1. International Energy Outlook 2017. (2017).
2. Salameh, Z. Chapter 4: Energy Storage. in Renewable Energy System Design (2014). doi:10.1016/B978-0-12-374991-8.00004-0
3. Stolten, D., Can Samsun, R. & Garland, N. Fuel cells: data, facts and figures. (2016).
4. Mekhilef, S., Saidur, R. & Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 16, 981–989 (2012).
5. Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).
6. Yoshida, T. & Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24, 45–49 (2015).
7. Alaswad, A. et al. Developments in fuel cell technologies in the transport sector. Int. J. Hydrogen Energy 41, 16499–16508 (2016).
8. Wilberforce, T., Alaswad, A., Palumbo, A., Dassisti, M. & Olabi, A. G. Advances in stationary and portable fuel cell applications. Int. J. Hydrogen Energy 41, 16509–16522 (2016).
9. Samsun, R. C., Antoni, L. & Rex, M. Advanced Fuel Cells Technology Collaboration Programme Report on Mobile Fuel Cell Application : Tracking Market Trends. (2020).
10. Williams, M. C., Vora, S. D. & Jesionowski, G. A. Worldwide Status of Solid Oxide Fuel Cell Technology. ECS Trans. 96, 1–10 (2020).
11. Elcogen, Convion supply SOFC CHP systems to business district smart grid project in Finland. Fuel Cells Bull. February 2, 1 (2018).
12. Convion. No Title. (2020). Available at: https://convion.fi/products/.
13. Kharel, S. & Shabani, B. Hydrogen as a long-term large-scale energy storage solution to support renewables. Energies 11, (2018).
14. Bizon, N. Improving the PEMFC energy efficiency by optimizing the fueling rates based on extremum seeking algorithm. Int. J. Hydrogen Energy 39, 10641–10654 (2014).
15. Boldrin, P. & Brandon, N. P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2, 571–577 (2019).
16. Nissan unveils world’s first Solid-Oxide Fuel Cell vehicle. (2016). Available at: https://usa.nissannews.com/en-US/releases/nissan-unveils-world-s-first-solid-oxide-fuel-cell-vehicle#.
17. Nielsen, J., Persson, Å. H., Muhl, T. T. & Brodersen, K. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications. J. Electrochem. Soc. 165, F90–F96 (2018).
18. Leah, R. T. et al. Development of High Efficiency SteelCell Technology for Multiple Applications. ECS Trans. 78, 2005–2014 (2017).
19. Tucker, M. C., Lau, G. Y., Jacobson, C. P., DeJonghe, L. C. & Visco, S. J. Performance of metal-supported SOFCs with infiltrated electrodes. J. Power Sources 171, 477–482 (2007).
20. Bessekon, Y., Zielke, P., Wulff, A. C. & Hagen, A. ScienceDirect Simulation of a SOFC/Battery powered vehicle Fuel cell. Int. J. Hydrogen Energy 44, 1905–1918 (2018).
21. Donahue, W. J., Kwon, O.-H., Mahoney, F. M. & Pietras, J. D. SOFC STACK HAVING A HIGH TEMPERATURE BONDED CERAMC INTERCONNECT AND METHOD FOR MAKING SAME. (2007).
22. Carter, J. D., Myers, D. & Kumar, R. Bipolar Plate Supported Solid Oxide Fuel Cell with a Self-Sealed Anode Compartment. in Fuel Cell Seminar (2005).
23. Kim, K. J. et al. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability. Sci. Rep. 6, 22443 (2016).
24. Dogdibegovic, E. et al. Scaleup and manufacturability of symmetric-structured metal-supported solid oxide fuel cells. J. Power Sources 489, 229439 (2021).
25. Navasa, M., Miao, X. Y. & Frandsen, H. L. A fully-homogenized multiphysics model for a reversible solid oxide cell stack. Int. J. Hydrogen Energy 44, 23330–23347 (2019).
26. Rizvandi, O. B., Miao, X. Y. & Frandsen, H. L. Fast and stable approximation of laminar and turbulent flows in channels by Darcy’s Law. Alexandria Eng. J. 60, 2155–2165 (2021).
27. Klemensø, T. et al. Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes. Solid State Ionics 224, 21–31 (2012).
28. Ovtar, S., Chen, M., Samson, A. J. & Kiebach, R. In-situ formed Ce0.8Gd0.2O1.9 barrier layers on yttria stabilized zirconia backbones by infiltration - A promising path to high performing oxygen electrodes of solid oxide cells. Solid State Ionics 304, 51–59 (2017).
29. Hagen, A., Barfod, R., Hendriksen, P. V., Liu, Y.-L. & Ramousse, S. Degradation of Anode Supported SOFCs as a Function of Temperature and Current Load. J. Electrochem. Soc. 153, A1165 (2006).
30. Linder, M. et al. Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation. J. Power Sources 243, 508–518 (2013).
31. Malzbender, J., Batfalsky, P., Vaßen, R., Shemet, V. & Tietz, F. Component interactions after long-term operation of an SOFC stack with LSM cathode. J. Power Sources 201, 196–203 (2012).
32. Essuman, E., Meier, G. H., Żurek, J., Hänsel, M. & Quadakkers, W. J. The effect of water vapor on selective oxidation of Fe-Cr alloys. Oxid. Met. 69, 143–162 (2008).
33. Grolig, J. G., Froitzheim, J. & Svensson, J. E. Coated stainless steel 441 as interconnect material for solid oxide fuel cells: Oxidation performance and chromium evaporation. J. Power Sources 248, 1007–1013 (2014).
34. Talic, B. et al. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects. J. Power Sources 354, 57–67 (2017).
35. Young, D. J., Zurek, J., Singheiser, L. & Quadakkers, W. J. Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar-H2-H2O. Corros. Sci. 53, 2131–2141 (2011).
36. Young, D. J., Chyrkin, A. & Quadakkers, W. J. A simple expression for predicting the oxidation limited life of thin components manufactured from FCC high temperature alloys. Oxid. Met. 77, 253–264 (2012).
37. Nakajo, A., Mueller, F., Brouwer, J., Van, J. & Favrat, D. Mechanical reliability and durability of SOFC stacks . Part II : Modelling of mechanical failures during ageing and cycling. Int. J. Hydrogen Energy 37, 9269–9286 (2012).
38. Peng, J. et al. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review. J. Power Sources 505, (2021).
39. Connor, P. A. et al. Tailoring SOFC Electrode Microstructures for Improved Performance. Adv. Energy Mater. 8, 1–20 (2018).