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Force analysis of the overconstrained mechanisms based on equivalent stiffness considering limb 

axial deformation 

Jinwei Guo1, Yongsheng Zhao1,2, Bo Chen1, Guoxing Zhang1, Yundou Xu1,2, , Jiantao Yao1,2 

 1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, 

China 

2. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of National Education, Yanshan 

University, Qinhuangdao 066004, China 

Abstract: Considering the limb axial deformation, taking typical 2SS+P and 7-SS passive overconstrained 

mechanisms, 2SPS+P and 7-SPS active overconstrained mechanisms, and 2SPS+P and 7-SPS passive-input 

overconstrained mechanisms as examples, a new force analysis method based on the idea of equivalent stiffness 

is proposed. The equivalent stiffness matrix of passive overconstrained mechanism is derived by combining the 

force balance and deformation compatibility equations with consideration of axial elastic limb deformations. 

The relationship between the constraint wrench magnitudes and the external force, limb stiffness is established. 

The equivalent stiffness matrix of active overconstrained mechanism is derived by combining the force balance 

and displacement compatibility equations. Here, the relationship between the magnitudes of the actuated 

wrenches and the external force, limb stiffness is investigated. Combining with the equivalent stiffness of the 

passive overconstrained mechanism, an analytical relationship between the actuated forces of passive-input 

overconstrained mechanism and the output displacement, limb stiffness is explored. Finally, adaptability of the 

equivalent stiffness to overconstrained mechanisms is discussed, and the effect of the limb stiffness on 

overconstrained mechanisms force distribution is revealed. 

Keywords: Active overconstrained; Passive overconstrained; Passive-input overconstrained; Equivalent 

stiffness; Force distribution 

1. Introduction 

In recent years, overconstrained mechanism has become one of the research hotspots in processing and 

manufacturing industries. Its applications involve areas such as deployable antennas, machine tools, robots, 

medical equipment and entertainment facilities. According to the different generation methods of 

overconstraints and actuated modes, overconstrained mechanism is divided into passive overconstrained 

mechanism [1-3], active overconstrained mechanism [4-7] and passive-input overconstrained mechanism [8]. 

Passive overconstrained mechanism indicates that various constraints are imposed on the moving platform via 

several limbs. Some of limbs may overlap with another system constraint, or may contain common or redundant 
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mechanism constraints. Passive overconstrained parallel mechanism is characterized by a simple structure, high 

rigidity, high precision, and an important role in heavy load applications. Common constraints or redundant 

constraints have no effect on the motion characteristics of the mechanism. However, their utilization results in a 

static indeterminate problem when conducting force analyses. This, in turn, increases the relative complexity 

and difficulty when conducting analyses for this type of mechanism. Bi et al. [9] established force balance 

equations for all components of passive overconstrained parallel mechanism 2UPR+SPR via Newton-Euler 

method. The authors obtained a complete and solvable dynamic model by combining deformation compatibility 

equations. Wojtyra et al. [10-13] proposed several analytical and numerical methods for solving the joint 

constraint reaction forces of passive overconstrained mechanisms. By considering tension and compression 

deformation as well as stiffness of the limbs, a solution for the force problem of 7-SS passive overconstrained 

parallel structure six-dimensional force sensor is obtained [14]. Under the assumption of independent elastic 

limb deformations when loaded with the actuated force/torque and the constraint force/couple, a force analysis 

method for passive overconstrained parallel mechanisms is proposed [15]. Based on the screw theory, Huang et 

al. [16] proposed a force analysis method for passive overconstrained parallel mechanisms with either a collinear 

overconstrained force or coaxial overconstrained couple. Zhang et al. [17] and Rezaei et al. [18] established 

stiffness models of passive overconstrained mechanism Exechon and 2PRR-PPR via sub-structure synthesis 

technology and Karl's theorem, respectively. Based on the second Karl's theorem, Yang et al.  [19] deduced the 

stiffness matrix of the limbs constraint wrenches system of the passive overconstrained parallel mechanism. Wu 

et al. [20] investigated the influence of structural parameters on dynamic characteristics of PRRRP of 

overconstrained mechanisms. Arian et al. [21] employed Newton-Euler method to study the kinematics and 

dynamics of a three-degree-of-freedom (3-DOFs) moving overconstrained mechanism. Yang et al. [22] analyzed 

the elastic static stiffness of 2PUR-PSR overconstrained mechanism. According to [3], passive overconstrained 

parallel mechanism can be divided into limb stiffness coupling mechanism and limb stiffness decoupling 

mechanism. Furthermore, complex space elastic limb deformation is considered to propose a force analysis 

method for passive overconstrained parallel mechanism. It should be mentioned that additional research on the 

force analysis of passive overconstrained mechanism is conducted in [23-26]. 

Active overconstrained mechanism is defined as the mechanism that causes overconstraints due to actuation 

redundancy, i.e., the number of active inputs being greater than the number of DOFs. The introduction of 

actuation redundancy has played an important role in avoiding singularities, expanding the working space  [4], 

eliminating the gap of the kinematic joint [27], improving the rigidity of the machine and actuated stability [28], 



and especially improving the bearing load capacity [29-30]. Introduction of redundant actuation results in a 

statically indeterminate force analysis of active overconstrained mechanism. The actuated force/torque has 

infinite sets of theoretical solutions, and can be actively allocated in practice according to various optimization 

goals. Pseudo-inverse method is utilized to distribute the actuated force/torque of the active overconstrained 

mechanism in [31], with minimum input force/torque of the system being the optimization goal. In order to 

evaluate the actuated force compatibility performance of active overconstrained parallel mechanism, two 

indicators are proposed: the actuated force compatibility rate and the compatibility factor [32]. It is worth to 

mention that additional research on analysis of active overconstrained mechanism is carried out in [33-36]. 

Passive-input overconstrained mechanism is defined between the active overconstrained mechanism and the 

passive overconstrained mechanism. Although the overconstraint is generated by redundant actuation, the 

actuation itself is passive, such as spring, and its actuation mode cannot be actively controlled. Therefore, the 

force analysis of such mechanism is relatively complicated. Xu et al. [37] investigated mechanical and electrical 

properties with the goal of optimizing the structure of tetrahedral truss deployable mechanism. Xu et al. [6] 

established a dynamic model of passive-input overconstrained tetrahedral deployable antenna mechanism based 

on the Lagrange method. Li et al. [38] investigated the stiffness of the actuation torsion spring, hinge damping, 

influence of gravity and pretension of cable net to analyze the mechanical characteristics during deployment 

process of hoop-deployable antenna. Jin et al. [39] established a flexible multi-body dynamics model of a truss 

deployable antenna. Based on their research of kinematics theoretical model and simulation analysis of truss 

deployable antenna mechanism, Liu et al. [40] obtained the required actuated force to ensure the smooth 

deployment of the mechanism, while simultaneously designing the actuated spring. 

Force analyses of passive, active and passive-input overconstrained mechanism are all statically indeterminate 

problems. For special passive-input overconstrained mechanisms, motion force analysis is even more 

complicated. Currently, researchers have carried out force investigations of the aforementioned three types of 

overconstrained mechanisms. Although they have achieved certain results, the proposed methods have some 

limitations and do not distinguish the difference and connection of static indeterminate mechanics. Especially 

for passive-input overconstrained mechanisms, some methods have been proposed in the existing literature. 

However, there is no clear conclusion whether the existing methods are applicable to more complex multi-DOF 

mechanisms [8, 37-40]. 

In this paper, static indeterminate mechanics of three types of overconstrained mechanisms is investigated, 

compared, and analyzed. This presents an important theoretical contribution for the structural design, control, 



and application of overconstrained mechanisms.  

Apart from the introductory chapter, the paper itself is organized as follows. In Section 2, six types of 

overconstrained mechanisms are considered as an example to explore the force distribution of overconstrained 

mechanisms based on the idea of equivalent stiffness. The corresponding simulation models are established for 

simulation verification. In Section 3, the adaptability of equivalent stiffness to different overconstrained 

mechanisms is demonstrated, and the general expression is provided. In Section 4, influence mechanism of limb 

stiffness on the force distribution of different overconstrained mechanisms is discussed. In the final section, 

conclusions based on the conducted research are made. 

2. Force distribution mechanism of different overconstrained mechanisms based on the idea of equivalent 

stiffness 

The key of the force analysis method of overconstrained mechanism based on the idea of equivalent stiffness is 

to obtain the equivalent stiffness. Under the action of external force, the output motion of the mechanism is 

solved based on the equivalent stiffness, and then the force distribution of the mechanism is obtained. Three 

types of overconstrained mechanisms are taken as examples to solve the equivalent stiffness in detail and reveal 

the role of the idea of equivalent stiffness in the force analysis of overconstrained mechanisms. 

2.1 Passive overconstrained mechanism 

Taking 2SS+P and 7-SS passive overconstrained structures as examples, the equivalent stiffness and constraint 

wrench of each limb are solved. 

2.1.1 The 2SS+P passive overconstrained structure  

As presented in Fig. 1, the planar parallel structure 2SS+P consists of both moving and the fixed platform, as 

well as the two SS limbs and a P limb. Two ends of the limbs 1 and 2 are connected to the moving and the fixed 

platform via spherical joint (S). The P joint axis of limb 3, as well as axes of limbs 1 and 2 are simultaneously 

parallel and coplanar. A coordinate system o-xyz is established at the center of the moving platform. The x-axis 

is parallel to the P joint axis, the z-axis coincides with the normal direction of the plane where the structure is 

located, and the y-axis is determined based on the right-hand rule. Each of the two SS limbs has a local DOF 

which enables the rotation around its own axis. Furthermore, each limb provides a constraint force to the 

moving platform along the P joint axis, while the moving platform is subject to two linearly related constraint 

forces with DOF being zero. Therefore, the 2SS+P structure represents a plane passive overconstrained parallel 

structure. 
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Fig. 1. The 2SS+P passive overconstrained parallel structure  

Structure of the P joint is theoretically rigid, i.e., apart from the P joint axis direction, the deformation in other 

directions is zero. Thus, only deformations of two SS limbs under the external force along the direction of P 

joint is considered. For overconstrained structure 2SS+P, the main deformation source is limb axial deformation, 

the axial elastic deformation of limb 1 should be equal to the axial elastic deformation of limb 2. The axial 

elastic deformations of limb 1 and limb 2 are designated as δ1 and δ2, respectively, while the micro-displacement 

of the moving platform is designated as D . In other words, the structure meets the deformation compatibility 

relationship: 

1 2   D                                    (1) 

The constraint forces provided by the two SS limbs are f1 and f2, respectively. The force balance equation of 

the structure can be expressed as follows:   

gFGf                                         (2) 

where  1 1G ,  T

1 2f ff , and 
g

F  represents a generalized external force on the moving platform 

such as the external load, inertial force, gravity or friction. 

The relationship between the axial elastic deformation of the limb and the constraint force can be described 

as: 

1 1

2 2

f

f




   
   

   
K                                    (3) 

where 1 2diag( )k kK = . Parameters k1 and k2 represent axial stiffness of two SS limbs, respectively. 

By combining Eqs. (1) ~ (3), the following expression can be obtained: 



 T

1 2gF D k k D    GKG                             (4) 

According to Eq. (4), the equivalent stiffness of passive overconstrained structure 2SS+P can be expressed as: 

T

e 1 2K k k = GKG                                (5) 

After obtaining the equivalent stiffness of the structure, the micro-displacement of the moving platform can 

be obtained according to Eq. (4). Deformation of each limb can be obtained according to Eq. (1), and then the 

magnitude of the constraint wrench for each limb is obtained according to Eq. (3): 

  1T

e g
K F

f KG                                 (6) 

2.1.2 7-SS passive overconstrained structure  

As depicted in Fig. 2, the six-dimensional force sensor, 7-SS, with parallel structure configuration consists of 

both moving platform and the fixed platform, as well as seven measuring limbs (denoted as DiUi, i = 1, 2, …,7). 

Both ends of each limb are connected with both moving and the fixed platform via S joint. The reference 

coordinate systems Od-XdYdZd and Ou-XuYuZu are established at the center of the fixed platform and the moving 

platform, respectively. The angle between the Xd-axis and OdD1 is defined as α1, while the angle between the 

Xu-axis and OuU1 is defined as β1. Zd and Zu axes are perpendicular to the plane of the fixed platform. Parameter 

Ru is the distribution radius of the spherical hinge points of the moving platform, while Rd1 and Rd2 are the 

distribution radii of the spherical hinge points of the inner ring and the outer ring of the fixed platform, 

respectively. Parameter H marks the distance between the fixed platform and the moving platform. Angle α2 is 

defined between the line projection of the fourth spherical hinge point of the fixed platform and the origin of the 

coordinate on the OXY plane and theＸ-axis of the coordinate system. Angle β2 represent an angle between the 

projection of the line between the fourth spherical hinge point of the moving platform and the origin of the 

coordinate on the OXY plane and theＸ-axis of the coordinate system. 
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Fig. 2. The 7-SS passive overconstrained structure 



In the 7-SS structure, each limb provides a constraint force along the limb axis to the moving platform, the 

main deformation source is limb axial deformation. The moving platform is subject to seven linearly related 

constraint forces. Maximum number of linearly independent variables is six, limiting all the DOFs of the 

moving platform. According to definition of the overconstrained wrenches, it is observed that these seven 

constraint wrenches are all characterized as overconstrained wrenches. Thus, the 7-SS structure is defined as 

spatial passive overconstrained parallel structure. Regardless of the limb gravity, under overconstrained and 

external forces acting upon the moving platform, the force balance equation of the structure can be expressed as: 

r,1 r,1 r,2 r,2 r,7 r,7
ˆ ˆ ˆ           F

F ff f f$ S S S G f                         (7) 

where  T

F x y z x y zF F F M M M S represents the six-dimensional external force on the moving platform. 

 r,1 r,2 r,7
ˆ ˆ ˆF

f    LG S S S ,  r,
ˆ 1,2, ,7i i  LS  represents unit wrenches of the constraint wrenches 

r,iS . 

 T

r,1 r,2 r,7f f f Lf , r,if  represents the magnitudes of the constraint wrenches 
r,iS . 

According to the principle of virtual work, the following expression is true: 

T T

Ff l = $ D                                       (8) 

where  T1 2 7     l l ll = represents deformation of the each limb along the axis, while

 T

x y z x y z     D represents the six-dimensional micro-displacement of the moving platform 

under the influence of the external force F$ . 

By substituting Eq. (7) into Eq. (8), Eq. (9) can be obtained: 

       - - T T
T T T T =F F

F f f  l f $ D f f G D G D                       (9) 

Magnitude of the constraint force for each limb can be expressed as: 

f = K l                                         (10) 

where 1 2 7diag( )k k kK = L  and ik represents the axial stiffness of the limb. 

By substituting Eqs. (9) and (10) into Eq. (1) yields: 

 T

 F F

F f f$ G K G D                                 (11) 

According to Eq. (11), the equivalent stiffness of the passive overconstrained 7-SS structure can be deduced 

as follows: 

 T
F F

e f fK = G K G                                    (12) 



After obtaining the equivalent stiffness of the structure, the deformation of the moving platform can be 

obtained according to Eq. (11). On the other hand, the deformation of each limb can be obtained according to Eq. 

(9). Lastly, according to Eq. (10), the magnitude of limb constraint force is obtained as: 

   
T 1F

f e Ff = K G K $                                    (13) 

2.1.3 Simulation verification  

7-SS passive overconstrained structure is considered as an example for simulation analysis. As shown in Fig. 

3, a rigid-flexible hybrid model with structure parameters provided in Table 1 is established. Each limb link 

represents a flexible body, while both moving and the fixed platforms represent rigid bodies. Six-dimensional 

external force $F = [10N 25N 20N 15N∙m 20N∙m 5N∙m]T at the center of the moving platform is applied. By 

assuming negligible gravity effects, theoretical and simulation values of the constraint forces of each limb are 

compared in Table 2. 

Table 1. Structural parameters of 7-SS passive overconstrained structure  

Ru (mm) Rd1 (mm) Rd2 (mm) α1 (º) α2 (º) 

300.0 154.519 464.571 38.080 65.0 

β1 (º) β2 (º) H (mm) Di(i=1, 2, …, 7) (mm) lj (j=1, 2, …, 6) (mm) 

30.0 90.0 92.325 30.0 195.90 

 

Fig.3 Simulation model of the 7-SS passive overconstrained structure 

Table 2. Comparison between theoretical and simulation values of constraint forces 

Magnitude of the 

constraint forces 

Theoretical 

value /N 

Simulation 

value /N 

Absolute 

error /N 

Relative 

error 

f1 −38.5398 -39.5548 1.015 2.5661 % 

f2 53.7447 52.5488 1.1959 2.2758 % 

f3 55.3749 55.1765 0.1984 0.3596 % 

f4 24.4308 25.4113 0.9805 3.8585 % 



f5 −33.6477 -32.4862 1.1615 3.5754 % 

f6 −44.9902 -44.8267 0.1635 0.3647 % 

f7 12.2836 12.3326 0.049 0.3973 % 

According to Table 2, the relative error of the constraint forces between the theoretical and the simulation 

values f1~f7 does not exceed 3.9%. This, the error is mainly caused by the mesh division method and division 

accuracy when establishing the flexible body model of each limb. It can be concluded that the force analysis of 

the passive overconstrained mechanism based on equivalent stiffness method is successfully verified. 

2.2. Active overconstrained mechanisms 

Taking 2SPS+P and 7-SPS active overconstrained mechanisms as examples, the equivalent stiffness and 

distribution of actuated force of each limb are solved. 

2.2.1 2SPS+P active overconstrained mechanism 

The planar parallel mechanism 2SPS+P[41] is shown in Fig. 4. The main difference from the planar passive 

overconstrained mechanism 2SS+P is that the P joints along the limb axes are added to the two existing SS 

limbs and considered as the actuated joints. In a similar manner to the 2SS+P passive overconstrained 

mechanism, a coordinate system o-xyz is established at the center of the moving platform. The x-axis is parallel 

to the P joint axes of the three limbs, the z-axis coincides with the normal direction of the plane where the 

mechanism is located, and the y-axis is determined based on the right-hand rule. The two SPS limbs each have a 

local DOF that enables their rotation around the P joint axis, which does not provide constraints on the moving 

platform. Thus, the DOF of the 2SPS+P mechanism is determined by the limbs P. In addition, DOF of the 

mechanism can also be obtained according to the modified G-K equation: 

   
1

1 6 6 7 1 15 2 1
g

i

i

M d n g f v


                           (14) 

Eq. (14) indicates that the mechanism 2SPS+P has one DOF and two actuations. Therefore, the 2SPS+P the 

mechanism is considered as a planar active overconstrained parallel mechanism. 
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Fig. 4. The 2SPS+P active overconstrained mechanism  

It is assumed that the stiffness of the moving platform is far greater than the stiffness of limbs, the main 

deformation source is limb axial deformation. The axial deformation of the non-redundant limb and the 

redundant limb are δ1 and δ2, respectively. The output displacements are d1 and d2, respectively, the displacement 

of the moving platform is D. The compatibility relationship of displacement can be expressed as: 

1 1 2 2d d D                                      (15) 

The relationship between the axial elastic deformation of the limbs and the actuated force can be described as: 

1 1 1

2 2 2

0

0

F k

F k




    
    

    
                              (16) 

where k1 and k2 represent the axial stiffness of the non-redundant limb and the redundant limb, respectively. 

Parameters F1 and F2 represent the actuated force of the non-redundant limb and the redundant limb, 

respectively. 

The force balance equation established on the moving platform can be obtained: 

g
FGF                                     (17) 

where G = (1 1), F= (F1 F2)T and 
g

F  represents generalized external force. 

In full position control mode, displacements d1 and d2 are actively provided. Hence, the displacement 

compatibility described in Eq. (15) can be transformed into: 

1 1T

2 2

d
D

d



   

    
   

G                                (18) 

By combining Eqs. (16) ~ (18), the actuated force of the non-redundant limb and the redundant limb in full 



position control mode can be obtained as: 

   
 

1 1 1 2 1 21 11 1
1 2

2 2 2 1 2 2 1

g

g

g

F k k k d dd d
F k k

d d F k k k d d

                           
WF G GW W    (19) 

where W = diag−1(k1, k2),   1
-1 T -1 T=


WG W G GW G  represents the 

-
W weighted generalized inverse of 

the force mapping matrix G. 

When d1=d2= d, Eq. (19) is simplified to: 

1 1

2 21 2

g
FF k

F kk k

         
                                 (20) 

By combining Eqs. (15), (16) and (20), the following expression can be obtained: 

  1 2  gF k k D d                                  (21) 

The detailed deduction process of the above part can be resorted to reference [41]. 

According to Eq. (21), when the output displacement of the non-redundant limb and the redundant limb are 

equal, the distribution of the actuated force of two limbs is consistent with the passive overconstrained 

mechanism. In such cases, the equivalent stiffness of the mechanism is equal to e 1 2K k k= . 

According to Eq. (19), if the output displacements of the non-redundant limb and the redundant limb are 

inconsistent, the actuated forces of two limbs still exist in Eq. (20). Furthermore, there is a part of the actuated 

force equal to   1 1 2
1 2 1 2

2 1

d d
k k k k

d d

     
, which means that the sum of the actuated forces of these two limbs 

is zero. This part called an internal force, i.e., the force that does not resist external forces but balances each 

other within the mechanism. The greater the difference between the output displacements of the two limbs, the 

greater the internal force which is produced by the two actuated limbs. Therefore, the output displacements of 

the two limbs must be consistent to ensure the system’s compatibility motion without the internal force. 

2.2.2 7-SPS active overconstrained mechanism 

The 7-SPS active overconstrained mechanism is shown in Fig. 5. The main difference from the 7-SS passive 

overconstrained mechanism is that the P joints along the axis of each limb are added to seven SS limbs, and they 

are defined as actuated joints. Each of the seven SPS limbs has a local DOF allowing the rotation around the P 

joint axis, which does not enforce constraints on moving platform. Therefore, the moving platform has six DOFs, 

while the mechanism has seven actuations. Hence, the 7-SPS mechanism belongs to active overconstrained 

mechanism. In Fig. 5, limbs 1-6 are non-redundant limbs, while limb 7 is redundant limb. 
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Fig. 5. The 7-SPS active overconstrained mechanism  

Under assumption of negligible limb gravity effects, each limb only provides one actuated force vector along 

the limb axis towards the moving platform. The force balance equation for the moving platform is: 

1 1 2 2 7 7
ˆ ˆ ˆ Fg

Fg FF F F          $ S S S G F                          (22) 

where  T

Fg x y z x y zF F F M M M S represents the six-dimensional external force received by the moving 

platform.  1 2 7
ˆ ˆ ˆFg

F    G S S SL ,  ˆ 1,2, ,7 i iS L represents the unit wrench of the actuated force vector  iS . 

 T

1 2 7F F FF L , iF  represents the magnitude of the actuated force vector  iS . 

Assuming superior stiffness of the moving platform compared to the stiffness of the seven limbs, the moving 

platform is considered as a rigid body, and the main deformation source is limb axial deformation. Parameter 

l  is the sum of the axial elastic deformations  i  generated by each limb and the actuation output 

displacement id , which can be written by employing the six-dimensional displacement D generated by the 

moving platform under the external force:  

   T T

1 2 7
ˆ ˆ ˆ Fg

F     l S S S D G DL                          (23) 

where  T1 2 7     l l ll = , , 1,2, 7   i i il d i L ,  T

x y z x y z     D . 

If  1 1 2 6
ˆ ˆ ˆ   G S S SL , 2 7

ˆ G S , then  1 2

Fg

F G G G . Thus, Eq. (23) can be divided into: 

 T T

1 2 6 1

T

7 2

       

 

l l l

l

G D

G D
                             (24) 

If 1G  is invertible, then the following expression can be written: 

   1 TT

1 1 2 6


     l l lD G                             (25) 



By substituting Eq. (25) into Eq. (24): 

   1 T
T

7 1 2 1 2 6


       l l l lG G                            (26) 

The relationship between the axial elastic deformation of the limb and the actuated force can be expressed as 

follows: 

   F = Kδ K l d                                (27) 

where 1 2 7diag( )k k kK = L ,  T1 2 7    δ = ,  T1 2 7  d d dd = . 

By combining Eqs. (26) and (27), yields: 

11 T T

7 7 1 1 1 7k F d
   B K F B d                              (28) 

where 1 1 2 6diag( )k k kK = L ,  T

1 1 2 6F F FF L ,  T1 1 2 6  d d dd = , represent the limbs 

stiffness, actuated forces and output displacements of the six non-redundant limbs, respectively. Parameter B is 

equal to 
1

1 2


B G G . 

Eq. (28) can be transformed into: 

1T 1 T

1 7 7 1k d
      

B K F B d                           (29) 

By combining Eq. (22) and Eq. (29), the following expression is obtained: 

1

T 1 2T

7 1 T 1

1 7

Fg d
k

 

 
         

G G
S B d F

B K
                      (30) 

According to Eq. (30), the actuated forces of the non-redundant and redundant limbs can be obtained as 

follows: 

T
T

7 1Fg d    F A S B d                            (31) 

where

   
   

1 1

1
1 1 1

1 1
T 1 T1

1 2 7 1 7 11 2 1 2

1 1T 1
T T 1 T3 41 7

7 1 1 2 7 1 7 1

 


  

 


 


      
      

           

k k

k
k k k

G G B K B B K BG G A A
A

A AB K
B K G G B K B K B

. 

Eq. (31) can be transformed into: 

     T T T

1 3 2 4 7 1Fg
d   F A A S A A B d                     (32) 

Eq. (32) is further simplified as: 

     T T

2 4 7 1

Fg

F Fg d


   
W

F G S A A B d                      (33) 



where  Fg

F



W
G  represents the W-weighted generalized inverse of the force mapping matrix 

Fg

F
G ,

1

1 2 7diag ( )
k k kW = L ,        1

T T
-1 -1=Fg Fg Fg Fg

F F F F



W
G W G G W G . 

According to Eq. (32), in the full position control mode, the actuated force of the active overconstrained 

mechanism 7-SPS can be actively adjusted via actuation output displacement. Part of the actuated force is 

employed to balance the external force, while the other part is used to coordinate internal force due to the 

difference in actuation output displacements. When the output displacement of the redundant limb is equal to 

T

7 1d  B d , the internal force is equal to    T T

2 4 7 1 0d  A A B d . Distribution of the actuated force of each 

limb is consistent with the 7-SS passive overconstrained mechanism, while the equivalent stiffness of the 

mechanism is equal to  T
Fg Fg

e F FK = G K G . 

2.3. Passive-input overconstrained mechanisms 

Taking 2SPS+P and 7-SPS passive-input overconstrained mechanisms as examples, the equivalent stiffness and 

distribution of actuated force of each limb are solved. 

2.3.1 2SPS+P passive-input overconstrained mechanism 

The 2SPS+P active overconstrained mechanism is shown in Fig. 4. If spring actuation is employed, the 

mechanism becomes a passive-input overconstrained mechanism, as shown in Fig. 6. Unlike the active 

overconstrained mechanism, the spring represents a passive-input, and its actuated mode cannot be actively 

controlled. 

Non-redundant 

limb SPS

Redundant 

limb SPS

P joint

Fg D

o

x
y

x1

F2F1

x2

Spring

 

Fig.6. The 2SPS+P passive-input overconstrained mechanism  



Force analysis of the 2SPS+P passive-input overconstrained mechanism is carried out, the main deformation 

source is passive spring deformation, with parameters 1k  and 2k  representing the non-redundant and 

redundant limb stiffnesses. The output displacement of the actuation, i.e., the deformation of the spring, is 

denoted as 1x  and 2x , respectively. If initial compression of the spring is equal to 10x  and 20x , and the 

displacement of the moving platform is D, then the displacement compatibility relationship of the mechanism 

can be expressed as: 

1 2x x D                                      (34) 

If 1 2x x D x   , the mechanism represents a single-DOF mechanism. There is a single independent 

generalized coordinate, and x is selected as the generalized coordinate. Dynamic equation is established 

according to the second Lagrange equation, which can be expressed as: 

d

d

v v P

g

E E E

t x x x
F

  
  

  &
                           (35)  

where v
E  and P

E  represent kinetic and potential energy of the mechanism, respectively, and g
F  represents 

the generalized external force. 

During motion, the moving platform and the connecting links move in translation. Total kinetic and potential 

energy of the mechanism can be expressed as follows: 

  2

1 2

1

2
v D

E M M M x   &                             (36) 

   2 2

1 10 2 20

1 1

2 2
P

E k x x k x x                           (37) 

where D
M , 1M  and 2M  represent masses of the moving platform and the two limb connecting links, 

respectively. 

By substituting Eqs. (36) and (37) into Eq. (35), dynamic equation can be derived as: 

0e e g
Mx K x K x F  &&                              (38) 

where 1 2D
M M M M   , 

1 2g

D

F F F
x

M

 
&& , e 1 2K k k= , 

1 10 2 20

0

e

k x k x
x

K


 。 

The relationship between the axial displacements of the limbs and actuated forces can be obtained: 

1 101 1

2 202 2

0

0

k xF k x

k xF k x

     
      

     
                         (39) 



By substituting Eq. (39) into Eq. (38): 

0

1g D

e D

F M
x x

K M M


  


                            (40) 

The equivalent stiffness of the 2SPS+P passive-input overconstrained mechanism is equal to e 1 2K k k= . 

When the passive spring stiffness is provided, the displacement of the moving platform can be obtained 

according to Eq. (40). Then, actuated force of the non-redundant and redundant limbs can be calculated 

according to Eq. (39). 

2.3.2 7-SPS passive-input overconstrained mechanism 

The 7-SPS active overconstrained mechanism is shown in Fig. 5. If spring actuations are employed (Fig. 7), 

the mechanism becomes passive-input overconstrained mechanism. 
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Fig.7 The 7-SPS passive-input overconstrained mechanism  

The 7-SPS pssive-input overconstrained mechanism has six DOFs. 
d

u

O

O
P  and 

d

u

O

O
R  are used to describe 

both position and the orientation of the moving platform, respectively. The position vector of the S joint on the 

fixed platform is expressed as: 

 T
d d d d , 1,2,...7O O O O

i Di Di Dix y z i D                      (41) 

where 
dO

Di
x , 

dO

Di
y  and 

dO

Di
z  are obtained according to the circumferential distribution of the S joint on 

the fixed platform. 

The position vector of the S joint on the moving platform is expressed as: 

 T
u u u u , 1,2,...7O O O O

i Ui Ui Uix y z i U                     (42) 

where 
uO

Ui
x , 

uO

Ui
y  and 

uO

Ui
z  are obtained according to the circumferential distribution of the S joint on 

the moving platform. 



For each limb, the closed-loop equation is satisfied: 

  d d d d d u d

u u u
1 3 1

ˆ O O O O O O O

i i O i i O O i i
d       

：，
S P U D P R U D               (43) 

where ˆ
iS  is the unit wrench of the actuated force wrench and  

1 3 1

ˆ
i


：，
S  represents the first three lines of ˆ

iS . 

In order to obtain the output displacement id  of actuation and eliminate  
1 3 1

ˆ
i


：，
S , two sides of Eq. (43) are 

dot-multiplied by themselves: 

T
2 d d u d d d u d

u u u u

O O O O O O O O

i O O i i O O i id           P R U D P R U D          (44) 

Therefore, the output displacement can be derived as follows: 

1/2
T

d d u d d d u d

u u u u

O O O O O O O O

i O O i i O O i id              
P R U D P R U D      (45) 

By employing the same equivalent stiffness solution of the 7-SS passive overconstrained mechanism, the 

equivalent stiffness of the 7-SPS passive-input overconstrained mechanism can be expressed as: 

 T
Fg Fg

e F FK = G K G                                  (46) 

where  1 2 7
ˆ ˆ ˆFg

F    G S S SL  and 1 2 7diag( )k k kK = L . 

Since configuration of the mechanism varies with time, the mapping matrix Fg

FG  is also altered, that is, 

eK  changes in real time. According to Eq. (43) yields: 

   d d u d

u u
1 3 1

ˆ /O O O O

i O O i i i
d   

：，
S P R U D                     (47) 

The six-dimensional displacement, D, of the moving platform under the action of an external force can be 

calculated as follows: 

     1T
1 Fg Fg

e g F F gdt dt


  
  

 
 D = K F G K G F                    (48) 

Axial displacement and actuated force of each limb must satisfy the following expression: 

0 F = F Kd                                 (49) 

where  T

1 2 7F F FF L  represents the actuated force of each limb,  T

0 10 20 70F F FF L  

represents the preload of each limb spring, and  T

1 2 7d d dd L  represents the output displacement of 

each limb. 



Combining the Eq. (43) with Eqs. (48) and (49), the output displacement of the moving platform, output 

displacement of actuation and actuated force of actuation can be obtained. 

2.3.3 Simulation verification 

The 7-SPS passive-input overconstrained mechanism is considered as an example for the simulation analysis. 

Initial mechanism parameters are consistent with the 7-SS passive overconstrained mechanism. Since the 

mechanism is actuated via springs, limb deformations are not considered, the rigid body model of the 

mechanism is employed as Fig. 8. Spring stiffness of limbs 1-7 is taken as 

 T 35.3 1.3 6.3 35.3 7.3 166.3 10 N/mK . The spring preload is set to 100 N, and an external 

force $F =[-10N -25N -20N 0N∙m 0N∙m 35N∙m]T is applied to the center of the moving platform. Comparison 

between theoretical and simulation values of actuated forces is shown in Fig. 9. 

 

Fig. 8. Simulation model of the 7-SPS passive-input overconstrained mechanism
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Fig.9. Comparison between theoretical and simulation values of the actuated force 

According to Fig. 9, the theoretical and simulation values of actuated forces are correlating perfectly. This is 

because the parameters of the established simulation model are completely consistent with the theoretical model. 



Parameters such as gravity, joint shape and friction are not considered. Thus, each component represents a rigid 

body without errors. It can be concluded that force analysis of the passive-input overconstrained mechanism 

based on the equivalent stiffness method is verified. 

3. Adaptability of the equivalent stiffness to three different types of overconstrained mechanisms 

Main goal of passive overconstrained, active overconstrained and passive-input overconstrained mechanisms 

force analysis is to obtain the equivalent stiffness based on the equivalent stiffness method. According to Section 

2, the equivalent stiffness of three types of overconstrained mechanisms can be uniformly expressed as: 

 T
F F

e f fK = G K G                                 (50) 

For passive overconstrained mechanism, by considering the axial elastic deformation of limbs, the mechanism 

force balance equation should first be established. Then, virtual work principle should be combined to obtain 

deformation compatibility equation of the mechanism. According to the relationship between the axial stiffness 

and limb deformation, the relationship between the external force and the output displacement of the moving 

platform can be established. Furthermore, the equivalent stiffness matrix of the passive overconstrained 

mechanism can be obtained.  

For active overconstrained mechanism in the position control mode, the output displacement of actuation is 

provided by the inverse kinematics solution of the mechanism. This is done by combining the force balance and 

displacement compatibility equations to establish the analytical relationship between the magnitudes of actuated 

wrenches and the external force with the limb stiffnesses to obtain the equivalent stiffness matrix. The 

equivalent stiffness of the passive-input overconstrained mechanism is comparable to the passive 

overconstrained mechanism. For a single-DOF passive-input overconstrained mechanism, its equivalent 

stiffness is constant. For multi-DOF passive-input overconstrained mechanism ( 1M  ), its equivalent 

stiffness is altered in real time. 

The force analysis method based on the idea of equivalent stiffness is suitable for all three types of 

overconstrained mechanisms. General expression can be written as: 

   
T

0

F

f e in F = F K G D K F                        (51) 

where F  represents the restraint or actuated force/couples, 0F  represents the initial preload of actuation,

1 2diag( )ik k kK = L  represents the vector matrix composed of the stiffness of each limb, F

fG  

represents the force mapping matrix from limbs to the moving platform,  eD K  represents the output 



displacement function of the moving platform based on the equivalent stiffness, and inF  represents the internal 

force due to the incompatibility output displacement of actuation. 

According to Eqs. (50) and (51) and the equivalent stiffness, the constraint force of the passive 

overconstrained mechanism can be directly solved. 0F  and inF  are both zero. 0F  of the active 

overconstrained mechanism is zero, and the actuated force can be actively adjusted according to the output 

displacement of actuation. One part of the actuated force is directly solved according to the equivalent stiffness 

of the mechanism, while the other part is the internal force emerging from the difference in the output 

displacement of actuation. When the output displacements of the non-redundant limbs and the redundant limbs 

are compatible, the mechanism does not generate internal force. Currently, the distribution of the actuated force 

is consistent with the passive overconstrained mechanism. The passive-input overconstrained mechanism 

employs passive components (such as springs) as actuation, while the actuation mode itself cannot be actively 

controlled. The output displacement can be solved based on the equivalent stiffness, after which the actuated 

force can be solved. However, analysis process from a single-DOF mechanism to a multi-DOF mechanism is 

gradually becoming more complicated. For a single-DOF mechanism, the equivalent stiffness is constant. The 

dynamic model based on the second type of Lagrange equation is established to obtain the output displacement 

of the mechanism and the actuated force of each limb. For a multi-DOF mechanism, as the mechanism 

configuration varies with the time, its equivalent stiffness changes as well. First, the output displacement should 

be obtained based on the equivalent stiffness and the vector matrix integral. Then, actuated force of each limb is 

obtained based on mechanism kinematics inverse solution and the mechanical properties of springs. 

4. Influence mechanism of limb stiffness on the force distribution 

According to force analysis of the passive overconstrained mechanism in Section 2.1, the constraint force of the 

7-SS passive overconstrained structure is equal to    
T 1F

f e Ff = K G K $ . By considering limb 1 and 6 as 

examples, the axial stiffness is magnified by 0.1~2 times, while stiffness of other limbs remains unchanged. 

Constraint force of each limb is obtained as shown in Fig. 10 and Fig. 11, respectively. 
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Fig. 10. Variation curve of constraint force as the function of k1  
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Fig. 11. Variation curve of constraint force as the function of k6 

According to Fig. 10 and Fig. 11, with an increase in the axial stiffness of limb 1 (or limb 6), an increase in 

the allocated constraint force is observed. The constraint forces of other limbs will increase or decrease 

accordingly. By analyzing other limbs in a similar manner, the same effect is observed. For the 2SS+P passive 

overconstrained structure, the greater the axial stiffness of the limb 1, the greater the allocated constraint force. 

Consequently, a decrease in the constraint force of the limb 2 is observed. Therefore, for passive 

overconstrained mechanism, with an increase in the limb stiffness, an increase in the constraint force follows. 

According to force analysis of the active overconstrained mechanism in section 2.2, for the full position 

control mode, the output displacements of the non-redundant and redundant limbs are provided by an inverse 

kinematics solution. Actuated forces of non-redundant and redundant limbs are determined via generalized 



external force of the system, output displacement of actuations, and the limb stiffness. When stiffness of the 

non-redundant and redundant limbs is equal, the limb actuated force is related to the output displacement of the 

limb actuation. When the output displacement of the non-redundant and redundant limbs meets the compatibility 

relationship, an increase in the limb stiffness will cause an increase in the actuated force. Therefore, in full 

position control mode of the active overconstrained parallel mechanism, only the output displacements are 

defined as the active quantities. On the other hand, actuated forces of non-redundant and redundant limbs are 

defined as the passive quantities, which cannot be directly distributed according to the optimized distribution 

algorithm. 

According to force analysis of the passive-input overconstrained mechanism in Section 2.3, for a single-DOF 

passive-input mechanism (2SPS+P), its equivalent stiffness is constant. The actuated force is influenced by a 

generalized external force on the system, mass of the moving components and the limb stiffness. The greater the 

limb stiffness, the greater the actuated allocated force. For multi-DOF passive-input mechanism (7-SPS), its 

equivalent stiffness varies in real time. The actuated force is determined via generalized external force and the 

limb stiffness. When stiffness of a single limb is altered, the position and orientation of the moving platform 

changes, which determines the output displacement of the actuations. Consequently, the actuated force increases 

or decreases. In other words, limb stiffness effect of the passive-input overconstrained mechanism on the output 

motion in each direction is inconsistent, and it needs to be analyzed in combination with the specific 

mechanism. 

Conclusions 

(1) Force analysis method for overconstrained mechanism based on equivalent stiffness is proposed. In order 

to show the generality of this method for overconstrained mechanisms considering limb axial deformation, the 

planar mechanisms and the spatial mechanisms are analyzed respectively. Analytical force expressions including 

equivalent stiffness of three types of overconstrained mechanisms are obtained. Common force characteristics of 

three types of overconstrained mechanisms are discussed from the stiffness perspective, and various internal 

mechanisms between them are elaborated. 

(2) The stiffness model is established by considering the compatibility of passive deformation and active 

displacements. The force analysis of passive, active, and passive-input overconstrained mechanisms is unified 

from the equivalent stiffness idea. In the future work, the authors will focus on the force analysis of 

overconstrained mechanism considering the axial deformation, bending deformation and torsion deformation of 

limbs. 
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