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Abstract
The recognition of different classifications of brain irregular tissues is an incredible test in robot-helped
Minimally Invasive Surgery (MIS) that includes connection with the tissues. In this paper, an optical
sensor was designed in order to assess the Refractive Index (RI) of various brain tissues while the robotic
surgery is performed. This research work is based on the 2-Dimensional (2D) Photonic Crystal (PC) bio-
sensor powered by electromagnetic radiation. It reaches the range from UV to IR and is deeply intended to
profoundly touch the changes in the refractive index of different tissues. Due to the fact that the
refractive index of the abnormal tissues is very different from the normal tissues, the sensor can easily be
distinguished the tumors, cancer-infected brain tissues, and normal brain tissues. As a result, the sensor
exhibits a different range of frequency, wavelength and amplitude spectra which respond to the small
changes that occur in the refractive index of the brain tissue.

1. Introduction
Research on abnormal brain tissue is very essential and challenging today because it can cause serious
human health issues. Although there are many surgical techniques for brain surgery, Minimally Invasive
Surgery (MIS) surgical techniques have been used for research work because of their unique features and
the most feasible one. One of the most notable recent surgical techniques is MIS, which is used do the
surgery the internal organs of the human body with minimal damage. The endoscopic camera and
surgical instruments are inserted into the human body either by natural orifices or by Punctures which
were designed by the surgeon.

The interior organs picture and the total function of the human body can be viewed on the screen by
means of the camera. The specialist surgeon needs to understand the tissue characteristics by the
feeling in that way the construction are implanted. The presence of vessels and channels which are by
and large canvassed in connective tissue ought to be felt rather than seen to avoid hurt. In general, the
channel and vessel are in the connective tissue should avoid harm to them. The sensation of touch is a
crucial portion of our perspective on the world. Present endoscopic grasper have a rigid tooth grasper for
grasping slippery tissues if the grasper equipped with a sensor, then tactile information can be displayed
to the surgeon.

If the current endoscopic grasper is designed with the use of a sensor to analyze the slippery tissues, then
the information about the tactile can be easily informed to the surgeon. Brain tumors are one of the
pediatric cancer disease (15–20%) and cause serious death related to cancer diseases between the age
of 15 to 29 years [1, 2].Minimally Invasive Endoscopic Intra ventricular (MIES) surgery is one of the robot-
assisted surgical techniques and uses a trocar that can enter the skull through a very tiny incision. This
methodology result shows that there is a significant improvement in the patient health with a slighter
recuperating time period and more limited emergency clinics remain because of the little size of entry
points.
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Many examination endeavors have zeroed in on plans and improvements in regards to these careful
robots, especially in these type of concentric cylinder controllers, a mix of nitinol (nickel-titanium) pre-
curved flexible cylinders that can be broadened, shrank, and turned regarding one another, permitting the
tip to explore too little and almost distant careful destinations [3, 4]. Utilizing this stage, little careful
devices with end effectors, for example, a scissor, and grasper or camera that can be planned and
measure up to the size of 2 mm and at the same time maintain their smoothness and power needed to
remove brain tumors excluding skull open medical procedure [5].

Notwithstanding its mechanical advancement and advantages, there are exceptionally restricted haptics
in particular material and sensation data being gotten by the specialists because of the controller of the
automated frameworks. The trocar influence and the concentric cylinder framework occur a power
applied to the device handle is not accurately meant for the instrument shaft and tip, where apparatus
tissue connections happen [6]. This decreased reasonable power sensation which may miss the
command over the tissue, due to this unexpected sudden injury and slippage is likely to occur. Thus,
power criticism is needed to give instrument-tissue communication data to the specialists and to
guarantee wellbeing and compelling activity.

In recent neurosurgeries, sources were applied in the careful instrument to the cerebrum tissue which was
normally placed beneath in range of the hundred-factory Newton. For wound cuts, the middle power is
around 10 mN to 50 mN, paying little heed to the brain area being controlled [7]. In addition, the middle
power needed to withdraw a specific segment of the cerebrum is around 80 mN, which is lesser than the
hundred-plant Newton scope induce an iatrogenic physical issue in intraventricular neurosurgeries [7].
Consequently, the tactile sensor along with high sensitivity along with few loads with the operation of the
force feedback system significantly reduced the iatrogenic injuries. There are some high-goal, little, and
adaptable material sensors that can practically the entirety of the transduction modes: piezoelectric,
optical, inductive, capacitive, and piezoresistive [8].

Pyo et al studied The Carbon- NanoTube (CNT) using the PDMS composite along with four sensing
elements to absorb the normal and shear forces performances. This type of sensor is able to sense the
low range of force up to 500mN with higher repeatability of 2.0% deviation [9]. Schwartz et al. proposed
the integrated micro structured PDMS dielectric with poly isoindigo bithiophene-siloxane semiconductor
to design a capacitor sensor with a remarkable fast sensing response time of < 10ms, stability > 15,000
cycles, and pressure of 8.2 kPa [10]. Numerous test methods on different low power range material and
weight sensors, a few of which attract attention to their application, especially in their endoscopic
medical field. [11, 12]. Generally, Fiber Bragg Grating (FBG) sensors have been actualized to careful
grasper and cardiovascular catheter plans to lead multi-directional power estimations [13, 14].

Li et al. proposed a miniature knock molded piezoelectric PVDF TrFE film for dynamic power detecting
spiral catheter structure [15]. Arabagi et al.[16] reported the pressure detecting sensor with endoscopic
6.5-mm through cortical using piezoresistive PDMS-based eutectic gallium-indium (eGaIn) for trans
cortical depression test. Kim et al. designed a capacitive based sensor with minimal cautious gripper for
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typically low and shear force estimations [17–19]. In addition, Naidu et al.[20] comparatively studied both
piezoresistive and capacitive weight sensors to monitor the palpation and to distinguish the tumor
tissues. However, most of these optical, piezoelectric, piezoresistive, capacitive power sensors & power
detecting resistor intended for endoscopic applications are bulky and defenseless to bowing,
misalignment, and static detecting [21, 23].

In this research another detecting technique is proposed. This strategy utilizes the RI changes in 2D
photonic precious stone detecting standard for separate the typical anomalous tissues in brain during a
medical procedure. Ordinary and anomalous tissues in brain have distinctive refractive records. This
sensor absolutely follows photonic crystal structures and standards. Tissues could be characterized
optically.

2. Photonic Crystal Sensor
Developing interests have appeared over the most recent couple of years in the plan and enhancement of
photonic crystal-based segments, for example, waveguides, lasers, splitters, strands. Photonic crystals
have optical materials properties and are subject to changes in their refractive index periodically. In
addition, the propagation of electromagnetic waves is prohibited for a particular frequency range and
gives a promising device to control the progression of light in incorporated optical equipment. It also
depends on the wavelength when the photons propagate either through the structure or not. The photonic
crystals exhibit properties and are named as Photonic Band Gap (PBG). It also refused the propagation of
light within the range of frequency. Increases the effective optical path and enhances the interaction
between the gas and light-medium by using the photonic crystal during the slow-light regime. The use of
photonic crystals for the design of biosensors in a variety of ways and use in medical applications is one
of the most sought after in today's era.

There are few numerous strategies, such as the Transfer Matrix Method (TMM) [24], Finite Element
Method (FEM) [25], Finite-Difference Time-Domain (FDTD) Method [26], and Plane Wave Expansion
(PWE) method [27] are easily accessible to investigate the transmission spectra and dispersion behavior
of PCs. Every method has a few unique advantages and disadvantages. Here are a few methods such as
PWE and FDTD that are dominant according to their effectiveness; they are at the forefront of fulfilling
the demands of PC-based devices.

In general, the theoretical analysis of PC structures was carried out initially by using the PWE method and
indeed that the Eigen-modes within periodic structures reveal a superposition of a group of plane waves.
Similarly, another method of approach is using numerical solutions of Maxwell’s equations to estimate
both field distribution and transmission spectra through Finite-Difference Time-Domain (FDTD) method.
In this research work, the propagation modes and band gap of the Photonic crystal structure were
calculated by using the PWE methods, and however, the spectrum of power transmission was measured
using the 2DFDTD methods [28]. Subsequently, the certain frequencies of electromagnetic waves during
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the transmission are prohibited and few ranges of wavelengths also restricted during the propagation of
light [29]. Here, the defect mechanism concept was used to manipulate the light propagation.

The ring resonator is used to improve the sensitivity of photonic crystals and in addition to that the line
defects in the resonator act as a waveguide. Moreover, the resonant wavelength and the output power of
the ring resonator can be changed based on the variation of the refractive index. By using Maxwell’s
electromagnetic Eq. (1), it is easy to prove that PC's functions are almost similar to the sensor [30–33].

Where C is the speed of light, ∈ is the permittivity, and H is the magnetic field and ω is the frequency of
resonance. It is noted that the frequency varies whenever there is a change in the dielectric function. The
analysis of the sensitivity performance of the structure is given by Eq. (2)

Where Leff is named as effective interaction length, Q is the ring resonator quality factor, λ is the
wavelength of the ring resonator, and n is the refractive index.

3. Materials And Methods
The most important consideration in the biomedical diagnosis is the refractive index (RI). It was found
that the refractive index values of various benign and malignant tumors together with metastasis
determined by an Abbe refractometer in the laboratory (34). They are different and depend on the
percentage of water and protein/phospholipids. In general, resonances are normally more sensitive when
certain changes occur.
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Table 1
List of refractive index (RI) of the different brain tissues.

Tissues Refractive index

Normal tissues Gray matter 1.3951

White matter 1.4121

Cerebrospinal fluid 1.3333

Abnormal tissues Lesions

( injured tissues)

Wall of solid brain 1.3412

Multi sclerosis 1.3425

Oligodendroglioma 1.3531

Tumors & Cancers Low grade glioma 1.4320

Medulloblastoma 1.4412

Glioblastoma 1.4470

Lymphoma 1.4591

Metastasis 1.4833

Precise and quantitative amounts of water and solid contents like protein and phospholipids of a brain
lesion can only be separated by using T1 or T2 relaxation time (35–39).The information about the
refractive index of the normal and abnormal tissues is given in the Table1. Here, Abbe refractometer is
used to determine the refractive index value of the biopsy tissues and homogenates.

4. Sensor Design
The figure shows that the biosensor which is based on Photonic crystal design consists of the hexagonal
array of a circular rod placed in a background of air (RI = 1). In X and Z directions the number of rods in
the hexagonal lattice is 30 and 33, respectively. The rod in the hexagonal lattice has a radius of 110 nm
and subsequently, the distance between the two which was placed adjacent is 540 nm and named as a
lattice constant which is denoted by a letter “a”. The circular structure of the silicon rod has a dielectric
constant of 11.97 (refractive index n = 3.46).

The two hexagonal ring resonators of the sensor placed in this design and each of the rod radius are 110
nm. The radius of six rods, which are placed around the middle rod is 55nm. The radius of black
encircling rod is 33.67nm.The biosensor has two ports as input and output ports, where ports are used at
different wavelengths to analyze and propagate the optical signals. Figure 1 shows the schematic
diagram of the biosensor with a hexagonal ring resonator used to identify the abnormal tissues.

The Photonic Band Gap (PBG) has significant focus recently due to its ability to control electromagnetic
waves in three different directions. Here, the PBG is identified by using the plane wave expansion
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technique. Figure 2 shows the band diagram of the PBG with dimension of 30x33 hexagonal lattices
without defects.

The PC Structure has the normalized frequency is expressed as

Where, a is the lattice constant of the crystal, ω is the angular frequency of the PC, c is the velocity of
light in free space, and λ is the wavelength. The PBG in two TE modes at different wavelengths in the
band diagram was in the range of 1224 nm to 1985 nm and 912 nm to 972 nm. The window of PBG
ranging from 1224nm to 1985nm is most relevant and this effort counts with it.

Figure 2 also illustrated the proposed band diagram of a 30x33 hexagonal ring resonator after revealed
the point defects as well as line defects. The obtained guided mode diagram clearly shows due to the
incorporation of an elliptical shape ring resonator in the periodic structure, there is a propagation mode in
the PBG region. Here, designed sensor with the line and point defects used to perform the analysis of the
abnormal tissue. The 3D view of the hexagonal structure bio sensor is shown in Fig. 3. The size of the
hexagonal structure biosensor is 16.2µm × 15.4 µm.

5. Results And Discussion
As the light signal passes through the elliptical shape of the resonator and propagates into the
waveguide then the biosensor with a hexagonal ring resonator utilizes the power monitor at the output
port of the sensor in order to measure the output signal power. The output response obtained in this is
used to estimate the quality factor, resonant wavelength, and output power. Figure 4 clearly shows the
normalized output power transmission spectrum of the proposed bio-sensor. The obtained simulation
results show that the resonant wavelength of the proposed biosensor, output efficiency of the sensor, and
Q factor at normal condition is 1544 nm, 100%, and 454, respectively.

Figures 5(a) and 5(b) shows the distribution of electric field of biosensors during the ON /OFF condition
of resonance. When λ = 1544 nm then hexagonal ring resonator is ON, i.e. the input signal is associated
with the input waveguide to the hexagonal ring resonator which produces the output as a waveguide.
Similarly, the input signal is reflected back to the input source when the hexagonal ring resonator is in
OFF condition (λ = 1548nm). The change in the equivalent resonant wavelength and change in the
normalized transmission output power levels that occur in each brain tissue refractive index value which
is filled background of circular rods instead of air. In addition, each spectrum represents the
corresponding brain normal and abnormal tissues.

The resonant wavelength, refractive index, Q factor, and output efficiency for the corresponding brain
tissues are given in the Table 2. Here, Metastasis cancer tissue has a significantly higher refractive index
value than the other brain tissues as mentioned in the Table 2. The result obtained from the simulation
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analysis of biosensor using hexagonal ring resonator is significantly more sufficient for real-time
applications.

Table 2
Comparative various features of the various normal and abnormal brain tissues.

Name of the

Various brain
tissues

Refractive
index

Resonant wavelength
(nm)

Quality
factor

Output
efficiency

(%)

Gray matter 1.3951 1695 565 97.14

White matter 1.4121 1717 505 96.23

Cerebrospinal fluid 1.3333 1648 549 97.74

Wall of solid brain 1.3412 1656 502 99.61

Multi sclerosis 1.3425 1662 573 98.13

Oligodendroglioma 1.3531 1671 522 98.72

Low grade glioma 1.4320 1730 494 98.31

Medulloblastoma 1.4412 1743 562 96.37

Glioblastoma 1.4470 1762 452 99.82

Lymphoma 1.4591 1769 432 97.75

Metastasis 1.4833 1794 427 97.77

The few characteristics, names of the different brain tissues, and their normal values are clearly given in
Table 2. Brain tissues can be classified in any patient during MIS and do extensive research to diagnosis
their brain. Each characteristic of the brain tissues are identified and its value is compared with the given
Table 2. At last, the exact abnormal tissue location is identified more accurately within a minimal amount
of time. From the table, it can be seen that some of the tissues have a higher refractive index than the
others. This happens due to the fact that the different physical, chemical, and biological properties of the
normal and abnormal brain tissues.

Figure 6.Variation of resonant wavelength (nm) with respect to the refractive index of the brain tissues.

In order to evaluate the effectiveness of the results are compared the proposed works with the various
research works as shown in the figure.7

6. Conclusions
In this research work was carried out to investigate the sensing characteristics of the two dimensional
photonic crystal based biosensor. Here, the two-dimensional photonic crystals are used to design the
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biosensor along with the hexagonal lattice of the circular rods.. The biosensor operates within the range
of 1544 nm to 1800 nm wavelength which is useful in analyzing the Q factor, refractive index, and
biosensor output power. The brain tissues have some range of RI values and whether it is a normal or
abnormal tissue in the brain depending on the increments or diminished levels. By utilizing the planned
sensor, these tissues can be distinguished the tissues during MIS of brain. Subsequently, this work will be
extremely attractive for early diagnosis of brain tumors and cancer.
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Figure 1

Schematic diagram of the biosensor with a hexagonal ring resonator
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Figure 2

Band diagram for circular rods in 30 × 33 hexagonal lattice with line and point defects.

Figure 3
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Three dimensions of the biosensor with a hexagonal ring resonator.

Figure 4

Graph between Normalized Output power and wavelength for the proposed biosensor
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Figure 5

Wave propagation of the proposed bio sensor at (a) ON resonance (λ= 1544 nm) and (b) OFF resonance
(λ= 1548 nm).

Figure 6

Variation of resonant wavelength (nm) with respect to the refractive index of the brain tissues.
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Figure 7

Comparison of various research works with the proposed work.


