The PBIAS is a 161 

statistical metric that gives the estimate of over estimation or under prediction of a model 162 

(Wagena, et al. 2018). The evaluation of Pbias is conducted as follows.  163 

𝑃𝑏𝑖𝑎𝑠 = 100 × [∑ (𝑥𝑝𝑟𝑒𝑑,𝑖−𝑥𝑜𝑏𝑠,𝑖)𝑛𝑖=1∑ 𝑥𝑝𝑟𝑒𝑑,𝑖𝑛𝑖=1 ]                                                                     (2) 164 

The VE measures the ratio between GCM and GPCC precipitation volumes over a period, where 165 

a VE value of 1 indicates a perfect estimation. It can be calculated using the following equation.  166 
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            𝑉𝐸 = 1 − ∑ (𝑥𝑝𝑟𝑒𝑑,𝑖−𝑥𝑜𝑏𝑠,𝑖)𝑛𝑖=1 ∑ 𝑥𝑜𝑏𝑠,𝑖𝑛𝑖=1                                                                                           (3)                                           167 

The R2 can be defined as the square of the Pearson’s product-moment correlation coefficient (i.e. 168 

R2 = r2) describing the proportion of the total variance in the GPCC precipitation which is 169 

explainable by GCM (Legates and McCabe Jr 1999). R2 values can range between -1.0 and 1.0, 170 

in which the higher absolute value indicates a better agreement. Computation of R2 is as follows.  171 
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 173 

3.2 Downscaling of precipitation of selected GCMs of CMIP5 and CMIP6 174 

The linear scaling (LS) method was applied for the downscaling of the selected GCMs. LS 175 

(Lenderink, et al. (2007) uses the monthly correction values obtained from the difference in 176 

GPCC and GCMs simulated monthly precipitation for the reference period. The monthly scaling 177 

factor is then applied to raw GCM data. The monthly precipitation, P is corrected using the 178 

following equation:  179 

 180     𝑃∗ = 𝛼𝑃                                                                                                                                       (5) 181 

 182 

where  𝛼 =  𝑃𝑜/𝑃𝑠                                                                                                                                      (6) 183 

 184 𝑃𝑜  is the monthly mean of GPCC precipitation whereas 𝑃𝑠  is the monthly mean of the GCM 185 

simulated precipitation. LS method requires less information such as only monthly data to 186 

calculate the scaling factor (Lafon, et al. 2013) and thus, widely used for precipitation 187 

downscaling.  188 

 189 

4. Results 190 

4.1 Performance assessment of GCMs using statistical metrics 191 

The results of the statistics used for the performance evaluation of different historical GCMs are 192 

presented in Table 2. It shows a variation in the performances of different GCMs. For CMIP5, 193 
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the GCMs with the best performance metrics are ACESS1.3, BCC.CSM1.1(m), IPSL.CM5A.LR, 194 

and MIROC5. The GCMs of the same institutions also showed good performances for CMIP6 195 

except for ACCESS.ESM1.5 which showed a relatively poor performance.  196 

 197 

Table 2. Statistical metrics showing the performances of GCMs of CMIP5 and CMIP6 in replicating GPCC 198 

precipitation over Yulin (Best metrics are presented in bold).   199 

 200 

4.2 Spatial relationship between GCMs and GPCC precipitations  201 

The ability of different GCMs in replicating the spatial distribution of GPCC precipitation for the 202 

study area are presented in Figure 2. The performances of the GCMs were found to vary widely 203 

in reproducing the GPCC precipitation. Among CMIP5 GCMs, the highest overestimations were 204 

by CanESM2 and NorESM1-M, while an underestimation was by MRI-CGCM3 followed by 205 

IPSL-CM5A-LR in some parts. For CMIP6, GISS-E2-1G showed the highest overestimation of 206 

precipitation. Generally, the GCMs with better performance metrics (Table 2) showed better 207 

skills in replicating the precipitation climatology of GPCC for the study area.   208 

CMIP5 CMIP6 

GCM NRMSE Pbias VE R2 GCM NRMSE Pbias VE R2 

ACESS1.3 76.3 10.9 0.68 0.73 ACCESS.ESM1.5 154.4 23.8 0.67 0.77 

BCC.CSM1.1(m) 144.8 21.2 0.79 0.79 BCC.CSM2.MR 115 19.8 0.8 0.63 

CanESM2 292.9 49.8 0.5 0.16 CanESM5 136.1 23.7 0.73 0.46 

GISS.E2.R 135.8 29.1 0.68 0.22 GISS.E2.1.G 175.8 53.3 0.47 0.04 

INM.CM4 274.7 38.8 0.61 0.46 INM.CM4.8 279.9 41.5 0.59 0.45 

IPSL.CM5A.LR 81.0 -4.5 0.77 0.36 IPSL.CM6A.LR 70.2 6.1 0.8 0.59 

MIROC5 177.2 27.5 0.72 0.76 MIROC6 181.6 23.3 0.72 0.65 

MPI.ESM.LR 174.3 35.5 0.65 0.41 MPI.ESM1.2.LR 123.3 23.6 0.76 0.54 

MRI.CGCM3 173.8 -44.6 0.70 0.85 MRI.ESM2.0 85.8 -21.3 0.78 0.78 

NorESM1.M 397.3 55.1 0.45 0.21 NORESM2.MM 182.6 29.8 0.7 0.62 
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 209 

Figure 2 Spatial distribution of average annual precipitation of GCMs of CMIP5 and CMIP6 compared to 210 

that of GPCC during 1961–2005.  211 
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 212 

4.3 Comparison using probability density function 213 

The PDFs of monthly GCM precipitation was compared with the PDF of GPCC precipitation for 214 

the study area. The results for CMIP5 and CMIP6 are presented in Figure 3(a) and 3(b) 215 

respectively. Figures show that most GCMs were able to replicate the precipitation properties of 216 

the GPCC, especially the skewness. However, the distribution of precipitation was found better 217 

for the GCMs which showed a better performance in terms of statistical metrics presented in 218 

Table 2.  219 

   220 

Figure 3 Probability density function of monthly precipitations of GPCC and the GCMs of (a) CMIP5 and 221 

(b) CMIP6.  222 

 223 

4.4 Comparison of GCMs in reproducing monthly mean precipitation  224 

          The mean monthly GCM precipitation was compared with mean monthly GPCC 225 

precipitation for the period 1961−2005. Obtained results for the GCMs of CMIP5 and CMIP6 226 

are presented in Figure 4(a) and (b) respectively. There was a variation in the estimation of 227 

GPCC precipitation by the GCMs, especially during the wet season. CanESM2 and NorESM1-M 228 

of CMIP5 overestimated the precipitation for all the months, while an underestimation was by 229 

MRI-CGCM3. For the CMIP6, overestimation was by GISS-E2-1-2G and underestimation by 230 

MRI-ESM2-0 and IPSL-CM5A-LR, especially during the wet period. Though most of the 231 
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CMIP6 GCMs were found to overestimate the GPCC precipitation, overall they were found more 232 

capable in replicating the mean monthly precipitation of GPCC compared to CMIP5 GCMs. 233 

 234 

 235 

Figure 4 Comparison of mean monthly precipitation of GCMs of (a) CMIP5 and (b) CMIP6 with that of GPCC 236 

precipitation.  237 

 238 

4.5 Selection of the best performing GCMs  239 
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The performance of the GCMs based on statistical indices and replication of PDF, and spatial 240 

precipitation distribution patterns were considered. Based on the statistics, BCC.CSM1.1(m), 241 

IPSL.CM5A.LR, and MIROC5 were the better performing GCMs for both CMIP5 and CMIP6. 242 

Besides, ACESS1.3 showed overall a better performance compared to the rest of the CMIP5 243 

GCMs, while its equivalent under CMIP6 showed a poor performance than MRI.ESM2.0. As 244 

CMIP6 is a more recent simulation, the MRI.CGCM3 for CMIP5 and its equivalent GCM for 245 

MICP6, MRI.ESM2.0 were prioritized as the fourth model for projection of precipitation.   246 

 247 

4.7 Projection of precipitation from the selected GCMs of CMIP5 and CMIP6 248 

The spatial projections of precipitation for the study area by CMIP5 GCMs for RCP 4.5 and 249 

CMIP6 GCMs for SSP2-4.5 for two future periods, 2021–2060 and 2061 – 2100 are presented in 250 

Figure 5. Large heterogeneity in precipitation changes was projected by different GCMs for 251 

RCPs and SSPs and the two projection periods. During 2021 – 2060, the highest decrease in 252 

precipitation was projected by MRI-ESM-2-0 for SSP2-4.5 while the highest decrease for RCP 253 

4.5 was projected by MIROC5.  For the same period, BCC-CSM2-MR projected an increase in 254 

precipitation by 1.2% at the extreme west of the study area. Percentage change in precipitation 255 

was in the range of -14.0 – 0.0% for RCP4.5 while it was -22.0 – 1.2% for SSP2-4.5.  During 256 

2061 – 2100, all the GCMs projected decreases in precipitation, with the highest decrease of -257 

29.7  ̶  -22.0% by MRI-ESM-2-0 for SSP2-4.5 and -28.0  ̶  -20.0% by MIROC5 for RCP4.5. The 258 

lowest decrease during this period was projected by MRI-CGCM3 and BCC-CSM2-MR for 259 

RCP4.5 and SSP2-4.5 respectively.  260 
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 261 

Figure 5. Spatial distribution of projected precipitation by the GCMs of CMIP5 and CMIP6 during 2021–262 

2060 and 2061–2100 for RCP4.5 and SSP2-4.5.  263 

           The spatial distribution of projected precipitation in the study area by CMIP5 GCMs for 264 

RCP 8.5 and CMIP6 GCMs for SSP5-8.5 for the periods 2021–2060 and 2061–2100 are 265 

presented in Figure 6. Compared to RCP 4.5 and SSP2-4.5, RCP8.5 and SSP5-8.5 showed higher 266 

decreases in precipitation. During 2021 – 2060, the projected decrease in precipitation was in the 267 

range of -17.0  ̶  -2.0% by the CMIP5 GCMs for RCP8.5 while the decrease was projected 268 
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between -32.0  and 0.0% by the CMIP6 GCMs for SSP5-8.5. Increases in precipitation of 0.0  ̶ 269 

12.3% were noticed only for IPSL-CM5A-LR for RCP8.5. During 2061 – 2100, the decrease in 270 

precipitation was projected the highest by MIROC5 (-40.2  ̶  -29.0%)  for RCP8.5 and IPSL-271 

CM6A-LR (-40.2  ̶  -26.0%) for SSP5-8.5.    272 

 273 

Figure 6. Spatial distribution of projected precipitation by the GCMs of CMIP5 and CMIP6 during 2021–274 

2060 and 2061–2100 for RCP8.5 and SSP5-8.5.  275 

 276 
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5. Discussion 277 

          Climate change remains a major challenge in many parts of the globe as they have 278 

devastating impacts on several sectors. Many studies have shown that the expected changes in 279 

climate will result in increased temperatures and more erratic precipitations in many parts of the 280 

world. Projection of precipitation under CMIP5 in Nigeria showed that while precipitation will 281 

increase in some parts of the country, particularly the semi-arid and arid regions where they are 282 

usually low, the other parts where they used to be higher will experience decreases (Shiru, et al. 283 

2019b). (Homsi, et al. 2020) used CMIP5 GCMs in Syria and showed that precipitation would 284 

increase by up to 87% in some parts and decrease by up to -85% in the coastal areas. Many other 285 

studies have also shown both increase and decrease in precipitation in many parts of the world 286 

using CMIP5 GCMs (Iqbal, et al. 2020; Narsey, et al. 2020; Shiru and Park 2020; Ullah, et al. 287 

2020).   288 

          The studies for the recently released CMIP6 GCMs have also shown such changes in 289 

precipitation. The study conducted over South Asian countries Almazroui, et al. (2020c) showed 290 

that the annual mean precipitation will increase by 27.3% in India, 18.9% in Bhutan, 26.4% in 291 

Pakistan, 19.5% in Nepal, 25.1% in Sri Lanka and 17.1% in Bangladesh in the last part of the 292 

century under SSP5-8.5 scenario. Over Africa, (Almazroui, et al. 2020b) projected precipitation 293 

under CMIP6 and showed that while the northern and the southern parts of Africa are analyzed 294 

to witness a reduction in precipitation, the central parts are expected to have increases of 6.2%, 295 

6.8%, and 9.5% for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. 296 

             In China, studies showed variations in the projected precipitations for both CMIP5 and 297 

CMIP6 with some studies showing mostly increases while others showed a simultaneous 298 

increase and decrease depending on the region. The annual precipitation was projected to 299 

increase significantly relative to the present day for CMIP5 (Chen 2013). This study revealed 300 

that the increase of precipitation in the Northwest of China is primarily due to the increase in 301 

light showers while the increases in precipitation in the north and northeastern parts are due to an 302 

increase in medium precipitation. The increases in precipitation are expected in the southern 303 

parts of China due to an increment in heavy precipitation. Zhou, et al. (2019) showed both 304 

increases and decreases in daily precipitation under different warming conditions over China 305 

using CMIP5. The increase in warming of 1.5C was projected to cause an increase in the 306 
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frequency and intensity of precipitation in northeast China, north China, and the Qinghai–Tibet 307 

Plateau while there would be a decrease in total precipitation in south China and southwest 308 

China. The number of wet days were projected to increase in the north while the decreases in the 309 

south under 2C.  310 

             The projection of the changes in precipitation over northwestern China for CMIP6 (Su-311 

Yuan, et al. 2020) showed that there would be lesser warming compared to that previously 312 

expected, which would affect the patterns in precipitation changes. Unlike in the historical period 313 

(1850 – 2014) when the rate of warming was 0.05°C per decade, the annual mean temperature is 314 

projected to increase up to 0.06°C, 0.26°C and 0.59°C per decade for SSP1-2.6, SSP2-4.5 and 315 

SSP5-8.5, respectively for the period 2015–2099. The total annual precipitation for the area is 316 

projected to increase by 5.6, 6.4 and 8.0 mm/decade for SSP1-2.6, SSP2-4.5 and SSP5-8.5, 317 

respectively.  318 

             In this study, both increases and decreases in precipitation are projected for the study 319 

area. Zhou, et al. (2019) projected the increases in precipitation over China, except some 320 

northwestern parts where Yulin belongs, which supports the findings of this study. The projected 321 

the increases in some parts of the study area are also corroborated by other studies.  322 

 323 

6. Conclusions 324 

         This study compares the projections of precipitation by CMIP5 and CMIP6 GCMs over 325 

Yulin city of China. Different statistical and graphical metrics were used in assessing the ability 326 

of 10 GCMs in replicating the precipitation properties of the study area. Finally, four GCMs 327 

having the highest ability in replicating the properties of GPCC precipitation were selected for 328 

the projection of precipitation over the study area. This study revealed that ACESS1.3, 329 

BCC.CSM1.1(m), IPSL.CM5A.LR and MIROC5 of CMIP5 and their equivalents in CMIP6, 330 

BCC-CSM2-MR, IPSL-CM6A-LR, MRI.ESM2.0 and MIROC6 have better abilities in 331 

replicating historical precipitation properties over Yulin. Projection of precipitation showed an 332 

overall decrease in precipitation over Yulin by the GCMs of both CMIPs. The decrease in 333 

precipitation would be more in the far future compared to the near future. The expected 334 

decreases in precipitation can increase the frequency and intensity of droughts in the area. The 335 
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findings of the study can be used as a guide in the development of adaptation and mitigation 336 

measures against climate change in the area. In the future, more GCMs common to both CMIP5 337 

and CMIP6 can be employed when they will be available for CMIP6 for the selection of best 338 

performing GCMs. Besides, a more reliable approach can be utilized for the selection of GCMs 339 

to avoid the dispute in selection using conventional statistical metrics. 340 

 341 

 342 

 Funding Statement  343 

This work was supported under the framework of international cooperation program managed by 344 

the National Research Foundation of Korea (2019K2A9A2A06018602). 345 

 346 

References  347 

Ahmed, K., Shahid, S., Ali, R.O., Harun, S., Wang, X., 2017. Evaluation of the performance of gridded 348 

precipitation products over Balochistan Province, Pakistan. Desalination 1, 14. 349 

Ahmed, K., Shahid, S., Sachindra, D., Nawaz, N., Chung, E.-S., 2019. Fidelity assessment of general 350 

circulation model simulated precipitation and temperature over Pakistan using a feature selection 351 

method. Journal of hydrology 573, 281-298. 352 

Alamgir, M., Mohsenipour, M., Homsi, R., Wang, X., Shahid, S., Shiru, M.S., Alias, N.E., Yuzir, A., 353 

2019. Parametric Assessment of Seasonal Drought Risk to Crop Production in Bangladesh. 354 

Sustainability 11, 1442. 355 

Almazroui, M., Islam, M.N., Saeed, S., Saeed, F., Ismail, M., 2020a. Future Changes in Climate over the 356 

Arabian Peninsula based on CMIP6 Multimodel Simulations. Earth Systems and Environment, 1-20. 357 

Almazroui, M., Saeed, F., Saeed, S., Islam, M.N., Ismail, M., Klutse, N.A.B., Siddiqui, M.H., 2020b. 358 

Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and 359 

Environment, 1-21. 360 

Almazroui, M., Saeed, S., Saeed, F., Islam, M.N., Ismail, M., 2020c. Projections of precipitation and 361 

temperature over the South Asian countries in CMIP6. Earth Systems and Environment 4, 297-320. 362 

Ayugi, B., Tan, G., Rouyun, N., Zeyao, D., Ojara, M., Mumo, L., Babaousmail, H., Ongoma, V., 2020. 363 

Evaluation of Meteorological Drought and Flood Scenarios over Kenya, East Africa. Atmosphere 11, 364 

307. 365 

Chen, H., 2013. Projected change in extreme rainfall events in China by the end of the 21st century using 366 

CMIP5 models. Chinese Science Bulletin 58, 1462-1472. 367 

Chen, J., Brissette, F.P., Lucas-Picher, P., Caya, D., 2017. Impacts of weighting climate models for 368 

hydro-meteorological climate change studies. Journal of Hydrology 549, 534-546. 369 

China-Daily, 2012. Flooding in Shaanxi province kills 11. http://europe.chinadaily.com.cn/china/2012-370 

07/30/content_15632933.htm Updated: 2012-07-30 22:41     Accessed:12/10/2020. 371 

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016. Overview 372 

of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. 373 

Geoscientific Model Development 9, 1937-1958. 374 

http://europe.chinadaily.com.cn/china/2012-07/30/content_15632933.htm
http://europe.chinadaily.com.cn/china/2012-07/30/content_15632933.htm


20 

 

Fowler, H.J., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change modelling to impacts studies: 375 

recent advances in downscaling techniques for hydrological modelling. International Journal of 376 

Climatology: A Journal of the Royal Meteorological Society 27, 1547-1578. 377 

He, Y., He, S., Hu, Z., Qin, Y., Zhang, Y., 2018. The devastating 26 July 2017 floods in Yulin City, 378 

Northern Shaanxi, China. Geomatics, Natural Hazards and Risk 9, 70-78. 379 

Homsi, R., Shiru, M.S., Shahid, S., Ismail, T., Harun, S.B., Al-Ansari, N., Chau, K.-W., Yaseen, Z.M., 380 

2020. Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria. 381 

Engineering Applications of Computational Fluid Mechanics 14, 90-106. 382 

Huang, C., Shen, J.J., Zhou, M., Lee, G.C., 2015. Force-based and displacement-based reliability 383 

assessment approaches for highway bridges under multiple hazard actions. Journal of Traffic and 384 

Transportation Engineering (English Edition) 2, 223-232. 385 

Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., Khan, N., Virk, Z.T., Johar, W., 2020. Evaluation of global 386 

climate models for precipitation projection in sub-Himalaya region of Pakistan. Atmospheric Research, 387 

105061. 388 

Kang, S., Eltahir, E.A., 2018. North China Plain threatened by deadly heatwaves due to climate change 389 

and irrigation. Nature communications 9, 1-9. 390 

Khan, N., Shahid, S., Ismail, T., Ahmed, K., Nawaz, N., 2019. Trends in heat wave related indices in 391 

Pakistan. Stochastic environmental research and risk assessment 33, 287-302. 392 

Kim, G.-U., Seo, K.-H., Chen, D., 2019. Climate change over the Mediterranean and current destruction 393 

of marine ecosystem. Scientific reports 9. 394 

Lafon, T., Dadson, S., Buys, G., Prudhomme, C., 2013. Bias correction of daily precipitation simulated 395 

by a regional climate model: a comparison of methods. International Journal of Climatology 33, 1367-396 

1381. 397 

Legates, D.R., McCabe Jr, G.J., 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and 398 

hydroclimatic model validation. Water resources research 35, 233-241. 399 

Lenderink, G., Buishand, A., Deursen, W.v., 2007. Estimates of future discharges of the river Rhine using 400 

two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences 11, 401 

1145-1159. 402 

Manawi, S.M.A., Nasir, K.A.M., Shiru, M.S., Hotaki, S.F., Sediqi, M.N., 2020. Urban Flooding in the 403 

Northern Part of Kabul City: Causes and Mitigation. Earth Systems and Environment, 1-12. 404 

Narsey, S., Brown, J., Colman, R., Delage, F., Power, S., Moise, A., Zhang, H., 2020. Climate change 405 

projections for the Australian monsoon from CMIP6 models. Geophysical Research Letters 47, 406 

e2019GL086816. 407 

O'Neill, B.C., Tebaldi, C., Van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, 408 

E., Lamarque, J.-F., Lowe, J., 2016. The scenario model intercomparison project (ScenarioMIP) for 409 

CMIP6. 410 

Onyutha, C., Tabari, H., Rutkowska, A., Nyeko-Ogiramoi, P., Willems, P., 2016. Comparison of different 411 

statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin 412 

considering CMIP3 and CMIP5. Journal of hydro-environment research 12, 31-45. 413 

Pérez-Ruiz, C.L., Badano, E.I., Rodas-Ortiz, J.P., Delgado-Sánchez, P., Flores, J., Douterlungne, D., 414 

Flores-Cano, J.A., 2018. Climate change in forest ecosystems: a field experiment addressing the 415 

effects of raising temperature and reduced rainfall on early life cycle stages of oaks. Acta oecologica 416 

92, 35-43. 417 

Pour, S.H., Shahid, S., Chung, E.-S., Wang, X.-J., 2018. Model output statistics downscaling using 418 

support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. 419 

Atmospheric research 213, 149-162. 420 

Rahman, M., Ningsheng, C., Islam, M.M., Dewan, A., Iqbal, J., Washakh, R.M.A., Shufeng, T., 2019. 421 

Flood Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-criteria Decision 422 

Analysis. Earth Systems and Environment 3, 585-601. 423 



21 

 

Rivera, J.A., Arnould, G., 2020. Evaluation of the ability of CMIP6 models to simulate precipitation over 424 

Southwestern South America: Climatic features and long-term trends (1901–2014). Atmospheric 425 

Research, 104953. 426 

Sa’adi, Z., Shiru, M.S., Shahid, S., Ismail, T., 2019. Selection of general circulation models for the 427 

projections of spatio-temporal changes in temperature of Borneo Island based on CMIP5. Theoretical 428 

and Applied Climatology, 1-21. 429 

Salman, S.A., Shahid, S., Ismail, T., Ahmed, K., Wang, X.-J., 2018. Selection of climate models for 430 

projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmospheric research 431 

213, 509-522. 432 

Satyanarayana, G., Rao, D.B., 2020. Phenology of heat waves over India. Atmospheric Research, 105078. 433 

Shiru, M.S., Chung, E.-S., Shahid, S., Alias, N., 2020. GCM selection and temperature projection of 434 

Nigeria under different RCPs of the CMIP5 GCMS. Theoretical and Applied Climatology 141, 1611-435 

1627. 436 

Shiru, M.S., Park, I., 2020. Comparison of Ensembles Projections of Rainfall from Four Bias Correction 437 

Methods over Nigeria. Water 12, 3044. 438 

Shiru, M.S., Shahid, S., Chung, E.-S., Alias, N., 2019a. Changing characteristics of meteorological 439 

droughts in Nigeria during 1901–2010. Atmospheric Research 223, 60-73. 440 

Shiru, M.S., Shahid, S., Chung, E.-S., Alias, N., Scherer, L., 2019b. A MCDM-based framework for 441 

selection of general circulation models and projection of spatio-temporal rainfall changes: A case 442 

study of Nigeria. Atmospheric Research 225, 1-16. 443 

Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., Vogt, J., 2014. World drought frequency, duration, and 444 

severity for 1951–2010. International Journal of Climatology 34, 2792-2804. 445 

Sreelatha, K., Anand Raj, P., 2019. Ranking of CMIP5-based global climate models using standard 446 

performance metrics for Telangana region in the southern part of India. ISH Journal of Hydraulic 447 

Engineering, 1-10. 448 

Su-Yuan, L., Li-Juan, M., Zhi-Hong, J., Guo-Jie, W., Raj, G.K., Jing, Z., Hui, Z., Ke, F., Yu, H., Chun, L., 449 

2020. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and 450 

RCPs for 2015‒2099. Advances in Climate Change Research. 451 

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. 452 

Bulletin of the American Meteorological Society 93, 485-498. 453 

Ullah, S., You, Q., Zhang, Y., Bhatti, A.S., Ullah, W., Hagan, D.F.T., Ali, A., Ali, G., Jan, M.A., Khan, 454 

S.N., 2020. Evaluation of CMIP5 models and projected changes in temperatures over South Asia 455 

under global warming of 1.5 oC, 2 oC, and 3 oC. Atmospheric Research 246, 105122. 456 

Wagena, M.B., Collick, A.S., Ross, A.C., Najjar, R.G., Rau, B., Sommerlot, A.R., Fuka, D.R., Kleinman, 457 

P.J., Easton, Z.M., 2018. Impact of climate change and climate anomalies on hydrologic and 458 

biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. 459 

Science of the Total Environment 637, 1443-1454. 460 

Wang, T., 2016. Vegetation NDVI change and its relationship with climate change and human activities 461 

in Yulin, Shaanxi Province of China. Journal of Geoscience and Environment Protection 4, 28. 462 

Wang, Y., Kong, Y., Chen, H., Ding, Y., 2020. Spatial-temporal characteristics of drought detected from 463 

meteorological data with high resolution in Shaanxi Province, China. Journal of Arid Land 12, 561-464 

579. 465 

Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bulletin of the American 466 

Meteorological Society 63, 1309-1313. 467 

Yang, Y., Du, J., Cheng, L., Xu, W., 2017. Applicability of TRMM satellite precipitation in driving 468 

hydrological model for identifying flood events: a case study in the Xiangjiang River Basin, China. 469 

Natural Hazards 87, 1489-1505. 470 

Yin, Y., Zhang, L., Wang, X., Xu, W., Yu, W., Zhu, Y., 2020. Meteorological Drought Changes and 471 

Related Circulation Characteristics in Yulin City of the Northern Shaanxi from 1961 to 2015. 472 

Atmosphere 11, 1196. 473 



22 

 

Zha, Y., Liu, Y., Deng, X., 2008. A landscape approach to quantifying land cover changes in Yulin, 474 

Northwest China. Environmental Monitoring and Assessment 138, 139-147. 475 

Zhou, M., Zhou, G., Lv, X., Zhou, L., Ji, Y., 2019. Global warming from 1.5 to 2° C will lead to increase 476 

in precipitation intensity in China. International Journal of Climatology 39, 2351-2361. 477 

  478 



23 

 

Author Contributions 479 

Conceptualization, Mohammed Sanusi Shiru, Eun-Sung Chung; Formal analysis, Mohammed 480 

Sanusi Shiru, Eun-Sung Chung, Shamsuddin Shahid, and Xiao-Jun Wang; Methodology, 481 

Mohammed Sanusi Shiru, Eun-Sung Chung, Shamsuddin Shahid, and Xiao-Jun Wang, Writing – 482 

original draft, Mohammed Sanusi Shiru, Eun-Sung Chung; Writing – review & editing, 483 

Mohammed Sanusi Shiru, Eun-Sung Chung, Shamsuddin Shahid, and Xiao-Jun Wang. 484 

 485 

Ethical approval 486 

This article does not contain any studies with human or animal participants performed by any of 487 

the authors. 488 

 489 

Consent to Particupate 490 

The authors declare that they have consent to participate in this paper. 491 

 492 

Consent to Publish 493 

The authors declare that they have consent to publish in this journal. 494 

 495 

Conflicts of interests 496 

The authors declare that they have no known competing interests that authors must disclose all 497 

affiliations, funding sources, financial or personal relationships that could be perceived as 498 

potential sources of bias. 499 

 500 

Availability of data and materials 501 

The authors can support all relevant data if requested. 502 

 503 


