1. Kawaguchi, Y., T. Okamoto, M. Taniwaki, M. Aizawa, M. Inoue, S. Katayama, H. Kawakami, S. Nakamura, M. Nishimura, I. Akiguchi, and et al., CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet, 1994. 8(3): p. 221-8.
2. Burnett, B., F. Li, and R.N. Pittman, The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet, 2003. 12(23): p. 3195 − 205.
3. Adegbuyiro, A., F. Sedighi, A.W.t. Pilkington, S. Groover, and J. Legleiter, Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry, 2017. 56(9): p. 1199–1217.
4. Riess, O., U. Rub, A. Pastore, P. Bauer, and L. Schols, SCA3: neurological features, pathogenesis and animal models. Cerebellum, 2008. 7(2): p. 125 − 37.
5. Arrasate, M., S. Mitra, E.S. Schweitzer, M.R. Segal, and S. Finkbeiner, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 2004. 431(7010): p. 805 − 10.
6. Kurosawa, M., G. Matsumoto, Y. Kino, M. Okuno, M. Kurosawa-Yamada, C. Washizu, H. Taniguchi, K. Nakaso, T. Yanagawa, E. Warabi, T. Shimogori, T. Sakurai, N. Hattori, and N. Nukina, Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice. Hum Mol Genet, 2015. 24(4): p. 1092 − 105.
7. Hipp, M.S., S.H. Park, and F.U. Hartl, Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol, 2014. 24(9): p. 506 − 14.
8. Sweeney, P., H. Park, M. Baumann, J. Dunlop, J. Frydman, R. Kopito, A. McCampbell, G. Leblanc, A. Venkateswaran, A. Nurmi, and R. Hodgson, Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener, 2017. 6: p. 6.
9. Schmidt, T., G.B. Landwehrmeyer, I. Schmitt, Y. Trottier, G. Auburger, F. Laccone, T. Klockgether, M. Volpel, J.T. Epplen, L. Schols, and O. Riess, An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol, 1998. 8(4): p. 669 − 79.
10. Yamada, M., C.F. Tan, C. Inenaga, S. Tsuji, and H. Takahashi, Sharing of polyglutamine localization by the neuronal nucleus and cytoplasm in CAG-repeat diseases. Neuropathol Appl Neurobiol, 2004. 30(6): p. 665 − 75.
11. Wilke, C., E. Haas, K. Reetz, J. Faber, H. Garcia-Moreno, M.M. Santana, B. van de Warrenburg, H. Hengel, M. Lima, A. Filla, A. Durr, B. Melegh, M. Masciullo, J. Infante, P. Giunti, M. Neumann, J. de Vries, L. Pereira de Almeida, M. Rakowicz, H. Jacobi, R. Schüle, S.A. Kaeser, J. Kuhle, T. Klockgether, L. Schöls, C. Barro, J. Hübener-Schmid, and M. Synofzik, Neurofilaments in spinocerebellar ataxia type 3: blood biomarkers at the preataxic and ataxic stage in humans and mice. EMBO Mol Med, 2020. 12(7): p. e11803.
12. Bichelmeier, U., T. Schmidt, J. Hubener, J. Boy, L. Ruttiger, K. Habig, S. Poths, M. Bonin, M. Knipper, W.J. Schmidt, J. Wilbertz, H. Wolburg, F. Laccone, and O. Riess, Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3: in vivo evidence. J Neurosci, 2007. 27(28): p. 7418-28.
13. Boy, J., T. Schmidt, H. Wolburg, A. Mack, S. Nuber, M. Bottcher, I. Schmitt, C. Holzmann, F. Zimmermann, A. Servadio, and O. Riess, Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet, 2009. 18(22): p. 4282-95.
14. Boy, J., T. Schmidt, U. Schumann, U. Grasshoff, S. Unser, C. Holzmann, I. Schmitt, T. Karl, F. Laccone, H. Wolburg, S. Ibrahim, and O. Riess, A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats. Neurobiol Dis, 2010. 37(2): p. 284 − 93.
15. Goti, D., S.M. Katzen, J. Mez, N. Kurtis, J. Kiluk, L. Ben-Haiem, N.A. Jenkins, N.G. Copeland, A. Kakizuka, A.H. Sharp, C.A. Ross, P.R. Mouton, and V. Colomer, A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci, 2004. 24(45): p. 10266-79.
16. Ikeda, H., M. Yamaguchi, S. Sugai, Y. Aze, S. Narumiya, and A. Kakizuka, Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet, 1996. 13(2): p. 196–202.
17. Silva-Fernandes, A., C. Costa Mdo, S. Duarte-Silva, P. Oliveira, C.M. Botelho, L. Martins, J.A. Mariz, T. Ferreira, F. Ribeiro, M. Correia-Neves, C. Costa, and P. Maciel, Motor uncoordination and neuropathology in a transgenic mouse model of Machado-Joseph disease lacking intranuclear inclusions and ataxin-3 cleavage products. Neurobiol Dis, 2010. 40(1): p. 163 − 76.
18. Hubener, J., F. Vauti, C. Funke, H. Wolburg, Y. Ye, T. Schmidt, K. Wolburg-Buchholz, I. Schmitt, A. Gardyan, S. Driessen, H.H. Arnold, H.P. Nguyen, and O. Riess, N-terminal ataxin-3 causes neurological symptoms with inclusions, endoplasmic reticulum stress and ribosomal dislocation. Brain, 2011. 134(Pt 7): p. 1925-42.
19. Cemal, C.K., C.J. Carroll, L. Lawrence, M.B. Lowrie, P. Ruddle, S. Al-Mahdawi, R.H. King, M.A. Pook, C. Huxley, and S. Chamberlain, YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet, 2002. 11(9): p. 1075-94.
20. Ramani, B., G.M. Harris, R. Huang, T. Seki, G.G. Murphy, C. Costa Mdo, S. Fischer, T.L. Saunders, G. Xia, R.C. McEachin, and H.L. Paulson, A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum Mol Genet, 2015. 24(5): p. 1211-24.
21. Ramani, B., G.M. Harris, R. Huang, T. Seki, G.G. Murphy, M.D. Carmo Costa, S. Fischer, T.L. Saunders, G. Xia, R.C. McEachin, and H.L. Paulson, A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum Mol Genet, 2017. 26(16): p. 3232–3233.
22. Switonski, P.M., W.J. Szlachcic, W.J. Krzyzosiak, and M. Figiel, A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD. Neurobiol Dis, 2015. 73: p. 174 − 88.
23. Farshim, P.P. and G.P. Bates, Mouse Models of Huntington's Disease. Methods Mol Biol, 2018. 1780: p. 97–120.
24. Martier, R., M. Sogorb-Gonzalez, J. Stricker-Shaver, J. Hubener-Schmid, S. Keskin, J. Klima, L.J. Toonen, S. Juhas, J. Juhasova, Z. Ellederova, J. Motlik, E. Haas, S. van Deventer, P. Konstantinova, H.P. Nguyen, and M.M. Evers, Development of an AAV-Based MicroRNA Gene Therapy to Treat Machado-Joseph Disease. Mol Ther Methods Clin Dev, 2019. 15: p. 343–358.
25. Carbery, I.D., D. Ji, A. Harrington, V. Brown, E.J. Weinstein, L. Liaw, and X. Cui, Targeted genome modification in mice using zinc-finger nucleases. Genetics, 2010. 186(2): p. 451-9.
26. Weber, J.J., M. Golla, G. Guaitoli, P. Wanichawan, S.N. Hayer, S. Hauser, A.C. Krahl, M. Nagel, S. Samer, E. Aronica, C.R. Carlson, L. Schöls, O. Riess, C.J. Gloeckner, H.P. Nguyen, and J. Hübener-Schmid, A combinatorial approach to identify calpain cleavage sites in the Machado-Joseph disease protein ataxin-3. Brain, 2017. 140(5): p. 1280–1299.
27. Degorce, F., A. Card, S. Soh, E. Trinquet, G.P. Knapik, and B. Xie, HTRF: A technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr Chem Genomics, 2009. 3: p. 22–32.
28. Dobin, A., C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, and T.R. Gingeras, STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29(1): p. 15–21.
29. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin, The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9.
30. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014. 15(12): p. 550.
31. Leek, J.T., W.E. Johnson, H.S. Parker, A.E. Jaffe, and J.D. Storey, The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 2012. 28(6): p. 882-3.
32. Srinivasan, K., B.A. Friedman, J.L. Larson, B.E. Lauffer, L.D. Goldstein, L.L. Appling, J. Borneo, C. Poon, T. Ho, F. Cai, P. Steiner, M.P. van der Brug, Z. Modrusan, J.S. Kaminker, and D.V. Hansen, Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun, 2016. 7: p. 11295.
33. Zhang, Y., K. Chen, S.A. Sloan, M.L. Bennett, A.R. Scholze, S. O'Keeffe, H.P. Phatnani, P. Guarnieri, C. Caneda, N. Ruderisch, S. Deng, S.A. Liddelow, C. Zhang, R. Daneman, T. Maniatis, B.A. Barres, and J.Q. Wu, An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci, 2014. 34(36): p. 11929-47.
34. Kuhn, A., A. Kumar, A. Beilina, A. Dillman, M.R. Cookson, and A.B. Singleton, Cell population-specific expression analysis of human cerebellum. BMC Genomics, 2012. 13: p. 610.
35. Wang, J., D. Duncan, Z. Shi, and B. Zhang, WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res, 2013. 41(Web Server issue): p. W77-83.
36. Schmidt, T., K.S. Lindenberg, A. Krebs, L. Schöls, F. Laccone, J. Herms, M. Rechsteiner, O. Riess, and G.B. Landwehrmeyer, Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol, 2002. 51(3): p. 302 − 10.
37. Scherzed, W., E.R. Brunt, H. Heinsen, R.A. de Vos, K. Seidel, K. Burk, L. Schols, G. Auburger, D. Del Turco, T. Deller, H.W. Korf, W.F. den Dunnen, and U. Rub, Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum, 2012. 11(3): p. 749 − 60.
38. Saute, J.A., A.C. da Silva, A.P. Muller, G. Hansel, A.S. de Mello, F. Maeda, L. Vedolin, M.L. Saraiva-Pereira, D.O. Souza, J. Arpa, I. Torres-Aleman, L.V. Portela, and L.B. Jardim, Serum insulin-like system alterations in patients with spinocerebellar ataxia type 3. Mov Disord, 2011. 26(4): p. 731-5.
39. Saute, J.A., K.C. Donis, C. Serrano-Munuera, D. Genis, L.T. Ramirez, P. Mazzetti, L.V. Perez, P. Latorre, J. Sequeiros, A. Matilla-Duenas, and L.B. Jardim, Ataxia rating scales–psychometric profiles, natural history and their application in clinical trials. Cerebellum, 2012. 11(2): p. 488–504.
40. Saute, J.A., A.C. Silva, G.N. Souza, A.D. Russo, K.C. Donis, L. Vedolin, M.L. Saraiva-Pereira, L.V. Portela, and L.B. Jardim, Body mass index is inversely correlated with the expanded CAG repeat length in SCA3/MJD patients. Cerebellum, 2012. 11(3): p. 771-4.
41. Lang, J., E. Haas, J. Hübener, C. Anderson, S. Pulst, M. Giese, and W. Ilg, Detecting and quantifying ataxia-related motor impairments in rodents using markerless motion tracking with deep neural networks. 2020.
42. Ramani, B., B. Panwar, L.R. Moore, B. Wang, R. Huang, Y. Guan, and H.L. Paulson, Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet, 2017. 26(17): p. 3362–3374.
43. Toonen, L.J.A., M. Overzier, M.M. Evers, L.G. Leon, S.A.J. van der Zeeuw, H. Mei, S.M. Kielbasa, J.J. Goeman, K.M. Hettne, O.T. Magnusson, M. Poirel, A. Seyer, P.A.C. t Hoen, and W.M.C. van Roon-Mom, Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol Neurodegener, 2018. 13(1): p. 31.
44. Hentrich, T., Z. Wassouf, O. Riess, and J.M. Schulze-Hentrich, SNCA overexpression disturbs hippocampal gene expression trajectories in midlife. Aging (Albany NY), 2018. 10(12): p. 4024–4041.
45. Wiatr, K., P. Piasecki, Ł. Marczak, P. Wojciechowski, M. Kurkowiak, R. Płoski, M. Rydzanicz, L. Handschuh, J. Jungverdorben, O. Brüstle, M. Figlerowicz, and M. Figiel, Altered Levels of Proteins and Phosphoproteins, in the Absence of Early Causative Transcriptional Changes, Shape the Molecular Pathogenesis in the Brain of Young Presymptomatic Ki91 SCA3/MJD Mouse. Mol Neurobiol, 2019. 56(12): p. 8168–8202.
46. McLoughlin, H.S., L.R. Moore, and H.L. Paulson, Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis, 2020. 134: p. 104635.
47. Lorenzetti, D., K. Watase, B. Xu, M.M. Matzuk, H.T. Orr, and H.Y. Zoghbi, Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum Mol Genet, 2000. 9(5): p. 779 − 85.
48. Damrath, E., M.V. Heck, S. Gispert, M. Azizov, J. Nowock, C. Seifried, U. Rub, M. Walter, and G. Auburger, ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet, 2012. 8(8): p. e1002920.
49. Menalled, L.B., J.D. Sison, Y. Wu, M. Olivieri, X.J. Li, H. Li, S. Zeitlin, and M.F. Chesselet, Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. J Neurosci, 2002. 22(18): p. 8266-76.
50. Wheeler, V.C., J.K. White, C.A. Gutekunst, V. Vrbanac, M. Weaver, X.J. Li, S.H. Li, H. Yi, J.P. Vonsattel, J.F. Gusella, S. Hersch, W. Auerbach, A.L. Joyner, and M.E. MacDonald, Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet, 2000. 9(4): p. 503 − 13.
51. Weber, J.J., E. Haas, Y. Maringer, S. Hauser, N.L.P. Casadei, A.H. Chishti, O. Riess, and J. Hubener-Schmid, Calpain-1 ablation partially rescues disease-associated hallmarks in models of Machado-Joseph disease. Hum Mol Genet, 2020.
52. Menon, R.P., S. Nethisinghe, S. Faggiano, T. Vannocci, H. Rezaei, S. Pemble, M.G. Sweeney, N.W. Wood, M.B. Davis, A. Pastore, and P. Giunti, The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet, 2013. 9(7): p. e1003648.
53. Li, L.B., Z. Yu, X. Teng, and N.M. Bonini, RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature, 2008. 453(7198): p. 1107-11.
54. Jung, J., M.T. van Jaarsveld, S.Y. Shieh, K. Xu, and N.M. Bonini, Defining genetic factors that modulate intergenerational CAG repeat instability in Drosophila melanogaster. Genetics, 2011. 187(1): p. 61–71.
55. Jazurek-Ciesiolka, M., A. Ciesiolka, A.A. Komur, M.O. Urbanek-Trzeciak, W.J. Krzyzosiak, and A. Fiszer, RAN Translation of the Expanded CAG Repeats in the SCA3 Disease Context. J Mol Biol, 2020. 432(24): p. 166699.
56. Hubener, J., J.J. Weber, C. Richter, L. Honold, A. Weiss, F. Murad, P. Breuer, U. Wullner, P. Bellstedt, F. Paquet-Durand, J. Takano, T.C. Saido, O. Riess, and H.P. Nguyen, Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Hum Mol Genet, 2013. 22(3): p. 508 − 18.
57. Shakkottai, V.G., M. do Carmo Costa, J.M. Dell'Orco, A. Sankaranarayanan, H. Wulff, and H.L. Paulson, Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci, 2011. 31(36): p. 13002-14.
58. Costa Mdo, C., K. Luna-Cancalon, S. Fischer, N.S. Ashraf, M. Ouyang, R.M. Dharia, L. Martin-Fishman, Y. Yang, V.G. Shakkottai, B.L. Davidson, E. Rodriguez-Lebron, and H.L. Paulson, Toward RNAi therapy for the polyglutamine disease Machado-Joseph disease. Mol Ther, 2013. 21(10): p. 1898 − 908.
59. Bode, F.J., M. Stephan, H. Suhling, R. Pabst, R.H. Straub, K.A. Raber, M. Bonin, H.P. Nguyen, O. Riess, A. Bauer, C. Sjoberg, A. Petersen, and S. von Horsten, Sex differences in a transgenic rat model of Huntington's disease: decreased 17beta-estradiol levels correlate with reduced numbers of DARPP32 + neurons in males. Hum Mol Genet, 2008. 17(17): p. 2595 − 609.
60. Phan, J., M.A. Hickey, P. Zhang, M.F. Chesselet, and K. Reue, Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models. Hum Mol Genet, 2009. 18(6): p. 1006-16.
61. Weishäupl, D., J. Schneider, B. Peixoto Pinheiro, C. Ruess, S.M. Dold, F. von Zweydorf, C.J. Gloeckner, J. Schmidt, O. Riess, and T. Schmidt, Physiological and pathophysiological characteristics of ataxin-3 isoforms. J Biol Chem, 2019. 294(2): p. 644–661.
62. Ilg, W., J. Seemann, M. Giese, A. Traschütz, L. Schöls, D. Timmann, and M. Synofzik, Real-life gait assessment in degenerative cerebellar ataxia: Toward ecologically valid biomarkers. Neurology, 2020. 95(9): p. e1199-e1210.
63. Liew, F.Y., J.P. Girard, and H.R. Turnquist, Interleukin-33 in health and disease. Nat Rev Immunol, 2016. 16(11): p. 676–689.
64. Carlock, C., J. Wu, J. Shim, I. Moreno-Gonzalez, M.R. Pitcher, J. Hicks, A. Suzuki, J. Iwata, J. Quevado, and Y. Lou, Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. Transl Psychiatry, 2017. 7(8): p. e1191.
65. de Chaldée, M., C. Brochier, A. Van de Vel, N. Caudy, R. Luthi-Carter, M.C. Gaillard, and J.M. Elalouf, Capucin: a novel striatal marker down-regulated in rodent models of Huntington disease. Genomics, 2006. 87(2): p. 200-7.
66. McLoughlin, H.S., L.R. Moore, R. Chopra, R. Komlo, M. McKenzie, K.G. Blumenstein, H. Zhao, H.B. Kordasiewicz, V.G. Shakkottai, and H.L. Paulson, Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann Neurol, 2018. 84(1): p. 64–77.
67. Suga, N., M. Katsuno, H. Koike, H. Banno, K. Suzuki, A. Hashizume, T. Mano, M. Iijima, Y. Kawagashira, M. Hirayama, T. Nakamura, H. Watanabe, F. Tanaka, and G. Sobue, Schwann cell involvement in the peripheral neuropathy of spinocerebellar ataxia type 3. Neuropathol Appl Neurobiol, 2014. 40(5): p. 628 − 39.
68. Costa, M.D.C., M. Radzwion, H.S. McLoughlin, N.S. Ashraf, S. Fischer, V.G. Shakkottai, P. Maciel, H.L. Paulson, and G. Öz, In Vivo Molecular Signatures of Cerebellar Pathology in Spinocerebellar Ataxia Type 3. Mov Disord, 2020. 35(10): p. 1774–1786.
69. Kang, J.S., J.C. Klein, S. Baudrexel, R. Deichmann, D. Nolte, and R. Hilker, White matter damage is related to ataxia severity in SCA3. J Neurol, 2014. 261(2): p. 291-9.
70. Jin, J., Q. Peng, Z. Hou, M. Jiang, X. Wang, A.J. Langseth, M. Tao, P.B. Barker, S. Mori, D.E. Bergles, C.A. Ross, P.J. Detloff, J. Zhang, and W. Duan, Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease. Hum Mol Genet, 2015. 24(9): p. 2508-27.
71. Huang, B., W. Wei, G. Wang, M.A. Gaertig, Y. Feng, W. Wang, X.J. Li, and S. Li, Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron, 2015. 85(6): p. 1212-26.
72. Hentrich, T., Z. Wassouf, C. Ehrhardt, E. Haas, J.D. Mills, E. Aronica, T.F. Outeiro, J. Hübener-Schmid, O. Riess, N. Casadei, and J.M. Schulze-Hentrich, Increased expression of myelin-associated genes in frontal cortex of SNCA overexpressing rats and Parkinson's disease patients. Aging (Albany NY), 2020. 12(19): p. 18889–18906.