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Abstract  14 

Conservation agriculture (CA) is being promoted as a set of management practices that can 15 

sustain crop production while providing positive environmental externalities.  However, its 16 

impact on crop productivity is still hotly debated, and how this productivity will be affected by 17 

climate change remains uncertain. Here we compared the productivity of CA vs. conventional 18 

tillage (CT) systems under current and future climate conditions using a probabilistic machine-19 

learning approach at the global scale. We reveal large differences in the probability of yield gains 20 

with CA across crop types, climate zones, and geographical regions. We show that, for most crops, 21 

CA performed better in continental, arid and temperate regions than in tropical ones. Under 22 

future climate conditions, the relative productive performance of CA is expected to increase for 23 

maize in almost all cropping areas within the tropical band, thus improving the competitiveness 24 

of CA for this major crop.  25 

Conservation agriculture is a crop production system based on three principles: minimum soil 26 

disturbance (going as far as no tillage or NT), permanent soil cover with crop residue, and diversified 27 

crop rotation1. In compliance with sustainability goals, CA is designed to ensure the long-term crop 28 

production while improving crop resilience to climate change and protecting the environment. It has 29 

been shown to enhance soil carbon sequestration, improve soil quality, reduce soil erosion, and increase 30 

biodiversity2,3. However, since the productivity of crops depends on many interacting factors including 31 

local climatic conditions4, soil characteristics5, and agricultural management practices6, it is difficult to 32 

assess the potential of CA to increase agricultural productivity. Based on recent meta-analyses 5–7 33 

synthesizing current evidence on the effect of CA on crop yields, CA is expected to lead to a yield 34 

reduction6 compared to CT. However, the heterogeneity of the experimental results on CA vs. CT is 35 

very large, and their outcome varies as a function of climate conditions6 and management practices6–8. 36 

Most of the above studies relied on a synthetic aridity index or a large climate zone to characterize the 37 

impact of climate, which makes it hard to analyze the response of CA productivity to inter-annual 38 

weather variability or to predict the impact of future changes in climate. To date, a comprehensive, 39 

global synthesis of the impact of climate change on the productive performance of CA with respect to 40 

CT systems is still lacking. 41 



In this paper, we compared the crop yields of CA and CT systems under current and future climate 42 

conditions based on a new, global database of paired yield observations of NT (including CA and NT 43 

without crop rotation and/or residue retention) vs. CT. We compiled the datasets collected from the 44 

previous meta-analyses 5–7, and supplemented them by the latest literature references on this topic and 45 

the inclusion of a broader set of climatic variables from external databases, such as precipitation (P) 9 , 46 

minimum air temperature (Tmin) 10,  average air temperature (Tave) 9, maximum air temperature (Tmax) 47 
10 and potential evapotranspiration (E) 11,12 over the crop growing seasons 13 considered in each 48 

experiment. As an indicator of water availability for crops, the precipitation balance (PB) was defined 49 

as (P – E) over the growing season5.  50 

A machine learning model based on random forest 14 was trained and cross-validated based on 4071 51 

paired yield data of NT (including CA and NT without crop rotation and/or residue retention) vs. CT to 52 

map the probability of yield gain from CA (NT with crop rotation and residue retention), i.e. 53 (𝑌𝑖𝑒𝑙𝑑𝐶𝐴𝑌𝑖𝑒𝑙𝑑𝐶𝑇 > 1), at a spatial resolution of   0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 based on current (2011-2020) 54 

and future (2051-2060) average climatic conditions for eight major crops (barley, cotton, maize, rice, 55 

sorghum, soybean, sunflower, and wheat). Crop types, soil types and management practices were kept 56 

unchanged in all climate scenarios. The maps were then used to calculate the accumulated fractions of 57 

the cropping area as a function of the yield gain probability of CA vs. CT, and as a function of the level 58 

of change on the probability of yield gain from CA vs. CT in future climatic condition. These fractions 59 

show the proportions of cropping area with low to high probabilities of yield gain from CA vs. CT, and 60 

with low to high change level on the probability of yield gain from CA vs. CT under climate change. 61 

They were both computed at the global scale and in different climate zones15. The results were used to 62 

identify the favorable and unfavorable climate zones for CA, and to assess the climate change impact 63 

on the productivity of CA in different climate zones. The details of model setting for global projection 64 

are explained in the Methods section and further detailed in S1. 65 

Our results show that, under current climate condition, CA is associated with a high chance of yield 66 

loss under tropical climates (Figure 1) and that, for most of the studied crops, the overall probability of 67 

yield gain is higher in continental, arid, and temperate regions than in tropical regions (Figure 1a, Figure 68 

1b, Figure 1d-g). The risk of yield loss with CA is particularly high for rice, with a probability of yield 69 

gain with CA under 50% in about 80% of the global rice cropping area. This fraction rises to about 100% 70 

in the tropics (Figure 1d). 71 

For several crops and climate regions, the estimated effect of climate change on the probability of yield 72 

gain with CA is relatively moderate. In approximately half of the cropping areas, a decrease of up to 73 

10% in this probability is expected, while in the other half an increase of up to 10% may be anticipated 74 

(Figure 2). However, in some important cases the effect of climate change is stronger, especially for 75 

maize in tropical regions. Here, the probability of yield gain with CA increases in about 72% of the 76 

cropping area, with a larger than 10% gain for 30% of the maize cropping area (Figure 2c). An increase 77 

in yield gain is also estimated for more than 50% of the cropping area for rice and sorghum in tropical 78 

regions (Figure 2d, Figure 2f) and for sorghum in continental regions (Figure 2e).  79 

To gain further insight into the conditions suitable for CA, partial dependence plots 16 - a common 80 

approach used in machine learning to visualize the marginal effect of one or two inputs on the predicted 81 

outcome17 - were generated. The probability of yield gain with CA increases with decreasing PB, while 82 

the effect of temperature appears more complex (S2) since the relationship among yield gain, PB and 83 

Tave is not linear (Figure 3). Thus, the variation of CA performance in the future will depend on the 84 

current level of PB and Tave and the direction and magnitude of the change in these two drivers. The 85 

2D partial dependence plot of Figure 3 can help project changes in the performance of CA for a given 86 

location or region based on their current levels of PB and Tave and their anticipated variations. For 87 

example for maize, the increased temperature and relatively stable PB anticipated under climate change 88 



scenario RCP 4.5 in tropical regions (depicted by the continuous and dashed boxes in Figure 3) would 89 

lead to an increased probability of yield gain with CA, which is consistent with the results of Figure 2c.   90 

Probabilities of yield gain with CA show important geographical variations under both current and 91 

future climate conditions, in particular for maize (Figure 4) but also for other crop species (S3a-g). 92 

Yield gains with CA are more likely in relatively higher latitude regions (> 40 Deg.) than lower 93 

latitudinal bands for barley, cotton, rice, sorghum, soybean, sunflower, and wheat (S3), in line with the 94 

results showed on Figure 1. For maize, the probability of yield gain from CA is less than 0.4 in 95 

Laurentian Plateau in Canada, northcentral and northeast of the US, Brazilian Highlands, north part of 96 

Western Europe and east part of Eastern Europe, Central Asia and northeast of China. For this crop, the 97 

probability of yield gain is higher than 0.5 in Arid West of the US, most of the regions in Mato Grosso 98 

and part of Amazon Basin in Brazil, the southern part of west Africa, north of India, and North China 99 

Plain (Figure 4). For other crop species, CA has a higher chance to lead to a yield loss compared to CT 100 

in the tropical regions, south of China (S3a-g), and north of India (S3a-f). For rice, sorghum, sunflower, 101 

wheat cropped in Atlantic and Gulf Coastal Plain in the US, CA is also likely to lead to a yield loss 102 

(S3c, S3d, S3f, S3g). Finally, CA has higher chance to outperform CT in several major cropping areas 103 

of barley, sunflower and wheat (S3a, S3f, S3g; S5a, S5g, S5h). 104 

The maps reporting the differences of yield gain probabilities between current and future climate 105 

conditions (Figure 5 and S4) reveal important geographical disparities in the effects of climate change 106 

on the chances of yield gain with CA. Under climate change scenario RCP 4.5, the probability of yield 107 

gain is expected to increase in most of the northcentral and northeast of the US for barley, maize, 108 

sorghum, soybean, sunflower, and wheat (S4a, S4d-g, Figure 5); In most of the central-west region and 109 

Amazon Basin region in Brazil, Western Africa, and South Pacific Asia for maize, rice, and soybean 110 

(S4c, S4e, Figure 5); In India for cotton, maize, rice, sorghum, soybean, sunflower (S4b-f, Figure 5); In 111 

most of the north part of Central and Eastern Europe for barley, maize, sorghum, soybean, sunflower 112 

and wheat (S4a, S4d-g, Figure 5); In northeast China for rice, sorghum (S4c, S4d). While the overall 113 

performance of CA will decrease in the future in the US between 30- to 40-degree latitude for the barley, 114 

maize, cotton, rice, sorghum, soybean, and sunflower (S4a-f, Figure5); In most temperate regions in 115 

South America, including Uruguay, south of Brazil, and north of Argentina for barley, cotton, maize, 116 

rice, sorghum, and sunflower (S4a-d, S4f, Figure 5); In the southern part of east Europe and northwest 117 

Asia for Barley, soybean, sunflower and wheat (S4a, S4e-g);  In south China for cotton, rice, sorghum, 118 

sunflower (S4b-d, S4f). 119 

To assess the robustness of our conclusions, we analyzed the sensitivity of our results to four different 120 

climate models and RCP scenarios (S6). To summarize the response of our model to these choices, we 121 

plotted the fractions of global cropping areas corresponding to increasing levels of yield gain probability 122 

(from -0.1 to 0.2). The choice of the climate models had very little impact on the results (S6i-p), 123 

although the results obtained with Hadgem2-es, and Ipsl-cm5a-lr are somewhat more extreme than 124 

those obtained with Gfdl-esm2m and Miroc5. The sensitivity to the climate change scenarios was more 125 

important (S6a-h). Although the main conclusions remain similar across all RCP scenarios, the stronger 126 

changes of probability of yield gain are obtained under RCP 8.5 compared to RCP 6.0, RCP 4.5, and 127 

RCP 2.6 (S6a-h), in particular the changes of yield gains become higher for maize and rice under RCP 128 

8.5.  129 

Discussion 130 

Compared to previous studies on the productivity of CA5–7,18, this is the first time that the probabilities 131 

of yield gain with CA systems have been mapped in current and future climate scenarios. Thus, our 132 

results offer meaningful and new information for policymakers, agricultural extension services, and 133 

farmers. Relying on a global experimental dataset, we were able to identify favorable and unfavorable 134 

climatic conditions and geographical regions for the implementation of CA for eight major staple crops 135 

under current and future climate conditions. Some of the most promising geographical regions in our 136 



analysis had also been identified in previous studies18, but we were able to report information on yield 137 

gains as probabilities instead of the simple categories of yield increase or decrease. More importantly, 138 

none of the previous meta-analyses addressed the effect of future climate change scenarios on the 139 

performance of CA and its geographical patterns. For most crops, CA outperformed CT in continental, 140 

arid and temperate regions, but proved less suitable in tropical regions. This overall pattern is in line 141 

with previous work 6. We also show that there is higher chance of yield gain from CA under dryer 142 

conditions, compared to wetter environments 5–7,18. This is likely due to CA improving soil aggregate 143 

stability via crop residue returns to soils, which reduces soil evaporation and surface runoff, and 144 

maintains a higher level of soil moisture content compared to CT 19–27. This competitive advantage of 145 

CA comes into play for dryer climate conditions28–33 , but does not apply in wetter and cooler 146 

environment (S2a-c, S2f-i) where the soil evaporation is less intense. In tropical regions, CA is 147 

commonly associated with waterlogging especially with poorly drained soils5,6,27 which can result in 148 

substantial yield losses. Air temperature also influences the performance of CA, but its effect appears 149 

complex variable across crop species. Previous studies reported that permanent soil cover or residue 150 

retention tends to lower soil temperature under warm conditions, but this trend can be reversed under 151 

cold conditions because of soil cover acting as an insulation barrier22,34,35.  As a result, CA may reduce 152 

the negative impact of extreme air temperature events on crop yields, but this effect can be either 153 

positive or negative depending on crop types, cultivars and development stages. Lower soil 154 

temperatures may delay crop establishment and growth27,36,37 and have a negative effect on crop yield38–155 
40, but lower soil temperature has a positive impact on crop yield under arid conditions36,37.  156 

CA systems can dramatically improve biodiversity, increase the soil organic matter, and bring a lot of 157 

positive environmental externalities such as reduced soil erosion, improved soil quality and enhanced 158 

carbon sequestration 2,3,41. Moreover, CA can provide a buffer effect to mitigate the impacts from more 159 

intense rainstorms, more frequent droughts and increased daily temperature ranges, which can 160 

significantly increase the crop resilience towards the changing climate and increase the stability of crop 161 

yields42,43.  Although CA is associated with a high probability of yield loss in many regions, we also 162 

showed that, under future climate conditions, the relative productive performance of CA is expected to 163 

increase for several crop species. This is especially true for maize in tropical regions, which further 164 

strengthens the competitiveness of CA for this staple crop. Our results thus support the idea that CA 165 

will be a relevant option for cropping systems in the future, capable of ensuring a long-term, sustainable 166 

agricultural production for some key cropping areas44,45. 167 



Methods 168 

Data collection  169 

The literature search was done in February 2020 using the following keywords ‘Conservation 170 

agriculture / No-till / No tillage / Zero tillage’ & ‘Yield / Yield change’ in the websites ‘ScienceDirect’ 171 

and ‘Science Citation Index (web of science)’. A total of 1012 potentially relevant papers were 172 

identified by reviewing the title and abstract, these papers were then screened according to the procedure 173 

summarized in S7. In the end, 422 papers left (published between 1983 to 2020), and 4071 paired yield 174 

observations from NT (including CA and NT without crop rotation or/and residue retention)  and CT 175 

were collected from those papers, including 8 major crop species (369 observations for barley, 94 176 

observations for cotton, 1580 observations for maize, 169 observation for rice, 145 observations for 177 

sorghum, 552 observations for soybean, 60 observations for sunflower, 1122 observations for wheat) 178 

in 51 countries (S8) from the experiment year 1980 to 2017. We also retrieved from the papers the 179 

information of crop type, year and location of the experiments, and agricultural management activities 180 

including crop irrigation (crop irrigated vs. rainfed), the application of fertilizers (field fertilized vs. 181 

unfertilized), the management of weed and pest (controlled vs. non-controlled), crop rotation (rotated 182 

vs. monoculture) and the management of crop residues (retained vs. removed). Additional data were 183 

extracted from several external databases, pertaining to crop growing season 13, soil texture 46 and 184 

climate factors such as precipitation (P) 9, minimum temperature (Tmin) 10,  average temperature (Tave) 185 
9, maximum temperature (Tmax) 10 and potential evapotranspiration (E) 11,12 in the growing season 13 in 186 

a particular year, and the precipitation balance (PB) was defined as precipitation minus total 187 

evapotranspiration, which indicated the water availability in the growing season. These data were 188 

obtained at a spatial resolution of 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, and if the source data were in a 189 

finer spatial resolution, they were downscaled to  the resolution of 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒. 190 

Model training and cross-validation 191 

The machine learning algorithm random forest 14 was trained to analyze the yield ratios of NT (including 192 

CA and NT without crop rotation or/and residue retention)  vs. CT as the function of climatic variables, 193 

crop types, soil textures, and agricultural management activities. The climatic variables during the 194 

growing season such as PB, Tmin/Tave/Tmax were defined as numerical inputs, while crop type, soil 195 

texture, and agricultural management activities including crop irrigation, field fertilization, control of 196 

pests and weeds, crop rotation and crop residue management were defined as categorical inputs. The 197 

model output was expressed as the probability of yield gain from NT (including CA and NT without 198 

crop rotation or/and residue retention) vs. CT. The performance of the algorithm was assessed by 199 

estimating the area under the ROC curve by leave-one-out cross validation (LOOCV) (AUC=0.782, see 200 

S9). Since the inputs related to crop rotation and crop residue management were included in the model, 201 

it was possible to map the probability of yield gain for CA systems when combining NT, crop rotation 202 

and crop residue management. Maps were generated for all crop species at a spatial resolution of 203 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒.  204 

Importance and partial dependence plots 205 

Precipitation balance and average temperature appeared to be the most influential input parameters in 206 

the importance ranking obtained from our random forest algorithm (S10). We thus drew 2D partial 207 

dependence plots relating the probability of yield gain with CA (NT with crop rotation and residue 208 

retention) to PB and Tave, on a crop-by-crop basis. The detailed procedure implemented to produce 2D 209 

partial dependence plots is described in the flow chart reported in S11.  210 

Global projection 211 

The fitted random forest model was used to estimate the probability of yield gain from CA (NT with 212 

crop rotation and residue retention) for each grid cell located in cropping regions under current (2011-213 



2020) and future (2051-2060) climate scenarios. The monthly-average values of the climatic variables 214 

(PB, Tmin/Tave/Tmax) were calculated in each grid cell over the two time periods considered, and then 215 

these data were used to calculated the climatic variables during the growing season based on the crop 216 

calendar database13 (assume no change in current and future scenario). All the climatic data in both 217 

current and future scenarios were obtained from four climate models: Gfdl-esm2m, Hadgem2-es, Ipsl-218 

cm5a-lr, and Miroc5, and 4 RCP scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. This results in 219 

32 combinations (4 climate models x 4 RCP scenarios x 2 periods). We mainly focused on the Ipsl-220 

cm5a-lr model and RCP 4.5 scenario in the baseline simulations, because of their importance and similar 221 

role in the protocol of ISIMIP2b project47. However, results from all combinations were analyzed and 222 

shown in S6. All the climatic data can be downloaded through the website of Lawrence Livermore 223 

National Laboratory 48.  224 

We did not change the categorical inputs describing cropping practices between current and future 225 

scenarios. The global soil texture was set based on HWSD dataset46. To estimate the performance of 226 

CA vs. CT, we set the agricultural management activities as crop rotated, crop residue retained. As for 227 

other agricultural management practices, the field was set to be fertilized, and with the control of pest 228 

and weed. As for crop irrigation, it was set based on the crop irrigation mask from MIRCA2000 dataset 229 
49. When more than 50% of the area in a grid cell were under rainfed conditions for a given crop in the 230 

MIRCA2000 database, then this cell was considered as non-irrigated for this crop, and vice versa. See 231 

S1 for the details of model settings. The model outputs were mapped at a spatial resolution of 232 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 based on the MIRCA2000 crop mask database49. Accumulated area 233 

fractions under different levels of yield gain probability and different levels of probability change 234 

between current and future scenarios were computed at the global scale and in different climate regions.  235 

Climate regions  236 

The “global” indicated the global cropping region for each crop25. According to the Köppen-Geiger 237 

classification 15 and its nomenclature. The “tropical climate” included the regions with the climate types 238 

Af, Am, As, Aw 15. The “arid climate” included the regions with the climate types Bwk, Bwh, Bsk, Bsh 239 
15. The “temperate climate” included the regions with the climate types Cfa, Cfb, Cfc, Csa, Csb, Csc, 240 

Cwa, Cwb, Cwc 15. The “continental climate” included the regions with the climate types Dfa, Dfb, Dfc, 241 

Dfd, Dsa, Dsb, Dsc, Dsd, Dwa, Dwb, Dwc, Dwd 15.242 



Figures 243 

Figure 1 244 

 245 

 246 

Accumulated fraction of the cropping area as a function of the probability of yield gain from CA (with field fertilization, and 247 
the control of weed and pest) for eight major crops (a-h) and different climate zones. The results are based on the average 248 
climate conditions over 2021-2020 according to the Ipsl-cm5a-lr climate model and RCP 4.5 scenario. The cropping areas in 249 
the main climate zones are given in (i).250 



Figure 2 251 

 252 

 253 

Accumulated fractions of the cropping area for different levels of change in the probability of yield gain from CA (with field 254 
fertilization, and the control of weed and pest). The results are based on the mean climate conditions in 2021-2020 for current 255 
scenario and 2051-2060 for future scenario (Ipsl-cm5a-lr climate model and RCP 4.5 scenario). 256 



Figure 3 257 

 258 

2D partial dependence plot for maize.  The green color indicates that the probability of yield gain from CA is higher than 0.5, 259 
while the red means that the probability is lower than or equal to 0.5. The ticks on x-axis and y-axis are the observations of 260 
PB and Tave, a more reliable response can be expected in zones with high numbers of observations. The box plots show the 261 
distribution of PB and Tave in maize cropping areas with tropical climate. “F.” means future, “C.” means current, “tr.” 262 
means tropical. The box with continuous lines in the partial dependence plot shows the 1st and 3rd quartile of the range of PB 263 
and Tave under current climate conditions in the maize tropical area, while the box with dash lines shows the 1st and 3rd 264 
quartile of the range of PB and Tave under future climate conditions in the maize tropical area.265 



Figure 4 266 

 267 

Probability of yield gain with CA for maize under current (a) and future (b) climate conditions. Those regions with the 268 
probability of yield gain lower than 0.5 were highlighted in red (and green shades when the probability was higher). The 269 
results are based on the mean climate condition in 2011-2020 (current) and 2051-2060 (future) from the Ipsl-cm5a-lr climate 270 
model and the RCP 4.5 scenario. The side plots showed the variations of 1st quartile (red), median (blue), and 3rd quartile 271 
(green) yield gain probability with latitude and longitude. Non-cropping region indicated both the regions without maize and 272 
the regions where climate data was unavailable.273 



Figure 5 274 

 275 

The change of probability of yield gain with CA for maize in future climate conditions, regions with a decreasing trend are 276 
depicted in red, while those with an increase in yield gain probability are depicted in green. The results are based on the mean 277 
climate condition in 2011-2020 (current) and 2051-2060 (future) from Ipsl-cm5a-lr climate model and RCP 4.5 scenario. The 278 
side plots showed the variations of 1st quartile (red), median (blue), and 3rd quartile (green) change on the probability of 279 
yield gain with latitude and longitude. Non-cropping region indicated both the regions without maize cropped and the regions 280 
with unavailable climatic data.281 
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Figures

Figure 1

Accumulated fraction of the cropping area as a function of the probability of yield gain from CA (with
�eld fertilization, and the control of weed and pest) for eight major crops (a-h) and different climate
zones. The results are based on the average climate conditions over 2021-2020 according to the Ipsl-
cm5a-lr climate model and RCP 4.5 scenario. The cropping areas in the main climate zones are given in
(i).



Figure 2

Accumulated fractions of the cropping area for different levels of change in the probability of yield gain
from CA (with �eld fertilization, and the control of weed and pest). The results are based on the mean
climate conditions in 2021-2020 for current scenario and 2051-2060 for future scenario (Ipsl-cm5a-lr
climate model and RCP 4.5 scenario).



Figure 3

2D partial dependence plot for maize. The green color indicates that the probability of yield gain from CA
is higher than 0.5, while the red means that the probability is lower than or equal to 0.5. The ticks on x-
axis and y-axis are the observations of PB and Tave, a more reliable response can be expected in zones
with high numbers of observations. The box plots show the distribution of PB and Tave in maize
cropping areas with tropical climate. “F.” means future, “C.” means current, “tr.” means tropical. The box
with continuous lines in the partial dependence plot shows the 1st and 3rd quartile of the range of PB and
Tave under current climate conditions in the maize tropical area, while the box with dash lines shows the
1st and 3rd quartile of the range of PB and Tave under future climate conditions in the maize tropical
area.



Figure 4

Probability of yield gain with CA for maize under current (a) and future (b) climate conditions. Those
regions with the probability of yield gain lower than 0.5 were highlighted in red (and green shades when
the probability was higher). The results are based on the mean climate condition in 2011-2020 (current)
and 2051-2060 (future) from the Ipsl-cm5a-lr climate model and the RCP 4.5 scenario. The side plots
showed the variations of 1st quartile (red), median (blue), and 3rd quartile(green) yield gain probability



with latitude and longitude. Non-cropping region indicated both the regions without maize and the
regions where climate data was unavailable.

Figure 5

The change of probability of yield gain with CA for maize in future climate conditions, regions with a
decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in
green. The results are based on the mean climate condition in 2011-2020 (current) and 2051-2060
(future) from Ipsl-cm5a-lr climate model and RCP 4.5 scenario. The side plots showed the variations of
1st quartile (red), median (blue), and 3rd quartile (green) change on the probability of yield gain with
latitude and longitude. Non-cropping region indicated both the regions without maize cropped and the
regions with unavailable climatic data.
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