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Abstract

Background: Growing evidences show a relation between gut microbiota, metabolic syndrome (MS) and
other risk factors of cardiovascular disease. We investigated fecal microbiota profiles associated with
metabolic abnormalities belonging to the MS, high count of white blood cells (WBCs) and insulin
resistance (IR).

Methods: Sixty-eight young patients with obesity were stratified for percentile distribution of MS
abnormalities. A MS risk score was defined as low, medium and high MS risk. High WBCs were defined as
a count =7.0 103/pL; severe obesity as body mass index Z-score =2 standard deviations; IR as
homeostatic assessment model algorithm of IR (HOMA) =3.7. Stool samples were analyzed by 16S
rRNA-based metagenomics.

Results: We found reduced bacterial richness of fecal microbiota in patients with IR and high diastolic
blood pressure (BP). Distinct microbial markers were associated to high BP (Clostridium and
Clostridiaceae), low high-density lipoprotein cholesterol (Lachnospiraceae, Gemellaceae, Turicibacter),
and high MS risk (Coriobacteriaceae), WBCs (Bacteroides caccae, Gemellaceae), severe obesity
(Lachnospiraceae), and impaired glucose tolerance (Bacteroides ovatus and Enterobacteriaceae).
Conversely, taxa such as Faecalibacterium prausnitzii, Parabacterodes, Bacteroides caccae, Oscillospira,
Parabacterodes distasonis, Coprococcus and Haemophilus parainfluenzae were associated to low MS
risk score, triglycerides, fasting glucose and HOMA-IR, respectively.

Conclusions: This was a proof-of-concept study opening the way at the identification of fecal microbiota
signatures, precisely associated with cardio-metabolic risk factors in young patients with obesity. These
evidences led us to infer that while some gut bacteria have a detrimental role in exacerbating metabolic

risk factors some others are beneficial ameliorating cardiovascular host health.

Background

Prevalence of overweight and obesity in childhood has substantially increased worldwide in recent
decades with children becoming obese at progressively younger ages [1].

Obesity in children carries a wide range of serious complications, such as high blood pressure (BP) and
triglycerides, low high-density lipoprotein cholesterol (HDL-C) and impaired glucose metabolism. All these
metabolic abnormalities stem from the enhanced insulin resistance (IR) [2], that is deemed as a condition
of systemic low-grade inflammation and is associated with all the metabolic alterations that belong to
the metabolic syndrome (MS) [3]. IR as well as these abnormalities contribute to early atherosclerosis,
anticipated incidence of cardiovascular disease (CVD) and type 2 diabetes (T2D) in young adulthood [4].
Identification and timely treatment of youths with increased risk of CVD and T2D is thus becoming a
priority for the health care systems worldwide [3].

Page 2/22



Robust epidemiological and molecular investigations demonstrate that gut dysbiosis contributes
significantly to increase the risk of these disease conditions throughout different mechanisms (i.e.
release of byproducts that trigger innate immunity, enhanced inflammation and IR, and impaired energy
metabolism) [5, 6]. The gut microbiota is virtually an endocrine organ, arguably the largest, capable of
contributing and reacting to circulating signaling molecules within the host [7]. Gut microbiota produces a
large number of small metabolites through primary or secondary metabolic pathways that can have
either pro- or anti-inflammatory properties in their own, i.e. bile acids [8], short chain fatty acids [5],
trimethylamine oxide [9], endotoxins [5] and bacterial peptidoglycan [10].

The purpose of the present study was to identify fecal microbiota signatures that are specifically
associated with IR, low-grade inflammation and CVD risk factors belonging to the MS. To accomplish the
aim, we scored the CVD risk based on the distribution of metabolic variables belonging to the syndrome,
WBCs and values of homeostatic assessment model algorithm of insulin resistance (HOMA-IR) in the
studied population. Hence, we investigated the fecal microbiota profiles in relation to these features.

Methods

Subject recruitment

One hundred and twenty children and adolescents were consecutively enrolled among those referred for
overweight or obesity by general paediatricians to the Unit for Multifactorial Diseases and Complex
Phenotypes at the "Bambino Gesu" Hospital (OPBG) between October 2013 and December 2015. Patients
were invited to participate to the MD-PAEDIGREE study (Model-Driven European Paediatric Digital
Repository; http://www.md-paedigree.eu; 7th Framework Programme EU GA no 600932). Primary aim of
the study was deep phenotyping of young patients with obesity in order to provide medical professionals
decision support wherever they treat young patients with obesity. As ancillary analysis, a cross-sectional
association between fecal microbiota profiles and CVD risk factors was investigated in 68 patients from
the MD-PAEDIGREE study population.

Inclusion criteria were age ranging from 9 to 18 years; overweight or obesity; no previous treatment for
obesity; no systemic and endocrine disease; no use of medication, alcohol or recreational drug.

The study was approved by the OPBG ethical committee (protocol #615/2013) and was conducted in
accordance with the Principles of Good Clinical Practice and the Declaration of Helsinki. Written informed
consent was obtained from all participants.

Body weight and height, were measured according to standardized procedures. The BMI was calculated
as weight (kilograms) divided by height (meters) squared. Classifications of normal weight, overweight,
and obesity were defined according to the International Obesity Task Force criteria [11]. Systolic (SBP)
and diastolic blood pressure (DBP) were measured on the right arm with the participant seated using an
automated oscillatory system and appropriately sized arm cuffs (Dinamap; Criticon Inc) [12]. The mean
of 3 BP measurements was used.
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A standard oral glucose tolerance test (1.75 g of glucose per kilogram of body weight up to a maximum
of 75 g) was performed with measurements of fasting and 2 hour plasma glucose (2HPG).

Additionally, 38 healthy children and adolescents (CTRLs) were recruited between July and December
2013 among the research staff offspring who had participated in the six month before (January to June
2013) to the “Bambino Gesu study: Profiling the genetic risk of complex diseases in the Italian
population”. The primary aim of the study was to dissect the genetic architecture of glucose homeostasis
in the Italian children and adolescents. At the time of the Bambino study, BR, lipid profile, liver function
tests, WBCs, high sensitivity reactive C protein, fasting glucose and insulin were all tested in the study
participants [13]. Those participants, who were offspring of the research staff, were recalled having
normal BMI, BP values and laboratory parameters, and asked to provide stool samples between July and
December. Blood tests were not repeated since normal at the previous visit while anthropometrics and
blood pressure values were annotated.

Laboratory Evaluation

Fasting plasma and serum were collected by centrifugation at 3000 rpm for 15 min. Glucose was
measured by the glucose oxidase technique (Cobas Integra; Roche); insulin and C-peptide by
chemiluminometric immunoassays (DiaSorin Liaison Analyzer, DiaSorin, Saluggia, ltaly); triglycerides,
total and HDL-cholesterol, levels using colorimetric kits (modular systems P/S Can 433; Roche/Hitachi);
alanine aminotransferase (ALT), aspartate aminotransferase (ASP), y-glutamyltransferase (y-GT) using a
radioimmunoassay method (ADVIA 1650; Bayer Diagnostics). Hemoglobin A1c (HbA1c) was measured
by high-performance liquid chromatography with the use of a fully automated glycated hemoglobin
analyzer system (Hitachi L-9100, Hitachi-Merck, Rahway, NJ). WBCs were counted by an automated
blood cell counter (Cell-Dyn 3500; Abbott Core Laboratories, Abbott Park, IL).

Metabolic syndrome risk score

For the computation of the MS risk score, we considered as low HDL-C cholesterol an HDL value < 10th
percentile, and as high fasting glucose, triglycerides, and blood pressure (either systolic or diastolic)
values = 90th percentile for age and sex in the studied population. A MS score was computed as
described elsewhere [14, 15] as the sum of the above metabolic abnormalities (0 if absent, 1 present).
Therefore, the total metabolic score could range from 0 to 5. The study population was then stratified
according to the MS score; patients with score 0 were considered at low risk, those having 1 or 2 risk
factors at medium risk and those with = 3 risk factors as at high risk.

The HOMA-IR was calculated using the mean of 3 fasting glucose and insulin values using the HOMA
calculator provided by the University of Oxford [16] (https://www.dtu.ox.ac.uk/homacalculator/). IR was
defined based on the median distribution of the HOMA-IR index in the population. IR patients were those
with HOMA-IR= 3.7.

Severe obesity was defined as a BMI Z-score = 2 SDS.
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Patients were defined at risk of low-grade inflammation when the WBC count was = 7.0 103/pL, the
median value in the population, and at low risk when the WBC count was below [17]. Impaired glucose
tolerance (IGT) was defined as 2HPG = 140 mg/dI.

Stool collection and DNA extraction

Fresh stool samples were collected by the participants at home and were immediately frozen in their
home freezer (approx. -20 °C). Frozen samples were transported in a refrigerated box to the Biobanking
and BioMolecular Resources Research Infrastructure_Microbiome Biobank at the OPBG Human
Microbiome Unit and stored at -80 °C, until DNA extraction.

Total fecal genomic DNA was extracted from 200 mg using QlAamp Fast DNA stool Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The V1-V3 regions of the 16S ribosomal
RNA (rRNA) gene were amplified by PCR. The amplicons (520 bp) were sequenced on a 454-Junior
Genome Sequencer (Roche 454 Life Sciences, Branford, USA), according to the pipeline described in Del
Chierico et al., 2017 [18]. Primers (FW: 5-GAGTTTGATCNTGGCTCAG-3; RV 5-GTNTTACNGCGGCKGCTG-
3') were barcoded by 8 unique nucleotide sequences (Roche 454 Life Sciences, Branford, USA). The
polymerase chain reactions were performed using a Hi-Fi PCR Taq polymerase (FastStart™ High Fidelity
PCR System, dNTPack, Roche Diagnostics, Mannheim, Germany) [18].

Sequencing reads and the associated metadata are available at BioProject database of NCBI
(PRJNA356507 and PRINA280490) (https://www.ncbi.nlm.nih.gov/bioproject/).
Microbiota Biocomputational and statistical analyses

Quantitative Insights Into Microbial Ecology (QIIME) suite of tools, v1.8 [19] was used for analyzing raw
reads and quality filtering, read length and chimera presence were included. High-quality sequences were
clustered into Operational Taxonomic Units (OTUs) at 97% threshold. Representative OTU sequences
were aligned using the PyNAST algorithm v.0.1 [20] against the Greengenes 13_08 database with a 97%
similarity for bacterial sequences, and a taxonomic tree was constructed via the NAST (Nearest
Alignment Space Termination) algorithm [21]. The relative abundance of taxa was computed using QIIME
pipeline, v1.8. The a- and B-diversity, B-diversity PERMANOVA, a-diversity Monte Carlo analysis were
carried out by QIIME software.

Shapiro-Wilk test was applied to test distribution of the clinical features. Statistical descriptive tests,
Mann-Whitney U test and Spearman’s coefficient analysis were performed by SPSS software v. 20 (IBM).

Linear discriminant analysis effect size (LEfSe) analysis was used to identify microbiota biomarkers.
This analysis couples Kruskall-Wallis test for all metagenomic variables; Wilcoxon test and Linear
Discriminant Analysis (LDA) model. The analysis was performed with a value equal to 0.05 and
logarithmic LDA score threshold of 2.0 [22].

Results
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This study included 68 children and adolescents with obesity aged 9 to 18 years-old (44 males, 64.7%)
and 38 normal-weight healthy subjects aged 9 to 16 years-old (15 males, 39.5%).

The median values of the clinical and anthropometric features are reported in Table 1.
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Table 1
Median values and interquartile range (IQR) of anthropometric and clinical characteristics of the

population’.

CTRL features Median 25th 75th IQR
Age (years) 11.0 10.0 13.0 3.0
Weight (kg) 38.5 33.5 42.8 9.2
Height (m) 142.3 138.1 146.5 8.4
BMI (kg/m?) 18.7 17.6 19.6 2
BMI Z score (SDS) 0.4 0.1 0.5 0.4
obese features Median 25th 75th IQR
Age (years) 14.0 13.0 15.3 2.3
Weight (kg) 81.5 70.1 89.8 19.6
Height (m) 162.0 156.0 167.9 11.9
BMI (kg/m?) 30.4 27.7 33.4 5.7
BMI Z score (SDS) 2.0 1.8 2.3 0.5
SBP (mmHg) 113.5 108.0 123.0 15.0
DBP (mmHg) 66.0 60.8 70.0 9.3
Fasting glucose (mg/dl) 84.0 79.0 90.0 11.0
2HPG (mg/dl) 103.0 91.0 115.0 24.0
Fasting insulin (mIU/mL) 18.0 13.6 24.8 11.2
HbA1c (mmol/mol) 34.0 32.0 35.3 3.3
Peptide C (ng/ml) 2.0 1.5 2.4 0.9
Total Cholesterol (mg/dl) 147.5 132.8 169.3 36.5
HDL-C (mg/dl) 43.0 37.0 47.3 10.3
Triglycerides (mg/dl) 89.0 59.3 120.3 61.0
ALT (IU/L) 24.5 18.0 29.0 11.0
AST (IU/L) 23.5 19.8 31.3 11.5

1Abbreviations: BMI, body mass index; SDS, standard deviation score; SBP, systolic blood pressures;
DBP diastolic blood pressures; 2HPG, 2 hour plasma glucose; HbA1c, Hemoglobin A1c; ALT, alanine
aminotransferase; AST, aspartate aminotransferase, y-GT, y-glutamyl transferase; WBC count, white
bLoc|>d cell i:ount; HOMA-IR, homeostasis model assessment; HDL-C, low high density lipoprotein-
cholesterol.
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CTRL features Median 25th 75th IQR

y-GT (IU/L) 15.0 12.0 21.3 9.3
WBCs (1 03/}JL) 7.0 6.0 7.9 1.9
HOMA-IR 3.7 2.8 49 2.1

1Abbreviations: BMI, body mass index; SDS, standard deviation score; SBP, systolic blood pressures;
DBP diastolic blood pressures; 2HPG, 2 hour plasma glucose; HbA1c, Hemoglobin A1c; ALT, alanine
aminotransferase; AST, aspartate aminotransferase, y-GT, y-glutamyl transferase; WBC count, white
bLoc:d cell fount; HOMA-IR, homeostasis model assessment; HDL-C, low high density lipoprotein-
cholesterol.

Table 2 shows the distribution of parameters used for computing the MS risk score; Table 3 reports
combination of metabolic abnormalities included in the MS score and prevalence of other CVD risk
factors.

Table 2
Distribution of metabolic abnormalities within the metabolic syndrome and number of cases’.
Clinical parameters Median Min Max Percentiles Cases N (%)
value value value
10th  90th <10th = 90th
Triglycerides (mg/dl)  89.0 23 224 450 1554 - 7
(10.3%)
Fasting glucose 84. 62 102 69.9 96.1 - 7
(mg/ ds (10.3%)
HDL-C (mg/dl) 43.0 27 74 340 551 8
(11.8%)
SBP (mmHg) 113.5 96 152 102  130.1 8
(11.8%)
DBP (mmHg) 66.0 36 88 52.7 76.1 8
(11.8%)

1Abbreviations: SBP s?/stolic blood pressures; DBP, diastolic blood pressures; HDL-C, low high density
lipoprotein-cholesterol.
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Table 3
Metabolic syndrome risk scores and other risk factor threshold registered in the study group’

CVD risk factors Cases N (%)
MS score Low (0 abnormality) 15 (22)

Medium (1-2 abnormalities) 39 (57.3%)

High (3-5 abnormalities) 14 (20.6%)
Insulin resistance HOMA-IR = 3.7 34 (50.0%)
High WBCs WBCs = 7.0 x 10%/pL 34 (50.0%)
Severe obesity BMI z-score = 2 35(51.4%)
IGT 2HPG = 140 mg/dl 5(7.3%)
1CVD, cardio-vascular disease; HOMA-R, homeostatic assessment model algorithm—insulin
resistance (median value); 2HPG, 2 hour plasma glucose; WBCs, white blood cells (median value);
BMI, body mass index (median value); IGT, impaired glucose tolerance [45].

Fecal microbiota profiles of obese and CTRL subjects

To exclude gender and age-related differences in fecal microbiota between CTRL subjects and
participants with obesity, we compared fecal microbiota features of male and female participants aged
below and above the median population age (13 years). Microbiota profiled were not different, proving
that microbiota profiles were independent of age and gender (Table S1). Then, we performed an
ecological analysis (Chao1 and observed species indexes) to assess the overall differences in the
microbial community structures between patients with obesity and CTRLs. The Chao1 index gives more
weight to the less abundant species (rare species), while the observed species index is the count of the
unique OTUs found in each sample (Figure S1). For both, we found no statistically signifcant significance
between CTRLs and participants with obesity.

Principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances was
performed to uncover differences in the structure of fecal microbiota across all the samples. This method
is based on the phylogenetic distance of OTUs weighted or unweighted for OTUs relative abundance.

The analysis revealed a high distance between patients with obesity and CTRLs. Findings were confirmed
by the succeeding PERMANOVA analysis (weighted p = 0.002; unweighted p = 0.0001) (Figure S2).

To identify the specific bacterial taxa associated with obesity, we compared the colonic microbiota of
patients with obesity and CTRLs using LEfSe analysis (Figure S3). We found 6 OTUs abundant in
patients with obesity, Clostridiaceae, Dorea, Streptococcus, Blautia, Erysipelotrichaceae and
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Lachnospiraceae; and 7 OTUs in the CTRLs, Rikenellaceae, Bacteroides, Barnesiellaceae, Oscillospira,
Bacteroides ovatus, Parabacteroides and Bacteroidaceae.
Metabolic abnormalities and fecal microbiota profiles in patients with obesity

The ecological analysis showed statistically significant differences in fecal microbiota richness of
patients with IR (patients with HOMA-IR = 3.7 versus those with HOMA-IR<3.7; p=0.015; Fig. 1A; p =
0.014 Fig. 1B) and high diastolic blood pressure (DBP) (patients with DBP = 90th versus those with DBP
< 90th percentile; p = 0.007, Fig. 1C; p = 0.042, Fig. 1D). No difference was found in association with other
metabolic abnormalities.

The B-diversity analysis discriminated patients with severe obesity from those with non-severe obesity
(unweighted p = 0.003; weighted p = 0.029); patients with high versus low HDL-C (weighted p =0.013) and
with MS risk score from low to high (unweighted p = 0.049) (Fig. 2, Panels A and B).

The patients’ bacterial communities were analyzed in relation to any metabolic abnormality (Fig. 3). As
reported in Fig. 3, Clostridium was significantly higher in patients with values of DBP >90th.
Bacteroidaceae was enriched in patients with SBP values < 90th and Clostridiaceae in patients with SBP
values = 90th. Lachnospiraceae, Gemellaceae and Turicibacter were associated to low HDL-C values,
while Bacteroides uniformisto high HDL-C values. Parabacteroides and Bacteroides caccae were high in
patients with low fasting glucose. Faecalibacterium prausnitzii was associated to low values of
triglycerides.

Moreover, we evaluated the impact of MS risk scores and other risk factors on the fecal microbiota
profiles of patients with obesity. Patients with high MS score were associated to high abundance of
Coriobacteriaceae, while low MS score with high abundance of Oscillospira and Parabacterodes
distasonis. Coprococcus and Haemophilus parainfluenzae were abundant in patients with HOMA-IR< 3.7.
High WBC count was related to the increased presence of Bacteroides caccae and Gemellaceae, while low
WBCs to that of Mogibacteriaceae.

Having a BMI Z-score = 2 was associated to high levels of Lachnospiraceae while BMI Z-score< 2 to
overrepresentation of Bacteroides and Bacteroidaceae. In patients with IGT, there were increased levels of
Bacteroides ovatus and Enterobacteriaceae, while in patients with normal glucose tolerance (NGT) of
Clostridium and Ruminococcaceae.

Correlation analysis between metabolic abnormalities and microbiota OTUs

We found significant correlations between BMI Z-score and OTUs, i.e. Actinobacteria (p = 0.39; p value =
0.001), Lachnospiraceae (p = 0.30; p value = 0.013), Granulicatella (p = 0.33; p value = 0.006),
Bacteroidetes (p=-0.38; p value = 0.001), Bacteroidaceae (p=-0.30; p value = 0.011), and Odoribacter
(p=-0.32; p value = 0.007). Significant correlations were also found between WBCs and Gemellaceae (p =
0.34; p value=0.001); DBP and Dialister (p = 0.30; p value = 0.013); HDL-C and Clostridium (p = 0.34; p
value =0.024), Turicibacter (p=-0.30; p value = 0.012) and Gemellaceae (p=-0.40; p value = 0.001); HOMA-

Page 10/22



IR and Clostridiaceae (p=-0.30; p value=0.011), Coprococcus (p=-0.33; p value = 0.006) and Haemophilus
parainfluenzae (p=-0.37; p value = 0.002); IGT and Clostridium (p=-0.35; p value =0.001) (Figure S4).

Discussion

This is the first investigation on fecal microbiota profiles that are specifically associated with cardio-
metabolic abnormalities belonging to MS, IR and low-grade inflammation in patients with obesity. On the
other hand, we confirmed differences in fecal bacterial richness and composition between young
individuals with obesity and healthy age-matched normal-weight subjects. Indeed, we found increased
representation of some microbial markers, i.e. Streptococcus and Lachnospiraceae, and reduced one of
some others, i.e. Bacteroides spp., Barnesiellaceae and Oscillospira in the group of individuals with
obesity as compared to controls [23].

With regard to signatures that were specific of each metabolic abnormality, we found a reduced bacterial
richness, that is characteristic of many inflammatory conditions [24, 25], prevalently in patients with more
severe IR but also higher DBP suggesting that the close pathogenic link between IR and hypertension can
be mediated by the gut microbiota dysbiosis and passes through a condition of enhanced inflammation
[5, 26, 27].

We found some microbial taxa that inhabit the gut ecosystem with low abundance (i.e. the Gemellaceae)
to be associated with metabolic abnormalities. In general, few microbial taxa dominate almost all types
of human-associated samples, while the majority of them are present in low abundance and represent a
kind of “rare biosphere” [28]. Nevertheless, in our sample rare taxa seemed to contribute significantly to
the diversity of the host’s microbiome and hence to the health to disease balance.

We found significant associations of microbial taxa with metabolic abnormalities. In brief, we found an
increase of Clostridiaceae and Clostridium in patients with high blood pressure as already seen in the
CARDIA (Coronary Artery Risk Development in Young Adults) study [26]. Nonetheless, in our series,
Clostridium was more abundant also in NGT patients as compared with those with IGT, suggesting a not
clear role in the obesity context.

We found also an over representation of Lachnospiraceae, Gemellaceae and Turicibacterin patients with
low-levels of HDL-C. A previous study in individuals either with normal or high cholesterol found a
statistically significant correlation between Turicibacter and low levels of HDL-C [29]. Gemellaceae were
also associated with high count of WBCs. The Gemellaceae family is present in the gut microbiota with a
low relative abundance in different disease conditions characterized by an inflammatory status [30, 31].

The increased representation of Lachnospiraceae in patients with low-levels of HDL-C and severe obesity
confirmed the close connection of this taxa with severe obesity and altered lipid metabolism [32].

Parabacteroides and Bacteroides caccae were highly represented in patients with low levels of fasting
glucose. The treatment of obese high-fat diet (HFD)-fed mice with P distasonis was effective to reduce
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weight gain, hyperglycemia, and hepatic steatosis in the animals owing likely to the dramatically altered
bile acid profile and increased gut levels of succinate [33]. As to the B. caccae, it seems playing a
dualistic role in the gut being a beneficial inhabitant or an opportunistic pathogen. Indeed, it was found in
the gut microbiota of normal weight adolescents [23] as well as in patients with inflammation as
appraised by high WBC count [34, 35].

Furthermore, the P, distasonis together with the Oscillospira was associated with a low MS risk score,
suggesting the former may serve as marker of a relatively healthy metabolic profile of obesity.
Oscillospira has also been related to a healthy metabolic profile consisting of high HDL-cholesterol and
low systolic and diastolic blood pressure, fasting glucose and triglycerides in large cohort study [36].

On the contrary, the Coriobacteriaceae were associated with a high risk score for the metabolic syndrome.
In a murine model of streptozocin-induced diabetes, a study demonstrated a beneficial effect of
Coriobacteriaceae in the amelioration of the glucose metabolism following the Roux-en-Y gastric bypass.
[37].

Coprococcus and H. parainfluenzae were more abundant in patients with low IR. In literature, it has been
reported that representation of both bacteria is associated with the amelioration of the IR in HFD-high
sucrose mice [38] and the glucose tolerance status in humans [39].

There was also an abundance of Bacteroides ovatus and Enterobacteriaceae in children with IGT. The
Enterobacteriaceae is a family belonging to the phylum Proteobacteria that has been found over
represented, with an undoubted causative role, in patients T2D [40, 41]. Its abundance seems depending
on the diet. Indeed, Proteobacteria were found increased in European children who consumed a calorie-
dense, high-fat, low-fiber diet as compared with children from Burkina Faso who were low-fat, high-fiber
consumers [42]. Furthermore, the representation of a specific Proteobacteria, the Betaproteobacteria, was
found positively correlated with plasma glucose levels in adults with different degree of glucose tolerance
[40].

In our series, low levels of triglycerides were associated to the presence of F. prausnitziithat is regarded
as marker of a healthy gut. A study on HFD fed mice demonstrated the significant reduction of
triglycerides in mice following the oral administration of F. prausnitzii [43].

We are aware of bias in the present investigation: small-size and metabolic heterogeneous sample of
patients with obesity and normal-weight controls; cross-sectional design; no use of gold standard
techniques to estimate IR; no estimation of microbiome metabolites that are known to cause
inflammation, IR and CVD.

Nonetheless, the present study can be deemed as a pilot methodological investigation to open the way at
the identification of specific fecal microbiota signatures of metabolic abnormalities even in the
population of adolescents in which the diagnosis of MS is not univocally recognized. Indeed, in keeping
with the recommendations of the European Childhood Obesity working group on MS [44], we categorized
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our patients on percentile distributions of metabolic abnormalities. Drawbacks of this study could be
overcome by a multi-center cohort investigation with characterization of host inflammation and host and
microbiome metabolites.

In conclusion, in young individuals with obesity, we observed reduced heterogeneity in groups with higher
propensity to the metabolic syndrome and pro-inflammatory conditions. We also identified single fecal
taxa, in some cases rare taxa, that were relatively over abundant in relation to a specific metabolic
abnormality, i.e. impaired glucose tolerance or high white blood cell count. On top, findings hint that
microbiota signatures can be informative on the risk of incident metabolic syndrome.

Finally, our study provided insight to dissect phenotype heterogeneity of a complex disease and this
methodological approach might be replicated in other multifactorial heterogeneous conditions, i.e. the
autism spectrum disorder, in which microbiota plays a pivotal role.
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Boxplots representing a-diversity indices. Panel A and B represent the Chao1 and Observed species
indexes for samples stratified for Homeostasis Model Assessment Algorithm of Insulin Resistance
(HOMA-IR) =3.7 and HOMA-IR<3.7. Panel C and D represent the Chao1 and Observed species indexes for
samples stratified for Diastolic Blood Pressure (DBP) values =90th and DPB<90th. The interquartile
range is represented by the box and the line in the box is the median. The whiskers indicate the largest
and the lowest data points, respectively, while the dots symbolize outliers.
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Figure 2

Principal component analysis plot (PCA) of the bacterial communities using UniFrac algorithm. Axes
represent the first 2 components from principal coordinate (PCo) analysis based on the phylogenetic
distance between Operational Taxonomic Units (OTU) representative sequences. Panel A, UniFrac
weighted PCoA plots of High Density Lipoprotein (HDL-C) and Body Mass Index (BMI) Z-score groups.
SDS, standard deviation score. Panel B, unweighted UniFrac PCoA plots of Metabolic Syndrome (MS)
score and BMI Z-score groups.
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Figure 3

Linear discriminative analysis (LDA) effect size (LEfSe) analysis in relation to each metabolic
abnormality. Analysis was performed grouping patients on the bases of 90th percentile distribution for
diastolic blood pressure (DBP), systolic blood pressure (DBP), fasting glucose, and triglycerides and of
10th for high density lipoprotein cholesterol (HDL-C).
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Figure 4

Linear discriminative analysis (LDA) effect size (LEfSe) analysis in relation to metabolic syndrome risk
scores and other risk factors. Analysis was performed grouping patients as reported in Table 3.
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