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ABSTRACT: The chaotic squeak and rattle (S&R) vibrations in mechanical systems were classified 9 

by deep learning. The rattle, single-mode, and multi-mode squeak models were constructed to 10 

generate chaotic S&R signals. The repetition of nonlinear signals generated by them was visualized 11 

using an unthresholded recurrence plot and learned using a convolutional neural network (CNN). 12 

The results showed that even if the signal of the S&R model is chaos, it could be classified. The 13 

accuracy of the classification was verified by calculating the Lyapunov exponent of the vibration 14 

signal. The numerical experiment confirmed that the CNN classification using nonlinear vibration 15 

images as the proposed procedure has more than 90% accuracy. The chaotic status and each model 16 

can be classified into six classes.  17 

keywords: Squeak; Rattle; Convolutional Neural Network; Lyapunov exponent; Chaos; 18 

Recurrence patterns 19 

1. Introduction 20 

Chaotic squeak and rattle (S&R) vibrations are a significant factor for evaluating the quality of 21 

automotive parts. Early S&R was detected with a find-and-fix approach by a subjective evaluation 22 

from engineers. Therefore, highly skilled experts are needed to detect S&R. In addition, the evaluation 23 

was made subjectively because of the differences in training and expertise and the use of different 24 

measurement tools. For this reason, an objective tool is needed for quantitative measurements. On the 25 

other hand, the S&R indices developed for such an evaluation must define the threshold value of the 26 

index, and the threshold value is based on a subjective evaluation [1-4]. In addition, S&R problems 27 

occurring in mechanical systems are challenging to analyze because they include extreme 28 

nonlinearities, such as impact and friction [5-9]. 29 

Squeak is a self-excited vibration caused by friction that frequently occurs in automobile brakes, 30 

artificial hip joints, and gear systems [8,10,11]. Many studies have examined the vibration instability 31 

caused by friction based on an analysis of brake squill noise. The method to solve these problems was 32 

studied mainly by analyzing the instability using vibration equations, including nonlinearity of 33 

friction and linear stability through the linearization of nonlinear terms. On the other hand, the 34 
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linearized approach can only be investigated near equilibrium. Kang [8] described complex models, 35 

such as instability caused by friction curves, modal coupling instability, gyroscopic, and friction 36 

damping occurring in automobile disc brake systems. They also analyzed the influence of squeal. 37 

Nam et al. [10] investigated the vibration instability in the lead screw system experimentally and 38 

analyzed the instability mechanism using the finite element method (FEM). Ouenzerfi et al. [11] 39 

examined the frictional instability occurring in an artificial hip joint and investigated the instability 40 

through a detailed FEM. In addition, the friction force is expressed as a function of the velocity in the 41 

dynamic instability of the friction-induced model. Higher-order nonlinear problems, such as chaos, 42 

were described because the model includes extreme nonlinearity in the creep section [12-16]. Kang [15] 43 

used a two-degree-of-freedom friction model to show the chaotic phenomenon is generated by self-44 

excited vibrations and investigated the parameters that create chaos.  45 

Rattle can cause chaos due to extreme discontinuity caused by the impact force, including 46 

vibrations due to the impact vibrations induced by the excitation. For this reason, the dynamics of 47 

impact motion have been studied extensively for a study of chaos. Serweta et al. [18, 19] examined the 48 

chaotic characteristics by calculating the Lyapunov exponent of an impact oscillator with symmetrical 49 

soft stops and rigid stop. Kang [20] analyzed the chaotic factors by calculating the Lyapunov 50 

exponent for the truncated number of modes of the impact beam under a distributed contact using 51 

the continuum beam model. 52 

In addition to the theoretical approach, the analysis of such a nonlinear vibration signal has been 53 

performed using a visualization method and a quantified index. A general signal analysis method 54 

takes an FFT in the time series and analyzes the dynamic characteristics in the frequency domain. 55 

Furthermore, dynamical characteristics were examined through the trajectory of the attractor in the 56 

phase space. As many studies on signal analysis have been carried out, signal visualization methods, 57 

such as Gauss wavelets [21, 22] and a recurrence plot (RP), have been developed. Marwan et al. [23] 58 

introduced various RP methods to visualize the dynamic characteristics in a complex system. RP is a 59 

power tool that visualizes and analyzes the recurrence characteristics of dynamic systems. In addition, 60 

recurrence can be visualized efficiently and developed formally using a matrix. The reciprocal of the 61 

longest diagonal of an RP is proportional to the largest Lyapunov exponent. This shows that RP can 62 

express both the recurrence and chaos characteristics well. An RP is represented on the reconstructed 63 

phase space that is determined using the time delay method [24-27]. Recurrence quantification 64 

analysis (RQA) can quantify the repetition characteristics through indices expressed as found in the 65 

recurrence rate (RR), the determinism (DET), and the average diagonal line length based on the RP. 66 

RQA is a good technique for quantifying recurrence properties, but the results are presented only in 67 

indices [23]. In addition, higher-order spectrum analysis (HOSA) and clustering techniques are used 68 

to analyze various methods, including high-dimensional nonlinearity [28].  69 

Dynamics problems involving extreme nonlinearities, such as S&R, can be accompanied by chaos. 70 

The most accurate way to determine chaos is the Lyapunov exponent. Wolf et al. described a method 71 

called the spectrum of the largest Lyapunov exponent. A calculation algorithm was also developed 72 

[17], and chaos could be determined by parameter analysis. On the other hand, this algorithm cannot 73 

be applied in nonlinear dynamical systems, including discontinuities, and can only be used in smooth 74 

dynamical systems. In contrast, Muller's algorithm can be applied to a non-smooth dynamical system 75 
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through an indicator function and transition condition [16]. Determining the chaos through the 76 

Lyapunov exponents is advantageous if the governing equation for the system is known or the 77 

available observations are very long [29]. 78 

Recently, with the rapid development of artificial intelligence, many algorithms using machine 79 

learning have been developed. In particular, for image classification, numerous CNN models based 80 

on a convolutional neural network (CNN) have been established, and ResNet, which was released in 81 

2015, transcends human cognitive ability [30]. Hsueh et al. [31] showed that the fault signal of a motor 82 

through the experiment could be classified in binary by a CNN. Nam et al. [32] reported that, even if 83 

the vibration signal includes discontinuous nonlinearities, such as impact, the chaotic signal can be 84 

classified by a CNN using the image visualized with an unthresholded RP. On the other hand, it only 85 

performed a dichotomous classification for chaos and non-chaos. Therefore, the binary classification 86 

study was extended to perform a multi-class classification of chaotic S&R vibration signals. 87 

This study examined whether the rattle and squeak signals can be classified through a CNN, even 88 

if they are chaotic, by applying a signal visualization technique. Because CNN is an image-based 89 

classification technique, an RP-based dataset was constructed to express the repetition of a dynamic 90 

system quantitatively. A single-mode squeak, multi-mode squeak, and rattle model were built. A 91 

methodology that classifies six classes for the chaotic S&R model with high accuracy through a CNN 92 

is proposed. 93 

2. Methods 94 

In this study, a theoretical model of S&R vibration, a representative nonlinear vibration that can 95 

occur in a mechanical system, is used. Figure 1 presents the rattle model considering the mass, linear 96 

spring, nonlinear elastic contact, and damping. k  is a linear spring coefficient. This system is excited 97 

with amplitude 0f  and excitation frequency ex . As shown in Figure 1 (a), the distance from the 98 

impact surface at the static equilibrium position of the system is L . In addition, the nonlinear elastic 99 

model of the impact force was defined as Hertz's contact model [18, 19]. The coordinate r
x describes 100 

the vibration motion of the Rattle model at the static equilibrium position. Figure 1 (b) shows the 101 

impact force of Hertz's contact model for a relative displacement. All systems consider a mass m  102 

attached to a spring with a stiffness coefficient k  and coefficient of viscous damping c . 103 

104 

Figure1: Rattle model (a) 1-D model (b) impact force 105 
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106 

Figure2: Single-mode squeak model (a) 1-D model (b) friction-velocity curve 107 

 108 

Figure3: Multi-mode squeak model 109 

The single-mode squeak model is excited with the same amplitude 0f  and excitation frequency 110 

ex  as the rattle model shown in Figure 2 (a). On the contact surface, a frictional force is generated by 111 

the normal force and the relative velocity. The friction force includes the creep region and negative 112 

slope for the sliding speed from Coulomb's law of friction, as shown in Figure 2(b). The multi-mode 113 

squeak model has an added mass 1m , spring stiffness 1k  , and coefficient of viscous damping 1c , 114 

and the frictional force generated by each mass is the same as that of the single-mode squeak model, 115 

as shown in Figure 3. 116 

For the rattle model shown in Figure 1 (a) 117 

0 cosr r r ex cmx cx kx f t F+ + = +     (1) 118 

where the contact model is the impact force by Hertz's nonlinear elastic model as follows: 119 

3/2

0                       if  

( )      if  

c r

c c r r

F x L

F k x L x L

= 

= − 
     (2) 120 

Using the dimensionless time /t k m =  and the coordinate transformation ( ) ( )r rx t X = , the 121 

dimensionless equation of motion can be written as  122 
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0

1
cosr r r cX X X f F

k
  + + = +     (3) 123 

where prime is differentiation for ( 0)  and the dimensionless parameter is defined as /k m = , 124 

/ex =  , 0 0 /f F k= , 2 /c mk = , and 0/ru X f= . Therefore, the dimensionless equation of 125 

motion for the rattle model can be written as 126 

cos cu u u Hf  + + = +      (4) 127 

and the dimensionless form of the impact force is rewritten as follows: 128 

3/2

0                     if  

( )      if  

c

c c

f u r

f k u r u r

= 

= − 
     (5) 129 

Equation of motion for the rattle model is expressed in vector form as follows: 130 

 u u= T
u      (6) 131 

0( ),  (0)r
 = =u f u u u      (7) 132 

2

2 1 3( ) cos( ) c

u

u u u Hf


 
 = − − + + 
  

f u     (8) 133 

where H  is the Heaviside function and 0u  is the initial condition of the rattle model.  134 

Equation (7) is a dynamic system with discontinuities involving the discontinuous impact effects 135 

in the rattle model. Therefore, it can be rewritten as follows from Muller's method that includes the 136 

instantaneous discontinuity of impact. Here i =  is a discontinuous moment. Let z  be a state 137 

variable u  of the rattle model. 138 

1i i  −   : ( )i
 =z f z , 

1 1( ) ( )i i  +− −=z z     (9) 139 

i = : ( ( ))i
−=0 h z       (10) 140 

 ( ) ( ( ))i i + −=z g z      (11) 141 

1i i   +  : 1( )i+ =z f z , ( ) ( )i i  +=z z    (12) 142 

The perturbed trajectory is given by 143 

( ) ( ) ( )   = +z z z      (13) 144 

i i i  = +      (14) 145 

and the perturbed trajectory satisfies the following equation: 146 
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1i i  −   : ( )i
 =z f z , 1 1( ) ( )i i  +

− −=z z    (15) 147 

i = : ( ( ))i
−=0 h z      (16) 148 

 ( ) ( ( ))i i + −=z g z      (17) 149 

1i i   +  : 1( )i+ =z f z , ( ) ( )i i  +=z z    (18) 150 

where each interval of discontinuities is smooth. ( )h z  and ( )g z  are the indicator function, and the 151 

transition condition, respectively. The plus and minus signs denote the right- and left-sided limits, 152 

and 153 

( )

( ) ( )

i i
i i i

i i i

D

D


  

− −

− −
= − = −

h z z

h z f z
    (19) 154 

1( ) [ ( ) ( ) ( )]i i i i i i i i iD D  + − − − − +
+= + −z g z z g z f z f z    (20) 155 

in which 156 

( )
( )

i

iD
−

−

=


=

 z z

h z
h z

z
, ( )

( )

i

iD
−

−

=


=

 z z

g z
g z

z
   (21) 157 

are the Jacobian matrix of indicator function and transition condition at point i
−

z , respectively, where 158 

( )i i
− −=z z  and ( )i i

+ +=z z . For an impact oscillator with Hertz’s model of contact, the Jacobian 159 

matrix of the transition condition and indicator function becomes the following matrix [18]: 160 

 ( ) 1 0 0iD
− = T

h z , ( )iD
− =g z I     (22) 161 

Therefore, the deviated trajectory can be written as 162 

(2) 0 0,   ( )=

iz

O    
=

  +
 z

f
z = z z z

z
    (23) 163 

By letting  0 0( ) =z Φ z z  substitute into the perturbation equation (23), i +
z  at the discontinuous 164 

region is estimated using Equation (20). The variation equation is also calculated at the same time as  165 

 
00 0 0( ) [ ][ ( )],   [ ( )] [ ]zD   = =Φ z f Φ z Φ z I     (24) 166 

where [ ]zD f , [ ]I , and  0( )Φ z  denote the Jacobian matrix, identity matrix, and solution of the 167 

variational equation, respectively.  168 

For the single-mode squeak model shown in figure 2 (a) 169 

0 cos sx
s s s exmx cx kx f t F+ + = +     (25) 170 
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where sx
F  is the friction force. The friction force of the single-mode squeak model is expressed as 171 

 , and h  are the control parameters that determine the negative slope. s  and k  are the static 172 

and dynamic friction coefficients, respectively.    173 

( ) ( ) tanh( ( )) expsx
b s k s k b sF V x h V x N    = − + − − −    (26) 174 

Using the dimensionless time /t k m =  and the coordinate transformation ( ) ( )s sx t X = , the 175 

dimensionless equation of motion can be written as 176 

'' '
0

1
cos sx

s s sX X X f F
k

 + + = +     (27) 177 

where prime is the differentiation for ( 0)  , and the dimensionless parameters were defined as 178 

/k m = , /ex =  , 0 0 /f F k= , 2 /c mk = , and 0/ru X f= . Therefore, the dimensionless 179 

friction force of the single-mode squeak model can be expressed as 180 

( )( ) ( ) ( ) ' '
0tanh expv

b k s k bf V v h V v n    = − + − − −    (28) 181 

where 0f  → , 0/b bV f V → , 0h f h → , and 0 0/N kf n=  are dimensionless parameters. 182 

Therefore, the dimensionless equation of motion for the single-mode squeak model can be written as 183 

cos v
v v v f  + + = +       (29) 184 

The equation of motion for the single-mode squeak model is expressed in vector form: 185 

 v v= T
v      (30) 186 

0( ),  (0)s
 = =v f v v v      (31) 187 

2

2 1 3( ) cos( ) v
s

v

v v v f


 
 

= − − + + 
 
 

f v      (32) 188 

where 0v  is the initial condition of the single-mode squeak model.  189 

For the multi-mode squeak model shown in figure 3, 190 

( ) 1

2

1 1 1 1 2 1 1 1 2

1 2 1 1 1 2 1 1 1 2

( ) ms

ms

x
ms ms ms ms ms

x
ms ms ms ms ms

mx c c x c x k k x k x F

m x c x c x k x k x F





+ + − + + − =

− + − + =
   (33) 191 

where 1ms
F  and 2ms

F are the friction forces acting on each mass. The friction force of the multi-192 

mode squeak model is expressed as  193 



8 

 

( ) ( ) 1
1 1tanh( ( )) expmsx

b ms k s k b msF V x h V x N    = − + − − −    (34) 194 

( ) ( ) 2
2 2tanh( ( )) expms

b ms k s k b msF V x h V x N    = − + − − −    (35) 195 

Using the dimensionless time /t k m =  and the coordinate transformation 1 1( ) ( )ms msx t X =  and 196 

2 2( ) ( )ms msx t X = , the dimensionless equation of motion can be expressed as 197 

( ) ( ) 1

2

'' ' '
1 1 1 1 2 1 2

'' ' '
2 1 1 1 2 1 2

1
1

1

ms

ms

x
ms ms ms ms ms

x
ms ms ms ms ms

X X X X X F
k

X X X X X F
k





    

    

+ + − + + − =

− + − + =
   (36) 198 

where prime is the differentiation with respect to ( 0)  , and the dimensionless parameter was 199 

defined as /k m = , /ex =  , 0 0 /f F k= , 2 /c mk = , 2
1 1 /c mk = , 1 /k k = , 1/m m = , 200 

1 0/msw X f= , and 2 0/mss X f= . Therefore, the dimensionless friction force of the multi-mode squeak 201 

model can be rewritten as 202 

( )( ) ( ) ( ) ' '
0tanh expw

b k s k bf V w h V w n    = − + − − −    (37) 203 

( )( ) ( ) ( ) ' '
0tanh exps

b k s k bf V s h V s n    = − + − − −    (38) 204 

where 0f  → , 0/b bV f V → , 0h f h →  and 0 0/N kf n=  are dimensionless parameters. 205 

Therefore, the dimensionless equation of motion for the simple model can be expressed as 206 

( ) ( )1 1

1 1

1 w

s

w w s w s f

s w s w s f





    

   

  + + − + + − =

  − + − + =
    (39) 207 

The equation of motion for the multi-mode squeak model is expressed in vector form as follows: 208 

 w w s s = T
w     (40) 209 

0( ),  (0)ms
 = =w f w w w      (41) 210 

( )

2

1 2 1 2 1 1

2

1 2 1 2 1 1

( ) (1 )
( )

w

ms

s

w

w s w s f

s

w s w s f





    

    

 
 
− + + − + + + 

=  
 
 − + − + 

f w    (42) 211 

where 0w  is the initial condition of the multi-mode squeak model.  212 

Because the squeak models are a dynamic system without discontinuities, Equations (9) – (22) are 213 

unnecessary. Therefore, the Lyapunov exponent of the squeak model can be obtained directly from 214 
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the eigenvalue of the variation equation (24).  215 

The Lyapunov exponents can be defined as 216 

1
lim ln ( )i im


 
→

=      (43) 217 

where ( )im t  are the eigenvalues of Equation (24). On the other hand, the definition cannot be used 218 

directly in the numerical calculation. If there is a considerable time, the variation equations tend to be 219 

the ill-condition [18]. Therefore, the spectrum of the Lyapunov exponent for the linearized equation 220 

was estimated using Wolf’s algorithm via the QR-factorization orthonormalization [33].  221 

As mentioned earlier, in this study, an image of a dynamic signal was constructed based on the RP 222 

that visualized the dynamic characteristics most effectively. The corresponding RP is based on the 223 

following recurrence matrix as follows: 224 

( ), ,   , 1,...,i j i jH i j N= − − =RP z z    (44) 225 

where ,i jRP  is called the RP or threshold RP.     is an L-2 norm; N  is the measured points, and 226 

 
1

N

i i=z  is trajectories of a system in its phase space.   is the threshold. The threshold is a critical 227 

parameter that can be obtained differently depending on the system, but it was quantified 228 

probabilistically ( 5  ) by Thiel et al. [34]. Therefore, an unthresholded RP without the influence of 229 

the threshold can be expressed as 230 

, ,   , 1,...,un
i j i j i j N= − =RP z z     (45) 231 

Here the element of phase space indicates the possible state of the system for the time-evolution law. 232 

In such a case, the phase space needs to be reconstructed. The method for reconstruction is generally 233 

conducted using the time delay method. Thus, the reconstructed state variable can be expressed as  234 

( 1)

1

ˆ
m

i i i j j

j

q + −
=

→ =z z e      (46) 235 

where ( )iq q i =  ,  , m ,  , and je  are the discrete-time series, sampling rate, embedding 236 

dimension, time delay, and unit vectors, respectively. The reconstruction does not change the 237 

dynamic properties, and the reconstructed phase space can be expressed through an appropriately 238 

selected embedding dimension and time delay. In general, the time delay can be selected 239 

appropriately using the Mutual information method. 240 

During time-delay reconstruction, all self-crossing trajectories in the dimension DA of the attractor 241 

can disappear when the embedding dimension D>2DA is set. On the other hand, it is imperative to 242 

determine the minimum embedding dimension to minimize the Lyapunov exponents and 243 

computational calculations from a physical perspective. From Equation (45), in dimension d , rz  is 244 

the r th nearest neighbor of z , and the square of the Euclidean distance between the two vectors is 245 
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21
2

( ) ,( )

0

( , )d i e r i e

e

R i r q q


 

−

+ +
=

 = −      (47) 246 

Here, as the time delay embedding extends from dimension d  to dimension 1d + , the Euclidean 247 

distance between the rth neighbors for dimension 1d +  can be written as follows: 248 

22 2
1 ( ) ,( )( , ) ( , )d d i e r i eR i r R i r q q + + + = + −     (48) 249 

where the error for the minimum embedding dimension can be determined from the rate of change of 250 

the Euclidean distance. 251 

2 2
1

2
1

( , ) ( , )

( , )

d d
tol

d

R i r R i r
R

R i r

+

+

−
     (49) 252 

where tolR  is the threshold. Kennel et al. [25] reported that false neighbors could be identified clearly 253 

in 10tolR  . Another condition for determining false neighbors defined based on the actual value of 254 

( ) ( , 1)d dR i R i r =  is similar to the standard variation AR  of the attractor using finite data of the 255 

noisy signal. Thus, the Euclidean distance for the dimension 1d +  becomes 1( ) 2d AR i R+  , and the 256 

second criterion for determining false neighbors can be written as 257 

1( )d
tol

A

R i
A

R

+       (50) 258 

Therefore, the minimum embedding dimension can be obtained by discriminating as false neighbors 259 

under the conditions in Equations (49) and (50). 260 

Furthermore, the classified features were visualized through Class Activation Mapping (CAM) 261 

[35]. The procedure for CAM is as follows: 262 

,

( , )k
k

x y

F f x y=     (51) 263 

where ( , )
k

f x y  represents the activation of the k th unit of the last convolutional layer at the spatial 264 

location ( , )x y . Therefore, the value obtained by Global Average Pooling (GAP) on the kth unit 265 

becomes k
F . Accordingly, the input softmax for c  classes is as follows: 266 

, ,

( , ) ( , )c c
c k k k k

k x y k x y

S w f x y w f x y= =      (52) 267 

where c
kw  is the weight corresponding to class c for k  units, the learned weight represents an 268 

optimized model for class c . The output probability of softmax for class c  is as follows:   269 
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c

c

S

c
S

c

e
P

e

=


     (53) 270 

Therefore, CAM for the class c  is defined, and the elements on each space are given as follows: 271 

( , ) ( , )c
c k k

k

M x y w f x y=      (54) 272 

Finally, the features of the learning result using CNN can be visualized as a heat map using Equation 273 

(53). 274 

3. Results 275 

For preliminary analysis, the Rossler model, a representative chaotic system, was used [36]. The 276 

Rossler model has already been studied extensively. It is a simple chaotic vibration system because it 277 

can produce a section that always vibrates in response to a parameter change. c  is selected as the 278 

control parameter. The other parameters are 0.2a =  and 0.2b = , and the initial condition is 279 

 (0) 1 1 1= T
q . 280 

2 3

1 2

3 1

( )

( )

s s

s as

b s s c

− − 
 = = + 
 + − 

s f s      (55) 281 

Figure 4 presents the signal 1s  for the control parameters of the Rossler model. Figure 4 (a) is a 282 

time series analysis for 3.5c =  (dash line) and 10c =  (solid line). Figure 4 (b) shows the 283 

corresponding phase space. 3.5c =  shows a clear period-2 in phase space; 10c =  shows the 284 

trajectory in the phase space and the aperiodic infinite trajectory in a finite boundary. On the other 285 

hand, the chaos cannot be identified clearly as a phase plot. To determine chaos, the Lyapunov 286 

exponents need to be calculated. Figure 5 presents the flow chart of the proposed methodology for 287 

applying signal classification using deep learning. 288 

 289 

 290 
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Figure4: Dynamic solutions for the Rossler model for various c  (a) time analysis (b) 3-D phase 291 

portrait.  292 

 293 

294 

Figure5: Flow diagram of the proposed methodology 295 

As shown in the flow diagram, the proposed method classifies the characteristics of the nonlinear 296 

vibration signals not included in learning after learning a dataset of nonlinear vibration signals 297 

composed of images using the CNN architecture. In other words, the focus of this study was to learn 298 

the vibrating signal visualized based on RP by machine learning and to distinguish between the 299 

causes of vibration, such as friction or impact and chaotic characteristics. Details of the proposed 300 

method are as follows. First, the nonlinear time series data of the parametric deterministic dynamic 301 

system was obtained by numerical analysis using the Runge-Kutta method. The Lyapunov exponent 302 

was calculated for the time series data and chaos was determined. The image visualization method of 303 

the vibration signal used the FNN algorithm to determine the embedding dimension and reconstruct 304 

the phase space. The reconstructed signal was expressed as an unthresholded RP to visualize the 305 

dynamic characteristics. Finally, the dataset composed of the visualized signals was trained by the 306 

CNN model and verified using the Lyapunov exponent. 307 

The architecture is structured relatively simply. However, GAP was used instead of Fully 308 

Connected (FC) to activate the CAM in the last layer. GAP is relatively less accurate than FC [35]. On 309 

the other hand, the purpose of this paper was to show that even if the S&R model is chaotic, it is 310 

possible to classify it through deep learning using imaged vibration signals. Hence, the architecture 311 

was constructed simply with the aim of approximately 90% accuracy. For preliminary analysis, Table 312 

1 lists the layer type of the CNN model, filter size, and shape of each layer. Figure 6 presents a flow 313 

diagram of the Rossler system's CNN model. 314 
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Table 1. CNN model summary 315 

Layer (Type) Output Shape Param # 

Conv2d (None, 200, 200, 32) 896 

Batch normalization (None, 200, 200, 32) 128 

Max pooling 2d (None, 100, 100, 32) 0 

Conv2d_1 (None, 100, 100, 64) 18496 

Batch normalization_1 (None, 100, 100, 64) 256 

Max pooling 2d_1 (None, 50, 50, 64) 0 

Conv2d_2 (None, 50, 50, 128) 73856 

Batch normalization_2 (None, 50, 50, 128) 512 

Max pooling 2d_2 (None, 25, 25, 128) 0 

Conv2d_3 (None, 25, 25, 256) 295168 

Batch normalization_3 (None, 25, 25, 256) 1024 

Max pooling 2d_3 (None, 12, 12, 256) 0 

Conv2d_4 (None, 12, 12, 512) 1180160 

Global average pooling 

2d 
(None, 512) 0 

Dense (None, 2) 1026 

 316 

317 

Figure 6: Flow diagram of CNN model  318 

 319 

320 

Figure 7: Chaotic analysis for Rossler model (a) bifurcation diagram of displacement (b) and largest 321 

Lyapunov exponent with respect to c  322 
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 323 

Figure 7 presents the chaos analysis of the Rossler model. Figure 7 (a) is a bifurcation diagram of 324 

the Rossler's model for parameter c  change, and Figure 6 (b) shows the corresponding Lyapunov 325 

exponents. The explanation of the critical c  for the Lyapunov exponents of the Rossler model has 326 

been studied extensively. Briefly, to summarize this system, the first bifurcation appears near 327 

2.866c  , and becomes period 2. The bifurcation appears again near 3.86c   and becomes period 4. 328 

In other words, chaos occurs as period-doubling occurs at each point. As shown in Figure 4, if the 329 

time analysis result is 3.5c = , chaos is expressed as period 2, and 10c = . This agrees well with the 330 

time analysis results. In 3D phase space, the Lyapunov exponent has four types of attractors: stable 331 

fixed points ( 0i  , 1, 2,3i = ), stable limit cycles ( 1 0  , 0i  , 2,3i =  ), stable two-torus 332 

( 1 2 0 = = , 0i  , 3i = ), and strange attractors ( 1 0  ). In the calculated system, however, only the 333 

classification of the S&R model and the existence of chaos were classified (Rossler system only 334 

distinguished between chaos and non-chaos). In other words, the strange attractor ( 1 0  ) and 335 

dynamic characteristics of the deterministic dynamic system can be obtained from the flow of the 336 

proposed method, and an unthresholded recurrence plot was learned using CNN. Subsequently, an 337 

attempt was made to classify the signals and chaos generated by the S&R model that were not used 338 

for training. Figure 8 shows the visualized chaos and non-chaos signals for the randomly extracted 339 

Rossler model. 340 

  341 

342 

Figure 8: Unthresholded recurrence plot of the Rossler model  343 
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Image classification using CNN has developed many sophisticated models that transcend the 344 

human cognitive abilities, but the design of a sophisticated architecture was not the goal of the 345 

present study. Therefore, the architecture is composed of a simple five-level structure, as shown in 346 

Table 1. Each step includes the convolution layer, activation function, and pooling layer. The 347 

proposed model comprises five convolution layers with a 32-3x3 filter, 64-3x3 filter, 128-3x3 filter, 256-348 

3x3 filter, and 512-3x3 filter in each step. As mentioned earlier, RP is a tool to visualize the recurrence 349 

characteristics of a dynamic system. The filter size was set as small as possible because the chaos 350 

system can occur within a very short interval. In addition, three max-pooling layers were used. 351 

Through five convolution layers, the feature map classifies the features of the image into six classes. 352 

To use CAM, GAP was used instead of the FC layer as the last layer. Softmax was used as the 353 

activation function of the output value. One of the gradient-based optimization methods was used. 354 

The Adam optimizer is an optimization function based on the gradient descent algorithm and was 355 

used to achieve faster convergence [37]. The weight initialization is one of the fundamental problems. 356 

Incorrect weight setting causes many problems, such as convergence problems and local minima. 357 

LeCun initialization follows a Gaussian distribution and uniform distribution of weight initialization 358 

for effective backpropagation [38]. Xavier initialization sets the initial weight depending on the 359 

number of previous and next nodes [39]. This is the most generalized method, but the output value 360 

shows inefficient results when used in the ReLU function. He initialization was developed to 361 

compensate for this [26]. For the weight initialization in the proposed CNN model, the He 362 

initialization method following a Gaussian distribution was used.  363 

The Rossler model consisted of 3200 datasets and 200 x 200-pixel images. The intervals of the time 364 

step for the ODE and orthonormalization for the Lyapunov exponent were 0.05 and 0.1, respectively. 365 

The dataset is usually divided into three parts. The 3200 datasets were divided into 70% for the 366 

training dataset and 30% of the test dataset. The validation dataset consisted of 30% of the training 367 

dataset. Table 2 lists the dataset samples used for training. The errors due to sequential datasets were 368 

removed by shuffling the dataset because the images are generated sequentially for parameter 369 

analysis. 370 

Table 2. Dataset split ratio for the Rossler model 371 

Data Percentage Number of samples 

Training 56 % 2240 

Validation 14 % 560 

Testing 30 % 1200 

 372 

Figure 9 shows the results of a numerical experiment for the proposed procedure. Chaos 373 

characteristics were found in the training dataset for 2240. At the same time, it was verified through 374 

560 validation data in each epoch. After that, the tests were performed on 1200 testing datasets on the 375 

trained CNN model. The batch size was set to 10, and the learning rate of the optimization function 376 

was 0.0001. Figure 9 (a), (b) shows the accuracy and loss function of the training data and validation 377 

data for each epoch. As shown in the learning result, the accuracy showed a logarithmic function and 378 

converged to approximately 100, and the loss also showed a negative exponential function and 379 

converged close to zero. The accuracy and loss of validation data and the training data almost 380 
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coincide, suggesting that the training proceeded well without overfitting. This suggests that the 381 

proposed procedure detects the chaos characteristics of the Rossler model well. In addition, 1200 382 

testing datasets that were not used for training were also classified with 99% accuracy. 383 

 384 

Figure 9: Results of the numerical experiment for the Rossler model (a) accuracy (b) and loss 385 

curves over 100 epochs 386 

 387 

 388 

Figure 10: Class activation mapping for the Rossler model 389 

Figure 10 shows the heat map using CAM. The heat map shows the spatial importance for each 390 

class, and red is the most important part. As shown in the heat map, when the iteration of the Rossler 391 
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model is non-chaos, the characteristics of the image tend to be uniform and symmetrical, and the 392 

chaos is irregular. 393 

In the Rossler model, the cycle is long and clearly expressed for the set control parameters. 394 

Therefore, the visualized repetition was distinguished easily. On the other hand, the S&R model, 395 

which includes the friction force and impact force, contains extreme nonlinearities so that the 396 

repeatability can be very complex. Here, because the rattle problem contains discontinuities, the 397 

Lyapunov exponent was calculated by considering Muller's method. The squeak problem has a 398 

continuity, including creep, so the Lyapunov was calculated as a continuous dynamic problem. 399 

 400 
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 401 

Figure 11: Chaotic analysis for the S&R model (a) bifurcation diagram of displacements (b) and 402 

largest Lyapunov exponent; for rattle model with respect to   (c) bifurcation diagram of 403 

displacements (d) and largest Lyapunov exponent; for single-mode squeak model with respect to   404 

(e) bifurcation diagram of displacements (f) and largest Lyapunov exponent; for multi-modes squeak 405 

model with respect to   406 

 407 

Figure 11 shows the results of chaotic analysis for the model control parameters corresponding to 408 
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each model. Figure 11 (a) is the calculation result of the largest Lyapunov exponent of the rattle model, 409 

and Figure 11 (b) shows the corresponding bifurcation diagram. The other parameters and initial 410 

conditions are 2r = , 0.05 = , 100hk = , and  0 0.4 1.1 0= − T
u . Figure 11 (c) and (d) show the 411 

Lyapunov exponent calculation result for the control parameter of the single-mode squeak model and 412 

the corresponding bifurcation diagram. Figure 11 (c) and (d) show the Lyapunov exponent 413 

calculation result for the control parameter of the single-mode squeak model and the corresponding 414 

bifurcation diagram. The other parameters and initial conditions are 2V = , 0 2.5n = , 0.002 = , 415 

0.5s = , 0.1k = , 1h = , 65 = , and  0 0.1 1.2 0= T
v . Figure 11 (e) and (f) present the 416 

Lyapunov exponent calculation result and bifurcation diagram for the control parameter of the multi-417 

modes squeak model. Other parameters and initial conditions were 1V = , 0 2.5n = , 1 0 = = , 418 

0.5s = , 0.3k = , 1h = , 65 = , 0.1 = , and  0 0.1 0.1 0.1 1.1= T
w . In this study, only each 419 

model and chaotic characteristics were distinguished, so other detailed types of attractors were not 420 

considered. The analysis results show that the S&R model changes with extreme nonlinearity in the 421 

largest Lyapunov exponent for the change in the control parameter.  422 

 423 

 424 

Figure 12: Dynamic solutions for the rattle model for various   (a) time analysis, (b) Phase 425 

portrait corresponding to (a). 426 

 427 

As mentioned earlier, Figures 12, 13, and 14 present the representative attractors of each system 428 

divided into chaos and non-chaos, and show the rattle, single-mode squeak, and multi-mode squeak 429 

models, respectively. Figure 12 (a) and (b) show the time series plot and phase portrait of 430 

displacement for the rattle model in 0.7202 =  and 0.6801 = . The dotted line oscillates constantly, 431 

and the solid line vibrates with an irregular amplitude. In phase space at 0.6801 = , it produces one 432 

stable limit cycle without impact and oscillates stably. On the other hand, in 0.7202 = , the system 433 

includes impact, and the trajectory appears without a specific period. In other words, it expresses 434 

chaos. 435 
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 436 

Figure 13: Dynamic solutions for single-mode squeak model for various   (a) time analysis, (b) 437 

Phase portrait corresponding to (a) 438 

 439 

Figure 13 (a) and (b) show the time series plot and phase portrait of displacement for the single-440 

mode squeak model in 0.8007 =  and 0.6903 = . The dotted line oscillates constantly, and the solid 441 

line vibrates with an irregular amplitude. In the phase plot, the flat phase means the stick phase in the 442 

stick-slip. When 0.8007 =  produces an unstable limit cycle in phase space, and it vibrates unstable 443 

for 1 period within the limit cycle. On the other hand, in 0.6903 = , the system produces an unstable 444 

limit cycle and generates chaos without a constant cycle. 445 

 446 

Figure 14: Dynamic solutions for multi-mode squeak model for various   (a) time analysis, (b) 447 

Phase portrait corresponding to (a).  448 

 449 

Figures 14 (a) and (b) show the time series plot and phase portrait of displacement for the multi-450 

mode squeak model in 15.14 =  and 5.558 = . The dotted line constantly oscillates with two 451 

amplitudes, and the solid line oscillates with an irregular amplitude. In phase space at 15.14 = , it 452 
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vibrates unstably for two periods within the limit cycle. On the other hand, at 5.558 = , the system 453 

generates an unstable limit cycle and generates chaos. 454 

The S&R model was classified into six classes to distinguish between chaos and non-chaos, and an 455 

unthresholded RP was shown. Here, the six classes were divided into the rattle, single-mode squeak 456 

and multi-modes squeak, and chaos and non-chaos for each model. Table 2 lists the dataset sample, 457 

and Figure 15 presents a part of the training dataset.  458 

Table 2. Dataset split for the S&R model 459 

Data Percentage Number of samples 

Training 56 % 4160 

Validation 14 % 1040 

Testing 30 % 1800 

 460 

 461 

 462 

Figure 15: Unthresholded RP for the S&R model  463 

 464 

As shown in Figure 15, images by chaos and images by non-chaos are always vibrating, so 465 

repetition appears in a complex form. Six thousand data were used in the total dataset and consisted 466 
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of 200 x 200-pixel images. To escape the local minima and converge to a lower loss, and prevent 467 

overfitting, the learning rate was adjusted for each specific step using a callback function. Each step 468 

consisted of five convolution layers with 32-2x2 filter, 64-2x2 filter, 128-2x2 filter, 256-2x2 filter, and 469 

512-2x2 filter. 470 

 471 

Figure 16: Results of the numerical experiment for the S&R model (a) accuracy (b) and loss curves 472 

over 100 epochs 473 

 474 

 475 

 476 
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Figure 17: Class activation map for the S&R model  477 

 478 

Figure 16 shows the results of the numerical experiment. The validation loss and accuracy do not 479 

decrease until 20 epochs but escape from the local minima by adjusting the learning rate. This shows 480 

that the learning rate is adjusted again at 70 epochs and converges with a certain accuracy and loss. In 481 

the final test, the model of each system and the chaos problem were classified with approximately 90% 482 

accuracy. Figure 17 shows the characteristics of the nonlinear vibration signal of each system for data 483 

extracted randomly by CAM. The areas of difference for the recurrence characteristics for each model 484 

were detected successfully using deep learning. The proposed procedure can classify the nonlinear 485 

vibration characteristics generated in the mechanical system with high accuracy. In other words, the 486 

causes of complex signals can be classified due to nonlinear vibrations generated in mechanical 487 

systems with high accuracy. This shows that the characteristics of the complex signals that humans 488 

cannot recognize can be classified with high accuracy by a CNN. 489 

4. Discussion and future work 490 

Visualization was performed with the proposed method for the vibration signals with extreme 491 

nonlinearity occurring in different models. The CNN was used to classify the S&R model and its 492 

chaotic characteristics. This result was verified by calculating the Lyapunov exponent for each model. 493 

The chaotic characteristics can distinguish the signals generated in a deterministic system by 494 

calculating the Lyapunov exponent, but calculating this is very complex. The signal visualization 495 

method analyzes the dynamic signals, but signals containing nonlinearity are complicated for 496 

engineers to analyze. In other words, complex signals are difficult to classify by human cognitive 497 

ability. Therefore, a procedure for classifying S&R models, including chaos and non-chaos, was 498 

proposed and verified with approximately 91% accuracy using a simple CNN model. Future work 499 

will study a more complex model to analyze signals with added noise.  500 
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