1 Potera, C. Phage renaissance: new hope against antibiotic resistance. Environ Health Perspect 121, a48-53, doi:10.1289/ehp.121-a48 (2013).
2 Ma, Y., You, X., Mai, G., Tokuyasu, T. & Liu, C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 24, doi:10.1186/s40168-018-0410-y (2018).
3 Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098-1109.e1099, doi:10.1016/j.cell.2021.01.029 (2021).
4 Paez-Espino, D. et al. Uncovering Earth's virome. Nature 536, 425-430, doi:10.1038/nature19094 (2016).
5 Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nature Reviews Microbiology 13, 777-786, doi:10.1038/nrmicro3564 (2015).
6 Hershey, A. D. Inheritance in bacteriophage. Ann N Y Acad Sci 54, 960-962, doi:10.1111/j.1749-6632.1952.tb39971.x (1952).
7 Roberts, J. W. Termination factor for RNA synthesis. Nature 224, 1168-1174, doi:10.1038/2241168a0 (1969).
8 Kaiser, A. D. & Jacob, F. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology 4, 509-521, doi:10.1016/0042-6822(57)90083-1 (1957).
9 Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.) 315, 1709-1712, doi:10.1126/science.1138140 (2007).
10 Gregory, A. C. et al. Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell 177, 1109-1123.e1114, doi:https://doi.org/10.1016/j.cell.2019.03.040 (2019).
11 Brussow, H. & Hendrix, R. W. Phage genomics: small is beautiful. Cell 108, 13-16, doi:10.1016/s0092-8674(01)00637-7 (2002).
12 Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 49, D764-D775, doi:10.1093/nar/gkaa946 (2021).
13 Kupferschmidt, K. Resistance fighters. Science (New York, N.Y.) 352, 758-761, doi:10.1126/science.352.6287.758 (2016).
14 Reardon, S. Phage therapy gets revitalized. Nature 510, 15-16, doi:10.1038/510015a (2014).
15 Lu, T. K. & Koeris, M. S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 14, 524-531, doi:10.1016/j.mib.2011.07.028 (2011).
16 Lemire, S., Yehl, K. M. & Lu, T. K. Phage-Based Applications in Synthetic Biology. Annual review of virology 5, 453-476, doi:10.1146/annurev-virology-092917-043544 (2018).
17 Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K. & Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 68, 151-159, doi:https://doi.org/10.1016/j.copbio.2020.11.003 (2021).
18 Cui, J., Schlub, T. E. & Holmes, E. C. An allometric relationship between the genome length and virion volume of viruses. J. Virol. 88, 6403-6410, doi:10.1128/jvi.00362-14 (2014).
19 Hua, J. et al. Capsids and Genomes of Jumbo-Sized Bacteriophages Reveal the Evolutionary Reach of the HK97 Fold. mBio 8, e01579-01517, doi:10.1128/mBio.01579-17 (2017).
20 Edwards, K. F., Steward, G. F. & Schvarcz, C. R. Making sense of virus size and the tradeoffs shaping viral fitness. 24, 363-373, doi:10.1111/ele.13630 (2021).
21 Forster, A. C. & Church, G. M. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2, 45, doi:10.1038/msb4100090 (2006).
22 Zhang, L. Y., Chang, S. H. & Wang, J. How to make a minimal genome for synthetic minimal cell. Protein & cell 1, 427-434, doi:10.1007/s13238-010-0064-4 (2010).
23 Ghosh, D., Kohli, A. G., Moser, F., Endy, D. & Belcher, A. M. Refactored M13 Bacteriophage as a Platform for Tumor Cell Imaging and Drug Delivery. ACS synthetic biology 1, 576-582, doi:10.1021/sb300052u (2012).
24 Smith, H. O., Hutchison, C. A., 3rd, Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 100, 15440-15445, doi:10.1073/pnas.2237126100 (2003).
25 Jaschke, P. R., Lieberman, E. K., Rodriguez, J., Sierra, A. & Endy, D. A fully decompressed synthetic bacteriophage oX174 genome assembled and archived in yeast. Virology 434, 278-284, doi:10.1016/j.virol.2012.09.020 (2012).
26 Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425-431, doi:10.1038/s41586-020-2007-4 (2020).
27 Hutchison, C. A., 3rd et al. Design and synthesis of a minimal bacterial genome. Science (New York, N.Y.) 351, aad6253, doi:10.1126/science.aad6253 (2016).
28 Studier, F. W. Genetic analysis of non-essential bacteriophage T7 genes. J. Mol. Biol. 79, 227-236, doi:10.1016/0022-2836(73)90002-8 (1973).
29 Calendar, R. L. The Bacteriophages. 2nd edn, p. 280 (Oxford Univ. Press, 2006).
30 Yu, B. J. et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat. Biotechnol. 20, 1018-1023, doi:10.1038/nbt740 (2002).
31 Luo, Z. et al. Compacting a synthetic yeast chromosome arm. Genome Biol. 22, 5, doi:10.1186/s13059-020-02232-8 (2021).
32 Reuß, D. R. et al. Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism. Genome Res. 27, 289-299, doi:10.1101/gr.215293.116 (2017).
33 Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. U. S. A. 93, 10268, doi:10.1073/pnas.93.19.10268 (1996).
34 Martel, B. & Moineau, S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 42, 9504-9513, doi:10.1093/nar/gku628 (2014).
35 Tao, P., Wu, X., Tang, W. C., Zhu, J. & Rao, V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS synthetic biology 6, 1952-1961, doi:10.1021/acssynbio.7b00179 (2017).
36 Lemay, M. L., Tremblay, D. M. & Moineau, S. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9. ACS synthetic biology 6, 1351-1358, doi:10.1021/acssynbio.6b00388 (2017).
37 Hatoum-Aslan, A. Phage Genetic Engineering Using CRISPR-Cas Systems. Viruses 10, doi:10.3390/v10060335 (2018).
38 Springman, R., Molineux, I. J., Duong, C., Bull, R. J. & Bull, J. J. Evolutionary stability of a refactored phage genome. ACS synthetic biology 1, 425-430, doi:10.1021/sb300040v (2012).
39 Bao, Z. & HamediRad, M. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat. Biotechnol. 36, 505-508, doi:10.1038/nbt.4132 (2018).
40 Chen, L. et al. Characterization and complete genomic analysis of two Salmonella phages, SenALZ1 and SenASZ3, new members of the genus Cba120virus. Arch. Virol. 164, 1475-1478, doi:10.1007/s00705-019-04183-3 (2019).
41 Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327-336, doi:10.1038/s41586-019-1894-8 (2020).
42 Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86-156, table of contents, doi:10.1128/mmbr.67.1.86-156.2003 (2003).
43 Carlson, K. & Overvatn, A. Bacteriophage T4 endonucleases II and IV, oppositely affected by dCMP hydroxymethylase activity, have different roles in the degradation and in the RNA polymerase-dependent replication of T4 cytosine-containing DNA. Genetics 114, 669-685 (1986).
44 Bryson, A. L. et al. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9. mBio 6, e00648-00615, doi:10.1128/mBio.00648-15 (2015).
45 Tao, P. & Wu, X. Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9. Science advances 4, eaar4134, doi:10.1126/sciadv.aar4134 (2018).
46 Endy, D., You, L., Yin, J. & Molineux, I. J. Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc. Natl. Acad. Sci. U. S. A. 97, 5375-5380, doi:10.1073/pnas.090101397 (2000).
47 Wang, I.-N., Smith, D. L. & Young, R. Holins: The Protein Clocks of Bacteriophage Infections. Annu. Rev. Microbiol. 54, 799-825, doi:10.1146/annurev.micro.54.1.799 (2000).
48 Kutter, E. et al. From Host to Phage Metabolism: Hot Tales of Phage T4’s Takeover of E. coli. Viruses 10, 387 (2018).
49 Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. The ISME journal 14, 881-895, doi:10.1038/s41396-019-0580-z (2020).
50 Shen, J., Zhou, J., Chen, G. Q. & Xiu, Z. L. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9. J. Virol. 92, doi:10.1128/jvi.00534-18 (2018).
51 Studier, F. W. Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J. Mol. Biol. 94, 283-295, doi:https://doi.org/10.1016/0022-2836(75)90083-2 (1975).
52 Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536, 165-170, doi:10.1038/nature18959 (2016).