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Abstract

Spatial metabolomics can reveal intercellular heterogeneity and tissue organization. To achieve highest
spatial resolution, we reported a novel Spatial single nuclEar metAboloMics (SEAM) method, a scalable
platform combining high resolution imaging mass spectrometry (IMS) and a series of computational algo-
rithms, that can display multiscale/multicolor tissue tomography together with identification and clustering
of single nuclei by their in situ metabolic fingerprints. We firstly applied SEAM to a range of wild type
mouse tissues, then delineate a consistent pattern of metabolic zonation in mouse liver. We further studied
spatial metabolome in human fibrotic liver. Intriguingly, we discovered novel subpopulations of hepato-
cytes with special metabolic features associated with their proximity to fibrotic niche, which was further
validated by spatial transcriptomics with Geo-seq. These demonstrations highlight how SEAM may be
used to explore the spatial metabolome and tissue anatomy at single cell level, hence leading to a deeper

understanding of the tissue metabolic organization.

Introduction

The hierarchical organization of multicellular organisms is stably maintained by homeostasis at different
levels. At the tissue level, such homeostasis is often further modulated by the combination of intracellular
gene expression network and extracellular (microenvironmental) signals'. Cell and its extracellular en-
vironment interact dynamically through various signaling mediators, including metabolites, secretome,
and ligand-receptor interactions. Metabolites from extracellular environment can significantly influence
cell behavior or even transform its identity. For instance, extensive alcohol intake not only activates the
detoxification activity of hepatocytes but also alters the epigenetic landscape of hepatocytes®. Conversely,
cell releasing metabolites can also have impact on its microenvironment. One classic example is baso-
phils and mast cells releasing histamine to increase the permeability of the capillaries when encountering
infection®. To facilitate a deeper and more systematic understanding of the multi-scale nature of biological
processes (e.g. organ development or tumor microenvironment), various single cell omics-technologies
have been rapidly developed and utilized”. Currently, advanced imaging mass spectrometry (IMS) based
techniques are also being made possible to profile a large number of metabolites spatially and/or tempo-

rally, providing new dimensional insights to those hierarchical processes®®.

In spatially resolved metabolomics studies, different techniques have been developed including ma-
trix-assisted laser desorption/ionization (MALDI-MS)'°, desorption electrospray ionization (DESI-MS)",
laser ablation inductively coupled plasma (LA-ICP-MS)'?, and secondary ion mass spectrometry
(SIMS)™3. MALDI-MS utilized t-MALDI ion source for imaging of phospholipids and a few other biomole-
cule classes in thin, matrix-coated tissue sections and cell cultures at a pixel size of about 1-2 ym’.
With further improvement, MALDI-2 was introduced by adapting a t-MALDI-2 ion source to an Orbitrap
mass analyzer and a pixel size of 600 nm was achieved on brain tissue'®. DESI-MS has been utilized to
visualize tissue level metabolomic alterations in 256 esophageal cancer patients'. Recently, based on
SIMS, 3D OrbiSIMS, a label-free IMS with subcellular lateral resolution, and high mass-resolving power,
has been developed'®. These techniques will increasingly be used in future spatial metabolomics appli-

cations.
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Although the above techniques achieved unprecedented subcellular resolution, several analytical
complications still exist, e.g. single cell segmentation and cell fingerprint extraction. Previous studies
typically segmented cells using hematoxylin-eosin (H&E) staining, which suffered from either inaccurate
segmentation due to imperfect registration of adjacent slides, or labeling on the same slides, which
might bring exogenous substances leading to sabotaging sample integrity'”. Another cell segmentation
strategy exploited convolution neural network (CNN) trained on pixel-wise annotated cells, demanding
for huge human expert labour'. As for cell fingerprint extraction, the common practice that took the av-
erage of pixel profiles within each cell caused the impairment of distributive information'®2°. These defi-
ciencies hinder the efforts for the quantification of single cell metabolome while preserving spatial infor-
mation. Consequently, although there have been instrumental-wise improvements for IMS, the down-
stream analytical methods still require further development for users to fully exploit spatial metabolomic

features.

To overcome those deficiencies, we proposed Spatial single nuclEar metAboloMics (SEAM), a novel
platform leveraging the spatial metabolome provided by SIMS and a comprehensive series of computa-
tional algorithms for delineating in situ single cell level metabolome and tissue microenvironment. To our
knowledge, this is the first study capable of segmenting and analyzing single nuclear metabolic profiles
directly on tissue sections. Importantly, SEAM is label-free and only requires minimal experimental prep-
aration, which avoids the introduction of exogenous substance and preserves samples' native state. As
a proof of principle, we comprehensively calibrated SEAM using popular cell cultures, and then system-
atically scaled up to various mouse tissues, including wild type mouse lung, kidney, small intestine, and
liver. Finally, we discovered different hepatocyte metabolic subpopulations and their spatial network or-

ganization within the tissue microenvironment in human fibrotic liver.

Results

Overview

SEAM is an integrated platform for qualitative and quantitative analysis of tissue metabolic cell typing and
in situ microenvironment. The whole pipeline is composed of two main parts: IMS assay and computa-

tional analysis suite (Fig. 1a).

As an IMS technology, time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides both mass
spectra (chemical information) and ion images (spatial information), of biomolecules on tissue sections
(Fig 1a, top left). Typically, hundreds of peaks in a mass spectrum could be extracted from a 400 x 400
pm? scan area on a tissue section. Every experiment outputs multiplex SIMS data with 256x256 pixels in
spatial resolution, and each pixel is associated with a vector of over 200 selected m/z peaks (Fig. 1a and
see Methods). With the reference of H&E staining, to facilitate users with quickly viewing of the metabolic
spatial pattern across the full spectrum, rather than manually reading hundreds of m/z images one by one,
SEAM provides SIMS-View to compress the multiplex SIMS images from hundreds of channels into three,

while preserving local and global structures in the feature space (Fig. 1a, bottom left and middle). Then
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the three-channel images are mapped to CIELAB color spaces?! and can be rapidly surveyed by human

vision.

To compensate for the potential information loss of dimensionality reduction by taking the advantage of
compositional characteristics and spatial continuity, SEAM can further build a spatial single nucleus map
and delineate the organization of metabolically distinct in situ cell subpopulations (Fig. 1a bottom right).
More specifically, SEAM provides three additional data analysis modules (see Methods): single nucleus
segmentation (SIMS-Cut, Fig. 2a), single nucleus representation (SIMS-ID, Fig. 2b) and differential me-
tabolite analysis (SIMS-Diff).

SEAM can resolve metabolomic profiles at single cell resolution on various tissues with different
cell densities

To demonstrate the universality and as a sanity check, we tested SEAM using mouse liver (Fig. 1a bottom
row), lung, kidney, and small intestine samples(Fig. 1b). Qualitative visualization of SIMS-View may illus-
trate the corresponding tissue structures: e.g. in the liver, the metabolites show gradual changes spread-
ing out from the central vein (CV)??; in the lung and kidney, the specific structure of the local metabolic
niches, such as bronchioles and glomerulus®3; and in the small intestine, the characteristic anatomic pat-

tern along the intestinal villus axis®* (Supplementary Figs. 1-3).

In addition to the spectral projection by UMAP in SIMS-View, one can selectively add more histological
or functional information back by using those different SEAM modules through quantitatively characteriz-
ing the spatial and compositional information within the single nuclear metabolome. Compared with the
SIMS-View, clustering results using the single nuclear representation module SIMS-ID can mark strong
correspondence to the well-established cell types, for example, hepatocytes and endothelial cells in the
liver, Clara cells in the lung, as well as enterocytes and lamina propria in the small intestine (Supplemen-

tary Figs. 1-3).

Algorithms design and modular data analysis for SEAM

SIMS-View is a fast visualization tool designed for SIMS data, which takes advantage of the efficiency as
well as the local and global structure preservation of UMAP?S, |t takes multiplex SIMS data as input and
outputs a single human-readable image using three steps. First, SIMS data is regarded as 256x256 in-
dependent pixels, each represented by a fixed-length vector, and each pixel is feature-wise normalized to
avoid feature bias. Next, the 65536 pixels are fed into UMAP to reduce the dimensionality to 3. Finally,
each of the three resulting dimensions is scaled and color-coded by CIELAB color space, and all pixels
are mapped back to their original positions. SIMS-View provides a global view of all the ion distribution

features in one single image at the pixel level.

To solve the cell segmentation problem, various in situ works used different methods. Some used

matched H&E stain'?, others took one simple measurement as input'®26. And most of them used super-
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vised segmentation, via either pixel-wise classification or modeling the whole image using CNN. Interest-
ingly, based on the visualization of SIMS-View results on different samples, the nuclei of cells showed
similar color for most cells yet different from other non-nuclear areas (Fig. 1a, b). Therefore, we decided
to isolate the nucleus to demarcating every single cell. To avoid extra staining and heavy annotation labor
which would sabotage the original metabolic state of samples, we developed SIMS-Cut, an unsupervised
label-free algorithm, to segment regions of interest (ROIs) using corresponding metabolic markers, for
example, adenine (m/z 134) as the nuclear marker'®. The input data format is multiplex by selecting those
ion species highly co-localized with nuclei, which is highly consistent across different samples (Supple-
mentary Fig. 4a). And the core of SIMS-Cut is an expectation-maximization (EM) algorithm, aiming to
solve an optimization problem of a probabilistic graphical model (PGM)?” which combines a restricted
Boltzmann machine (RBM)?%-3', and a Potts model®>33 (Fig. 2a, Supplementary Fig. 4d). The RBM (Sup-
plementary Fig. 4c) is suitable for modeling the appearance of a multi-image pixel given its label (fore-
ground/background), and the Potts model (Supplementary Fig. 4b) encourages the resulting segmenta-

tion masks to be smooth.

To demonstrate the superior performance of SIMS-Cut, we compared with several popular unsuper-
vised segmentation algorithms (Supplementary Fig. 5c), using different cell cultures with adenine (m/z
134) as the ground truth (Supplementary Fig. 5a, and see Methods). The results showed that SIMS-Cut
could consistently outperform contestants in all cases visually and quantitatively (Supplementary Figs.
5a-c, 6). To test the suitability on tissue samples, we also applied SIMS-Cut on various wild type mouse
tissues, ranging from lung, kidney, small intestine, and liver (Supplementary Figs. 7, 8). For the more
challenging case, where cells might display distinct sizes and densities, SIMS-Cut was finally applied on
human liver fibrosis tissues from multiple patients, and all resulted in consistent and satisfactory perfor-

mance (Supplementary Figs. 9, 10).

After segmentation, the metabolic fingerprint of each segmented nucleus needs to be extracted and
represented. Given the fact that SIMS captures the cumulative intensities along the z-axis for each pixel,
extracting the metabolic fingerprint of each cell (both nucleus and cytoplasm) can be done by combining
its segmentation mask and corresponding SIMS data. Existing works often represented cells by compu-
ting the average of all the pixels containing within each cell'®29, which required strong assumptions like
Gaussian or unimodal, and suffered from loss of pixel variation (Supplementary Fig. 11c). To obtain better
results, SIMS-ID represents cells using the bipartite graph of pixels and cells constructed by a self-super-
vised learning algorithm?34-36, which can soften the hard labeling produced by SIMS-Cut (Fig. 2b and Sup-
plementary Fig. 11a, b). The resulting representation showed superior discriminative power, noise robust-

ness, and pixel distribution preservation.

To test the distinguishing features mentioned above, we constructed 11 datasets (See Methods) con-
taining both mixed cell populations simulated based on single cell line cultures (Supplementary Figs. 5a,
12), and mixed-cultured cells (Supplementary fig. 13). To compare the discriminative power between
SIMS-ID and the conventional mean representation, we tested supervised classification using KNN
equipped with cross-validation and unsupervised clustering using several standard algorithms (K-Means®’,
SC3%8, SIMLR®®, T-SNE“ followed by K-Means, and UMAP followed by HDBSCAN*"), then applied them



178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195

196
197
198
199
200

201

202

203
204
205
206
207

208
209
210
211
212
213
214

on both representation methods to compare on datasets 4,5,6,7, each containing 4 cell clusters (Supple-
mentary Fig. 12a), whose ground truth is naturally derived in silico; and on datasets 10,11, two mixed-
cultured datasets, whose ground truth is provided by BrdU/IdU labeling*? (Supplementary Fig. 13, and
see Methods) without affecting on cell metabolic fingerprint (Supplementary Fig. 21). The results showed
superior performance of SIMS-ID in both supervised (Supplementary Fig. 17) and unsupervised (Supple-
mentary Fig. 18) cases, even in cases of minor fold changes on two feature dimensions (Supplementary
Figs. 12a, 17). To evaluate the sensitivity of capturing pixel distribution of cells, we first tested SIMS-ID
with dataset 3, where it could identify the change of the pixel distribution from the original data to Gaussian
(Supplementary Fig. 16), then on dataset 8 and 9 (Supplementary Fig. 12b,c), where SIMS-ID could dis-
tinguish cell types with unimodal and multimodal distributions (Supplementary Fig. 19), or different joint
distributions even on two feature dimensions (Supplementary Fig. 20). To test the robustness to inaccu-
rate segmentation and pixel-wise multiplicative noise, SIMS-ID was applied on dataset 1 and 2, and
showed consistently better performance than the mean representation (Supplementary Figs. 14, 15). The

SEAM analyses of datasets 10,11 are shown in Supplementary Figs. 22, 23.

The resulting representation of SIMS-ID lies in high dimensional feature space. SIMLR® is a popular
single cell clustering algorithm, which automatically learns cell to cell affinity with multiple kernel ensemble
learning, and shows satisfactory performances when combined with SIMS-ID (Supplementary Fig. 18).

We simply adopted SIMLR as our clustering method.

To characterize the key metabolites differentiating clusters, and account for the variation of pixels within
cells, we developed SIMS-Diff as our differential analysis algorithm. SIMS-Diff regards cells as distribu-
tions of pixels and uses earth mover's distance (EMD, see Methods)*® as the dissimilarities among cells.
Using this, the discriminative power of one feature with respect to a given cluster partition can be meas-

ured as the ratio of between cluster variation (BCV) and within cluster variation (WCV).

SEAM reveals cell spatial metabolic states in wild type mouse liver.

Liver is an important metabolic organ consisting of repeating hexagonal-shaped units called lobules**.
Spatial heterogeneity of metabolic mechanism has been thoroughly investigated using immunohistochem-
istry (IHC) analyses*®, transcriptome??, and epigenome*8, but, to our knowledge, single cell level of direct
spatial metabolome has not been reported. This allows us to fill up the gap by a proof-of-concept demon-
stration of SEAM.

To this end, wild type mice were used to obtain sequential liver sections, and CV centered regions were
selected for SEAM analysis. The SIMS data consists of approximately 200~300 ion species after spectral
peak selection and filtering (See Methods), and SIMS-Cut detected 724 nuclei in the square. To extract
metabolic cell fingerprint, we used SIMS-ID to represent each cell with a fixed-length vector, which was
fed into SIMLR to obtain metabolic distinct cell subpopulations. SIMLR reached an optimal k = 8, and the
resulting 8 metabolically distinct subpopulations correspond to major liver cell types, including Kupffer

cells, 2 subpopulations of endothelial cells, and 4 subpopulations of hepatocytes (Fig. 2c).
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The identified subpopulations showed specific spatial patterns consistent with the known liver organi-
zation (Fig. 2c). Kupffer cells are specialized macrophages in the liver, which typically line on the walls of
the sinusoids. Endothelial cells correspond to vascular endothelial cells and liver sinusoidal endothelial
cells, typically lying between the crevices of hepatocytes and receiving blood from both the hepatic artery
and the portal veins into the hepatic parenchyma*’. Hepatocytes (the parenchymal cells) constitute 80%
of the mass and 60% of cell composition in a healthy mammalian liver, performing various metabolic
functions strongly associated with their positions*4. SIMS-Diff identified differential ion species among the
subpopulations (Fig. 3a, b). We found m/z 60, 76, and 77 as metabolic markers of endothelial cells, while
m/z 134, 181, and 91 enriched in Kupffer cells (m/z 134 is reported to be adenine, reflecting the higher
nucleus-to-cytoplasm ratio). Hepatocytes, which differ from liver non-parenchymal cells, were character-
ized by m/z 255, 279, and 281, corresponding to the fatty acid metabolism of parenchymal tissue. Inter-
estingly, hepatocyte may be sub-classified by C1, C2, C3, and C4 each showing different metabolic fin-
gerprints (Fig. 3a, b).

Hepatocyte metabolic clusters show a consistent but complementary spatial pattern with liver

zonation

Having identified the metabolic heterogeneity among hepatocytes in wild type mouse liver lobule, we
searched for differential gene expression corroboration in the literature. Hepatocyte C1 was visually lo-
calized around CV, and quantitative analysis revealed that the cells in Hepatocyte C1 showed significantly
smaller distances from CV compared with the other hepatocytes (P < 10~?, one-side Wilcoxon rank sum
test) (Fig. 3d). We also found 6 ion species markers and observed the gradual changes along the liver
lobule (Fig. 3c), as well as the zonation pattern of each representative metabolite in single cell level,
showing consistent pattern with reported spatial transcriptome?? (Fig. 3e). Additionally, replicate experi-
ments on different CV regions also showed consistent metabolic patterns and cluster-specific metabolites,
indicating the robustness and effectiveness of our method (Supplementary Figs. 24a, 25a-f). We reported
SEAM results of the liver portal node (PN) as our negative control (Supplementary Fig. 25g, h). Consistent
with the spatial expression of GLUL?, the spatial pattern of m/z 58, 59, 69, 71, 87, and 101 showed higher
expression in the nearest 1~2 layers of hepatocytes from CV (Fig. 3c, €). We further conducted the IHC
of two liver zonation markers, Glutamine synthetase (GS), the protein encoded by GLUL, and Cytochrome
P450 2E1 (Cyp2e1), at the adjacent slides and confirmed liver zonation pattern (Supplementary Fig. 24b-
d). This example provided SEAM with a positive control that it can accurately and comprehensively char-

acterize the spatial heterogeneity within a well-studied tissue microenvironment.

SEAM identified metabolically different hepatocyte subpopulations associated with the fibrotic

niche.

Liver cirrhosis has been a major killer, and progressive liver fibrosis often results in liver cirrhosis*®. Having
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been proven effective in the case of wild type mouse liver, SEAM was applied to human liver fibrosis to
characterize the metabolic microenvironment around a fibrotic niche. We hypothesized that there should
be metabolic alterations of hepatocytes around the fibrotic niche, and such alteration might be associated
with the distance between hepatocytes and fibrotic boundary (FBD) at a local scale.

To test this hypothesis, we collected 10 non-tumor tissue regions from 3 liver cancer patients (Supple-
mentary Table. 2) and made a sequential 10um slides for SIMS and other assays. We selected 4 regions
from one sample, each containing a fibrotic niche, and conducted SIMS experiments (Fig. 4a, b). The
resulting data consists of approximately 200~300 ion species after spectral peak selection and filtering
(See Methods). The color-coded pixel visualizations produced by SIMS-View depicted a qualitative spatial
pattern within each region (Fig. 4c left column). To quantitatively characterize the cell composition and
spatial organization, SIMS-Cut detected 902, 716, 546, and 682 nuclei in four square regions respectively.
SIMS-ID and SIMLR were subsequently performed to get metabolically distinct cell subpopulations. The
consistent manifolds and clusters shown by UMAP (Fig. 4c middle column) and the spatial single nucleus
map (Fig. 4c right column) confirmed the reliability and robustness of SEAM. The identified subpopulations,
corresponding to Kupffer cells, immune cells, fibroblasts, endothelial cells, and 3 subpopulations of
hepatocytes, exhibited the specific spatial distributions (Fig. 4d) and the matching metabolic fingerprints
(Fig. 4e). The correspondence and incongruity between cell subpopulations of human and mouse liver
samples were also analyzed (See Methods and Supplementary Fig. 26).

Intriguingly, we observed that Hepatocyte C1 was visually localized near the FBD, and its associated
metabolic markers, e.g. m/z 69, 55, and 57, showed the consistent spatial pattern across 10 regions (Fig.
4f, g, and Supplementary Figs. 27, 28). To quantify the association between the hepatocyte metabolic
alteration and the distance to the FBD, we separately conducted two statistical analyses on 10 regions of
3 patients (Supplementary Table. 2) given defined FBD (see Methods and Supplementary Fig. 30 second
column): the distance from FBD to hepatocyte C1/C2 (distance-based analysis), and the normalized count
ratio between hepatocyte C1 and C2 (count-based analysis). Using R1 as a demonstration, we first de-
fined 5 zones (zone 0~4) with increasing areas (Fig. 4h left), each representing an accumulative territory
between the FBD and the corresponding parallel strip (parallel strips are indicated by gray solid lines, and
the accumulative territories of zones are indicated by gray dotted brackets), then the distances from FBD
to Hepatocyte C1/C2 within the 5 zones were subsequently summarized by a series of paired boxplots
(Fig. 4h right, n=10). Meanwhile, we calculated the normalized count ratio between Hepatocyte C1 and
C2 within an area as a function of the distance from the outer edge (indicated by the gray solid line in Fig.
4i left) to the FBD (Fig. 4i right, n=10). The result of the distance-based analysis showed that Hepatocyte
C1 was significantly closer to FBD than C2 to FBD within the 5 zones (one-side Wilcoxon rank sum test,
Fig. 4h right, n=10), and the relative proximity exhibited high similarity across 10 regions (Supplementary
Fig. 30 third column). Complementarily, the count-based analysis showed that the normalized count of C1
is consistently higher than C2, specifically, C1 was about ~30-50% denser than C2 within 100um (a typical
hepatocyte size is ~25uym) to the FBD and reduced quickly to about the same level as C2 after ~350um
(Fig. 4i right, n=10), and this trend was highly similar across 10 regions (Supplementary Fig. 30 fourth
column). Detail of FBD determination, zone partition, distance, and normalized count ratio calculation, as
well as other necessary terms definition, is exactly described in Methods. The above statistical analyses
verified our hypothesis that the metabolic alteration of the hepatocyte subpopulations might be associated
with the spatial proximity to the fibrotic niche. To verify the variation of microenvironment was not only
reflected at the metabolic level, we subsequently performed Geo-seq, a spatial transcriptome assay at
the same ROlIs of different hepatocyte subpopulations.
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Spatial transcriptome validated metabolism associated gene expression alteration in heterogene-
ous hepatocytes identified by SEAV

To get a deeper understanding of SEAM results, we performed Geo-seq with a modified protocol (See
Methods) of the transcribed RNA samples isolated from the tissues of the corresponding ROIs from the
adjacent slides (Fig. 5a, b, and Supplementary Fig. 31). To increase reproducibility, multiple adjacent
slides were used (Supplementary Fig.32-35). The Geo-seq slides showed high continuity with the corre-
sponding SIMS slides in terms of spatial histology (Fig. 5b). Hepatocyte C1 from SEAM'’s result, which
was proximal to fibrotic niche and enriched with ions species m/z 69 series were defined as Hepa®-hish,
whereas Hepatocyte C2, which were distal and not enriched with ions species m/z 69 series were defined
as Hepa®®'ov. We also collected the fibrotic regions as the FB samples. In total, 15 cDNA libraries were
constructed successfully (Hepa®®tish n=6, Hepa®®°¥ n=5, and FB n=4). Principle component analysis
(PCA) plot indicated that two different groups (Hepa®®"ish -proximal and Hepa®®'o* -distal) of hepatocytes
shared higher similarity relative to FB samples (Fig. 5c). More importantly, Hepa®®-"ish samples were con-
sistently closer to FB samples than Hepa®®-°¥ to FB samples in PCA space (Fig. 5¢c and Supplementary
Fig. 36). To validate the expression pattern of each group, we first compared gene expression profiles
between hepatocytes (i.e. Hepa®9"ish/ Hepab®'ow) and FB, then performed gene ontology (GO) enrichment
for both up-regulated and down-regulated differentially expressed genes (DEGs) (See Methods and Sup-
plementary Fig. 37, 38). Up-regulated DEGs were mainly involved in liver biosynthesis pathways for both
Hepa®®-"igh and Hepa®®°" groups and down-regulated DEGs were highly enriched in lymphocyte activa-
tion and humoral immune response pathways. We further looked at the well-known marker genes specific
for hepatocytes (ASL, HP & SAA1), fibrosis (TGFB1, PDGFB & COL4A1), and immune response (/IGHM,
IGHG3 & IGHV4-59). Both hepatocytes groups showed high levels of hepatocyte marker genes. Whereas
genes typically activated in fibrotic regions for fibrosis and immune response were highly expressed in FB
samples (Supplementary Fig. 39). There were 718 differentially expressed genes (DEGs) fitting into the
criteria of adjust P-value < 0.05 and log fold change (LFC) standard error < 3. The expression heatmap
indicated that these genes had different expression patterns between the proximal hepatocytes (Hepa®®
high) and the distal (Hepa®-°") (Fig. 5d). We inputted the DEGs for GO enrichment analysis (Fig. 5e).
There were 17 genes enriched in the first GO entry, 16 of them were consistently higher in Hepa®-hish
than Hepa®®°ov (Fig. 5f). Genes of solute carrier transporters families with different functions were enriched
in the fibrosis proximal (Hepa®®-"i9") group, indicating the corresponding metabolite transmembrane ex-

change activities were elevated.

Discussion

In this study, we have developed SEAM, a platform combining experiments, and computational algorithms
to quantitatively characterize the metabolic intra- or inter-cellular features with multiscale spatial resolution.

Unlike other IMS instruments such as DESI (40-60um)'', SIMS can provide a high spatial resolution
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allowing one to visualize detailed metabolic structures in tissue histology. With fast and minimal sample
processing, SIMS maximumly preserves the native state of samples. Given the nature of SIMS, although
it breaks most of the molecules into fragments, making it more difficult to annotate (a common challenging
issue for MS studies), it produces high multiplexity of metabolic features with the potential of characteriz-
ing cell and fine tissue microenvironment. Benefiting from both high spatial resolution and high multiplexity
of SIMS, the algorithms of SEAM start solely from the features generated by SIMS and run a pipeline
enabling metabolic analysis from pixels to single nuclei, then to the selected metabolic molecules with
spatial information annotated. Previously, there have been reports on spatial metabolic features at tissue
level or in vitro single cell level'®. But, to our knowledge, this is the first study capable of segmenting and
analyzing single nuclear metabolic profiles directly on tissue sections. In addition, this algorithmic pipeline
is principally scalable to other spatial omics studies based on other IMS platforms, transcriptomics, and
proteomics with minimum adjustments, and it’s also easy to work together with bioinformatics tools such

as CIPHER to predict and prioritize disease-related metabolic molecules*°.

Apart from the scalability of SEAM’s algorithms, we have demonstrated that the range of SEAM
applications could cover from in vitro cell culture assays to various tissue samples. Firstly, in the mixed
cell-cultured assay, SEAM could easily deconvolute the different cell lines co-cultured together. Addition-
ally, in different wild-type murine tissue samples, SEAM successfully segmented single nuclei without
extra labeling required. The single nuclear metabolic profile analysis was also consistent with conventional
tissue histological characterization (Supplementary Figs. 1-3). Specifically, in the liver, a spatially well-
orchestrated but complex organ, the CV-PN axis zonation has been well-established at single cell tran-
scriptome level in wild type mouse??. We observed consistent zonation patterns at single cell level in CV
centered region with the gradational decrease of certain characteristic metabolites. Lastly, we found that
hepatocyte subpopulations (among which, to our knowledge, the novel C1 has never been reported before)
differentiated by different metabolic features were also transcriptionally distinct shown by Geo-seq (Fig.
5c-f). The elevated expression level of solute carrier genes can potentially explain the enrichment of a list
of metabolite species found by SEAM (Fig. 4). These genes are involved amino acid transport
(SLC36A4, SLC3A2 & SLC38A9)°0-52, phosphate transport (SLC17A2 & SLC17A4)%% and Gamma-Ami-
nobutyric Acid (GABA) transport (SLC6A12)%4. SLC3A2 has already been reported to play a central role
in fibronectin matrix assembly, which also concurs with our result as the proximal samples were more
close to the fibrotic region®’. It indicates that spatial microenvironment differences could influence cellular
metabolic homeostasis, which may in turn further alter the gene regulation and downstream response due

to cell adaptation and genetic/epigenetic feedback.

In summary, SEAM provides a high spatial resolution single nuclear metabolome profiling pipeline
requiring minimal sample preparation and labeling. It is automatically scalable to different biological sam-
ples ranging from cell culture assays to complex tissue samples. It can have a great impact on differenti-
ating subtle tissue metabolic changes undetectable for or complementary to other conventional assays.
With future improvement of IMS resolution and molecule annotation capability, SEAM would be able to

provide more detailed spatial metabolome profiles with higher resolution and broader functionality.



370

371

372
373
374
375
376
377
378
379
380
381
382
383

384
385
386
387
388
389
390
391
392

393
394
395
396

397
398
399
400
401
402
403

404

ONLINE METHODS

IMS experiments

TOF-SIMS 5 (ION-TOF GmbH, Miinster, Germany) equipped with a Bi liquid metal ion gun (LMIG)
is used in this study, collected TOF-SIMS spectra and images of tissue samples using a 30 keV
Biz* LMIG with a high spatial resolution (HSR) mode. The Bis* current in the HSR mode was 0.1
pA (100 ns pulse width, unbunched beam). The total Bi3* accumulated ion dose was about 2.0 x
10"%ons/cm?, the typical probe sizes of the Bis* LMIG was ~200 nm in HSR mode. The secondary
ion images were acquired using Biz* LMIG rastering over a 400 x 400 um? area with 256 x 256
pixels. The Bis* LMIG was operated at a cycle time of 150 ys (mass range: 0 ~2000 u). Negative
spectra were mass-calibrated using CHy", O, OH", PO>". A flood gun with low energy electrons was
used to compensate for charge buildup on sample surface. A 10-keV Arzs00* commercial gas clus-
ter ion gun (GCIB) was used as a sputter gun (rastering over a 550 x 550 ym? area, incident angle
45°) to carry out the depth profiling. A final 2D image was an overlay of 80~120 layers of depth

profiling scan images.

In initial cell analysis, a high mass resolution (HMR) mode was used with 0.8 pA (<1 ns pulse width,
bunched beam) Bis* current, the mass resolutions (measured at C,H") were typically>6000. The
total Bi3* LMIG accumulated ion dose was between 10" and 102 ions/cm?, rastering over a 300
x 300 ym? area with 256 x 256 pixels. The Biz* LMIG was operated at a cycle time 150 us (mass
range: 0 ~2000 u). Negative spectra were mass-calibrated using CHy, O-, OH-, PO_". A flood gun
with low energy electrons was used to compensate for charge buildup on sample surface. A 10-
keV Aras00" commercial gas cluster ion gun (GCIB) was used as a sputter gun (rastering over a
450 x 450 um? area, incident angle 45°) to carry out the depth profiling. A final 2D image was an

overlay of 50-80 layers of depth profiling scan images.

Peak selection. To avoid noise interference and improve follow-up analysis efficiency and accu-
racy, picking out peaks from a full spectrum was necessary. A Peak Search process in SurfaceLab
was carried out with the parameters as bellow: mass range 50-500; minimum counts 10000; min-

imum signal/noise ratio 1000. Typically, 200-500 peaks were picked out from a full spectrum.

SIMS data preprocessing. Each peak corresponds to a highly spatially resolved and spectrally
filtered ion image: the former originated from a specific one or a class of chemical substances in
the tissue sample while the latter shows its characteristic spatial distribution features in this tissue
square (Fig. 1a, top right). For further data analysis, each ion image can be exported as an Amer-
ican Standard Code for Information Interchange (ASCIl) mode data file by the SIMS built-in data
processing software SurfacelLab, which contains three columns corresponding to the X-axis, Y-

axis coordinates and signal intensity values.
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Biological experiments

Cell culture. Human non-small cell lung cancer cell line A549, human cervix carcinoma cell line
Hela, murine hepatoma cell line Hepa 1-6 and murine liver epithelial cell ine NCTC 1469 cell lines
were grown on microscope cover glass (CITOGLAS, China) with Dulbecco's Modified Eagle Me-
dium (DMEM) (Gibco, USA) containing high glucose, L-glutamine, sodium pyruvate and 10% dia-
lyzed, heat-inactivated FBS (Gibco, USA). Human mammary gland cell line MCF 10A was grown
on microscope cover glass (CITOGLAS, China) with DMEM/F12 (1:1) (Gibco, USA) containing
insulin 10ug/ml, EGF 20ng/ml, cholera toxin 100ng/ml, hydrocortisone 0.5mg/ml and 5% equine
serum. Human breast adenocarcinoma cell line MDA-MB-468 cell line was grown on microscope
cover glass (CITOGLAS, China) with L-15 medium containing 10% FBS (Gibco, USA) and free air

exchange.

BrdU cell mix-culture experiment. Following protocol from the previous study, A549 and Hela
cell lines were both cultured with and without 20uM BrdU (Sigma, USA) for 48 hours before seed-
ing. A549 with BrdU were then replated with non-BrdU Hela at the same density on microscope
cover glass (CITOGLAS, China) for 20 hours and vice versa for non-BrdU A549 and Hela with
BrdU. The same mix-culture procedure for IdU (Sigma, USA) was applied at Hepa 1-6 and NCTC
1469 cell lines.

Mice. C57BL/6N mice were purchased from Charles River. All mice were housed in isolated ven-
tilated cages (maxima six mice per cage) barrier facility at Tsinghua University. The mice were

maintained on a 12/12-hour light/dark cycle, 22-26°C with sterile pellet food and water ad libitum.

The laboratory animal facility has been accredited by AAALAC (Association for Assessment and
Accreditation of Laboratory Animal Care International) and the IACUC (Institutional Animal Care
and Use Committee) of Tsinghua University approved all animal protocols used in this study (Ani-
mal Welfare Assurance Number F16-00228 (A5061-01)).

Intrahepatic cholangiocarcinoma (ICC) patient non-tumor liver tissues. The ICC non-tumor
liver tissues were obtained from leftover pieces from surgery. The protocol of this study was com-
pliant with the principles of the Declaration of Helsinki and was also approved by the Institutional
Review Board (IRB) and Ethics Committee (EC) of Peking Union Medical College Hospital
(PUMCH) (JS-2492).

Tissue section preparation. Mouse and human tissues were isolated individually and embedded
in Optimum Cutting Temperature (O.C.T) compound (SAKURA, USA), then snap-frozen in liquid
nitrogen. Cryo-section were performed using CM1900 Cryostat (Leica, Germany) to obtain 3um ~

10um continuously adjacent sections.

Histology staining. Tissue cryo-sections were thawed at room temperature for 5 min then washed
in PBS twice, 5min each time. Slides were fixed in 4% paraformaldehyde (PFA) for 20 min at room
temperature then washed in PBS once. H&E stainings were then performed using the H&E staining

kit (Leagene, China). Images were obtained from Axio Scan. Z1 (ZEISS, Germany) or Cytation5
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(Biotek, USA).

Immunohistochemistry. Tissue cryo-sections were thawed at room temperature for 5 min then
washed in PBS twice, 5min each time. Samples were permeabilized and blocked in 5% BSA solu-
tion (Sigma, USA) with 0.4% Triton-X100 (AMRESCO, USA) for 2h at room temperature. Dilute
and apply primary antibody in PBS with 0.1% Triton-X100 with suited concentration according to
each antibody and incubate in a humid dark chamber at 4°C overnight. Wash three times in PBS
with 0.1% Triton-X100, 10min each. Dilute and apply secondary antibody in PBS with 0.1% Triton-
X100 and incubate in a humid dark chamber at room temperature for 2h. Wash three times in PBS
with 0.1% Triton-X100, 10min each. Slides were mounted using ProLong™ Gold Antifade
Mountant (ThermoFisher, USA). Images were captured either by LSM780 confocal microscope
(ZEISS, Germany) or Cytation5 (Biotek, USA).

Modified Geo-seq. A spatial transcriptome analysis method, Geo-seq, previously described by
Chen, Jun, et al®®. Amodified version was adopted. Tissue cryosections were mounted on the PEN
membrane slide and stored at -80 degree freezer for short term storage. Slides were stained in
0.5% cresyl violet and dehydrated in serial ethanol. Tissue blocks were obtained in a 0.2 ml PCR
tube by LMD7000 (Leica, Germany). Buffer RLT (Qiagen, Germany) with DTT (Sigma, USA) were
added and shaken vigorously for tissue lysis and RNA release. RNA Clean beads (Vazyme, China)
1.8x were added to isolate total RNA. Prepare annealing procedure in the same tube with 3ul H20,
1ul ANTP, 1ul Oligo(dT), and 0.5ul RNase Inhibitor (RI) (Life Technologies, USA). Incubated at 72
degrees 3min and immediately transfer in ice for 2min. Prepare reverse transcription reaction in
the same tube with 2ul 5x RT buffer, 0.5ul DTT, 0.5ul RI, 0.5ul Template Switch Oligo (TSO, Sangon
Biotech, China), 1ul Maxima reverse transcriptase (Life Technologies, USA). Incubate with 50 de-
grees with 1 hour and deactivate reverse transcriptase with 85 degrees for 5 min. Amplified the
first strand product with 12.5ul 2x KAPA HIFI HotStart ReadyMix (Sigma, USA), 0.5ul TSO-PCR
primer (Sangon Biotech, China) and 2ul H20. The reaction condition was 95 degrees 3min, 98
degree 20s, 67 degree 15s, 72 degrees 6min for 21 cycles, and 72 degrees for 5min. PCR product
was purified with 0.8x DNA Clean beads (Vazyme, China). The next generation sequencing (NGS)
library was then constructed by TruePrep DNA Library Prep Kit V2 for lllumina (Vazyme, China).

Libraries were sequenced by lllumina Xten Pair-end 150bp by Annoroad.

RNA-seq data processing and analysis

RNA-seq data were firstly performed with adaptor removal and quality filtering by Trim Galore®®.
The qualified reads were then mapped to the human gencode reference genome using STAR and
generated BAM files®7-%8, Duplication was removed by PICARD (http://broadinstitute.github.io/pi-
card/) for all the BAM files. Read count for each gene was performed by HTSeqg-count with refer-
ence to gencode human gene annotation, release 32 (GRCh38.p13)57%. Different gene expres-

sion analyses were analyzed using DESeq2 in R,
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SIMS-Cut framework

Given an MxNxN SIMS data, with M filtered metabolic peaks and NxN image as input, SIMS-
Cut first select m metabolites co-localizing with nucleus (Supplementary Fig. 4a), and then itera-
tively solves a maximum a posteriori (MAP) problem (Supplementary Fig. 4d) to get an NxN bi-

nary matrix Y that indicates a nucleus.

_ {1 nuclei region . (1)

Y., ;
! 0 otherwise €[LN]

)
Since the SIMS data is superimposed of a certain thickness of biological slice in its nature, we
regard the segmented nuclei region as a cell containing molecular fragments in both cytoplasm

and nucleus. The main part of SIMS-Cut can be formulated as finding an optimal Y*:

Y* = argmax p(Y|X) 2)

where
PXI|Y)P(Y 3
P(Y|X) = % « P(X|Y)P(Y) )

X = [x;],1,j € [1,N] , and x;; € R™, which is the m dimensional metabolic density at the coordinate
of (i,j). This Bayesian formulation aims to find the optimal label assignment Y* that produces the

maximum posterior probability given X.

As with traditional hidden Markov random field (HMRF) based image segmentation®'-62, SIMS-Cut
uses a similar graphical model, consisting of P(Y), the smoothing model for unknown label field Y
before guarantee spatial homogeneity, and P(X | Y), the data model for the conditional distribution

of pixel metabolic profiles X given corresponding pixel label.

Smoothing model. The label prior, P(Y) is modeled as a special Markov random field (MRF),
called Potts model®2. According to the Hammersley-Clifford theory®384, P(X) follows a Gibbs distri-
bution®®:

1 (4)
P(Y) = exp (=U(V))

Where U is called energy function, which is calculated by summing over the potential of all second-
order cliques V, each clique corresponds to a pair of neighboring pixels(e.g. the 4-neighborhood

system). Z is called a partition function, making P(Y) a valid probability density function (pdf).

u(y) = Z V(¥i,j,r Yisi,) ®)

(i1,j1),(iz,j2)Edoubletons
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V is defined on doubleton, penalizing the heterogeneity of labels.

V( . . ) — _l'ifyil'jl = Vi, (6)
YigjirYini,) = +1'iin1,j1 £ Vi,

Data model. According to the graphical model (Supplementary Fig. 4b), and d-separate?’,

PX|Y) = 1_[ P(xily;;) ()
i,jE[1,N]
While the multivariate Gaussian distribution is typically suited for the data model of color image
segmentation®-%7_ its model capacity is limited and its assumptions are too strong for SIMS data.
Instead, we use Restricted Boltzmann Machines (RBM)%-3! to model the conditional distribution of

data intensities given label assignment.

RBM as a generative model is typically a two-layer bipartite undirected graph. It's composed of a
visible layer which is m dimensional metabolic profile in our case and a hidden layer which is a
kind of d dimensional memory providing model capacity. In theory, RBM is a Universal approxima-
tion for any pdf with a large enough number of hidden layers®. Here we use two separate RBMs
tomodel P(x;j|ly;; = 0) and P(x;|y;; = 1) respectively, and we describe one RBM in the following.
For the sake of notation simplicity, in the following, we use V = [vp],p € [1,m] to denote x;; (the

subscript is removable thanks to the conditional independence given by (7)).

The graphical model of RBM is shown in Supplementary Fig. 4c. H = [hq],q € [1,d] is the hidden
layer variable, and V is the visible layer variable. C = [cq],q € [1,d], B =[b,],p € [1,m], and W =

[wpq],p € [1,m],q € [1,d] are parameters. The joint probability density function is:

1 8
P(V,H) = Ze'E(V'PU (©)

where E is the energy function:

m d m d
E(V,H) = — Z Z WpqhqVp — Z byv, — Z cqhq

p=1qg=1 p=1 =1

9)

and Z is the partition function:

7 = Z e~E(VH) (10)

V.H

The probability that an RBM model assigns a vector V, e.g. x;; is given by (8).

1
p(xyly;; = a) = RBM(V; W?,C?,B?) = ﬁz e EVH an
H

1 m d
= 7a | | ebpvp | |(1 + eca*'zirnﬂwgqvp)
p=1 q=1

Note that the superscripts indicates the parameters of specific RBM.
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Partition function of RBMs Estimation. For a specific pixel given its segmentation label a, the

log probability that RBM assigns metabolic profiling x;; is computed as:

logP(Xij|yi]~ = a) = —Fa(xij) — logZ? (12)

Here F2(x;) is the free energy of RBM corresponding to class a, which can be rapidly calculated.

To estimate the partition function Z, we build a softmax model to classify x;; at every pixel to its

label yl] :

e—Fa(xij)—logZa (1 3)

Zy-- e(—Fyij (xi5)-logz”)
1

logP(yij = a|xi]~) =
MAP. Our objective can be an expression as:

argmaxy logP(X|Y) + logP(Y) = argmaxy Z log P(Xij |yi]~) +log P(Y) (14)

Lj
= argmaxy Z log RBM(x;;; WY1, CVii, BYW) + log P(Y)
Lj
It's a nonconvex problem, we develop an EM-style algorithm to alternating between two steps to

reach a locally optimal point iteratively.

Each iteration of SIMS-Cut consists of three sub-problems, each of which can be solved efficiently.
The input of each iteration is the segmentation mask output by the previous iteration, and the first
level's input is simply k-means clustering of an input image. The segmentation mask will converge

in no more than 20 levels according to our experiments.

In the first sub-problem, the parameters of two RBMs are estimated given the label of each pixel
input from the previous level. Estimated as the parameters of RBMs, solving the partition function
is time-consuming, thus the second sub-problem bypasses the obstacle and at the same time
controls the bias of each iteration with the help of a simple binary classification task®. And the third
and last sub-problem uses the well-known graph-cut algorithm32:336970 to obtain the pixel labels,
i.e. the segmentation mask for the current iteration. As the process of iterations, the intermediate
segmentation masks gradually shrinkage, while local homogeneity and nucleus centralization are
simultaneously kept. Finally, the reaping algorithm is used to salvage as many isolated nuclei as
possible during the shrinkage process. More details about solving these sub-problems are as fol-

lows:

Initialization of Y, C, B, W. The parameters of RBM, e.g. C, B, W is randomly initialized using a

Gaussian with zero mean and unit variance. The label assignment Y is initialized using k-means.

Sub-problem 1:  Fix Y to update C,B,W. This step is Equivalent to learn two independent RBMs.
Since Y is given, the training data for the two RBMs can be extracted from X. An efficient learning
algorithm, persistent contrastive divergence (PCD)"'72 can be applied. Also, PCD algorithm is

based on Maximum likelihood estimation, leading to an increase of objective.

Sub-problem 2: Fix Y,C,B,W to update two partition functions. Partition function estimation of
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RBM is time consuming even if all its parameters are known. Based on the efficient way to deal
with the unknown partition functions?®%8, we build an auxiliary binary classification task and treat
the two partition functions as parameters to estimate. Furthermore, a hyper-parameter beta can

be tuned to control the process of iteration (see Details and online code).

Sub-problem 3: Fix C, B, W, and two partition functions to update Y. This step is equivalent to
an energy minimization problem, and global optimized Y can be efficiently using a graph cut algo-

rithm.

Reaping. Using our parameter setting, the above algorithm converges to all-zeros Y within 20
iterations. Because of the spatially different contrast of SIMS image, some nucleus may be lost
during the iteration. We develop an enhancement algorithm to maintain the intermediate identified

nucleus.

Due to the bias, as the levels grow high, the region of within-nucleus gets smaller. But the MRF-
based segmentation makes the intermediate segmentation mask of each level homogenous and
evident. To get the final non-connected nucleus mask, a reaping algorithm is proposed in Algorithm
1.

Algorithm 1

Input: M, : segmentation masks for each level; A,: upper bound of nuclei area; A,;: lower bound

of nuclei area;
Step 1: Create a queue Q to maintain isolated segments. Create an all-zeros mask M,

Step 2: Initialize Q by putting all isolated segments of level 2 to the head of Q; initialize M, using
M,.

Step 3: pop a segment q from head of Q, set the segment region of M, to zeros.
Step 4: for | from k+1 to K, where q belongs to M,
if  reaches K
then set the q region of M,.,; to ones
if two or more segments in M; belongs to q
then push these new segments to tail of Q;
set these segment region of M, to ones;
break
Step 5: return to step 3, until Q is empty
Step 6: return M,

Implementation details and parameters setting. We use correlation distance to select top 20

co-localized ions with Adenine (m/z 134), whose conditional probabilities given labels are modeled
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by two label-specific RBMs. K-means on a 134 intensity map is used to initialize the segmentation
label, we set k=4 and set clusters with the lowest center as background, other 3 clusters as fore-
ground. For the smoothing model, we use the 4-neighborhood system. For the data model, we use
two Generative RBMs, each with 20 visible nodes and 50 hidden nodes. For RBM training, persis-

tent contrast divergence (PCD) is used for 10 epochs each level.

For convenience, we use a Matlab toolbox for RBM modeling and training”®. When optimizing the
energy minimization problem, we use the Matlab version of the Boykov-Kolmogorov algorithm®®

provided by https://vision.cs.uwaterloo.ca/code/. The original algorithm takes the smoothing model

as a neighbor weights matrix, whose format is described in the code comment, but we modified
the matrix by average filtering with a window size of 21 to provide more smooth quality (optional).
To weight between the data model and the smoothing model, we divide the weights matrix by a

constant (typically 5~10, we use 5 for best practice).

To bypasses the time-consuming partition function estimating problem of the two RBMs, a simple
classifier is performed during each iteration. Note that the exact value of the two partition functions
needn't be known® 74, the difference matters instead. We first calculate the free energy of all N x N
pixels separately using the parameters of the two RBMs and sort the difference. Then sort the
difference and take every N-1 interval as classification cutoff. At the same time, one confusion
matrix for each cut off is maintained, so N-1 F measures controlled by beta corresponding to every
interval can be calculated. Finally, the partition function difference with the best F measure is se-

lected. The beta parameter (typically 0.5~1) is tuned to control the convergence process.

During the SIMS-Cut procedure provided in the methods section, due to the beta parameter, as
the levels grow high, the region of within-nucleus gets smaller. But the MRF-based segmentation
makes the intermediate segmentation mask of each level homogenous and evident. To get the
final non-connected nucleus mask, a reaping algorithm is proposed. The detail is as follows: Sup-
pose after L level's segmentation, SIMS-Cut converges to an all-background segmentation mask.
Since each level is an intermediate segmentation mask given beta and upper level's estimated
parameters. The hierarchical structure can be modeled as a tree, whose nodes are nucleus of all
levels, root is a dummy node, the second highest level is the nucleus of first segmentation. Node i
is the child of node j if i belong to the next level of j, and the segmentation region of i is a subset of
segmentation region of j. The leaf nodes are nucleus in the lowest level, the last level of SIMS-Cut
procedure. From top to bottom, nodes are split alongside the tree structure, and the reaping algo-

rithm can capture nodes that are optimally split (i.e. according to m/z 134 intensity).

SIMS-ID Framework

After SIMS-Cut, hundreds of separated nuclei has been detected from an N x N image, each pixel

containing M dimensional metabolic profiles. Thus, each nucleus contains a diverse number of
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connecting pixels, represented by fixed dimensional vectors. SIMS-ID conducted an auxiliary clas-
sification task to assign a single fixed dimensional vector to each nucleus, which is robust to
over/under segmentation in SIMS-Cut. The representation learned by SIMS-ID compresses all the
pixel metabolic information using a distilled softmax space’®, regarding a nucleus as a whole while
including distribution information of pixels. A fixed dimensional representation of the nucleus helps

further analysis of single nuclei data analysis, like clustering, visualization, and so on.

Data preprocessing. Due to the variability of tissue thickness, and variation in ionization and de-
tector efficiency, SIMS data need to be preprocessed. We use Variance-stabilizing normalization,
specifically, the median spectrum is used to estimate the normalization factor, and logarithm was

used as variance-stabilizing transformation.

Motivation. SIMS-ID is based on the observation that the outputs of a trained neural network
contain much richer information than just a one-hot classifier. Hinton, G. et al observe that mutual
similarity between classes can be distilled from a trained softmax based neural network classifier,
e.g. an image of a BMW, may only have a very small chance of being mistaken for a garbage truck,
but that mistake is still many times more probable than mistaking it for a carrot’®. Lu, Y. applies
factor analysis to reveal the visual similarity of image classes””. Wu, Z. utilizes a similar concept

to train an instance-level classifier as an auxiliary task for unsupervised representation learning”®.

Auxiliary classifier construction. SIMS-ID first constructed a multiple-layer dense neural net-
work armed with a softmax activation at the last layer for classification, then preprocessed pixel
data are input to classify each pixel to the right nuclei, after training, the temperature of softmax
output is raised to a user-set value to soften the probabilistic distribution, and finally the distilled
softmax output of each input pixel can be considered a similarity between the nuclei to which that
pixel belongs and other nuclei, from that pixel's point of view. Further experiments showed that the

overfitting of the auxiliary classifier doesn't hurt the performance of afterward analysis.

Interpretation. The auxiliary classifier can naturally capture apparent similarity among classes, i.e.
nucleus without being directed to do so. The distilled information, i.e. the high-temperature softmax
output of each pixel can be expressed as aP x C matrix PCM, where P is the number pixels within
all nucleus, and C is the number of the identified nuclei. The matrix can be interpreted using three

distinct ways.

Nucleus Similarity measure from each pixel’s view. Each row of PCM can be considered as a
similarity measure between the corresponding nuclei and other nuclei. If the i-th pixel belongs to
the j-th nuclei, for the i-th row of PCM, after dividing each element by the j-th element of the row,
we can get a normalized similarity vector, whose j-th element is 1. Moreover, in the auxiliary clas-
sification phase, the more easily confused with the correct class, i.e. nuclei, the higher the corre-

sponding element of normalized PCM is.

Nucleus representation of multiple instance learning. In the multiple instance learning (MIL)
literature®8°, a bag of instances can typically be represented by similarities between this bag and

all instances. A column of normalized PCM can be considered as the probability of each pixel
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belonging to that nucleus.

The adjacency matrix of nucleus-pixel bipartite graph. The original one-hot pixel-nucleus rela-
tionship doesn't provide any information between nuclei. After knowledge distillation, the one-hot
relationship is shattered to a more smooth knowledge, from which nucleus relationship can be
discovered. The normalized PCM can be interpreted as an adjacency matrix identifying to the bi-

partite graph, and the (i,j)-th entry of PCM is the weight between the i-th pixel and j-th nucleus.

Parameters setting and network structure. The pixel classification network structure is shown
in Supplementary Fig. 11b. We use multiple layer perceptrons except for the last layer, ReLU®"
activation function for each layer, softmax as probability output, and Adam?® as an optimizer. The
number of neurons of the first layer is M, the number of observed metabolites and the number of
neurons of the last layer is the same as the number of the nucleus. Since overfitting doesn't hurt
the representation performance according to our experiment, we set all the pixels as training data,

and the number of training epochs is set to 100~300.

Clustering

Represented by fixed-length vectors, the nuclei can be straightforwardly clustered and visualized
in low dimensional space. The number of cells that one SIMS experiment captures typically ranges
from 400~1000, and the length of the representation vector for each cell is equal to the number of
pixels within segmented cells, typically ranging from 5000~15000. With the consideration of both
data characteristics and experimental performance (Supplementary Fig. 18), we apply SIMLR®, a
single cell clustering algorithm, which automatically learns the low-rank similarity matrix by means
of multiple kernel ensemble. Besides, SIMLR also provides means of estimating the number of
clusters, which we can take as a guideline to explore populations of metabolic cell states in different

scales.

SIMS-Diff framework

The goal of this algorithm is quantification the feature's discriminative power to tell clusters apart.
Due to the nature of our data, the traditional two-sample test can’t be directly applied. We assume
that discriminative features can produce a similarity matrix with a block diagonal structure. There-
fore, we use the ratio between BCV and WCYV to evaluate the compactness of the similarity matrix,
where BCV is between cluster variation, and WCV is within cluster variation. For each feature, we
use EMD (earth mover's distance)*? as a metric for two nuclei represented by histograms, and the

variation can be simply evaluated by summing all pairwise distances.

Earth mover’s distance as a valid metric for histograms. EMD originally arose in the field of
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optimal transporting problems, recent studies show that it can be fruitfully applied to compare his-
tograms. Thus, if one thinks of a histogram as a pile of dirt, then the EMD between two histograms
is the minimum cost required to move the dirt in one pile to the other. Here, the cost is defined as
the amount of dirt moved multiplied by the distance it is moved. Univariate EMD has several nice
properties: (1) it's a true distance; (2) it doesn't need to assume the distribution form of histograms;

(3) it's computationally efficient.

Discriminative feature identification using EMD. For each feature, a CxC EMD matrix can be
calculated, whose (i,j)-th entry is the distance between i-th nuclei histogram and j-th nuclei histo-
gram. Then we use the given clustering result to sort the rows and columns, and discriminative
features may pose a block diagonal EMD matrix. The ratio between BCV and WCV can be used
to evaluate the feature's discriminative power between two clusters. BCV can be simply calculated
by summing over all pairwise distance between the two clusters, and similarly, WCV can be simply

calculated by summing over all pairwise distance within two clusters independently.

Multimodal intersection analysis between mouse and human liver samples.

To access the correspondence between clusters identified in mouse and human samples, we
adopted modified multimodal intersection analysis (MIA)33. Specifically, we ranked metabolites by
the score computed using SCANPY?®*, which is z-score underlying the computation of a p-value
(Student's t-test) for each gene for each cluster. Next gene sets of each cluster were defined as
genes with the top 20 associated scores. And the significance of the intersection of gene sets
between any pair of clusters was inferred using the hypergeometric distribution. The MIA map was
finally displayed as a heatmap, with each element defined as the negative logarithm P-value (hy-

pergeometric test) of the corresponding cluster pair.

Statistical analysis of human samples

To exactly describe the statistical analysis in Fig. 4, we defined following terms: FBDy; is the fi-
brotic boundary of region Ri; PSP(j,FBDg;) is a parallel strip whose distance to FBDg; is equal to
j um; AREA(,i) is the territory between FBDg; and PSP(j,FBDg;); Zone(j,i) is short for
AREA(( + 1) x 100,i); CFBD(cell;,Zone(j,k)) is the distance (um) between cell; and FBDgy
within Zone(j, k) ; NCC(population;,area,,area,) is the ratio between the number of cells in

population; within area; and the number of cells in population; within area,.

The FBD is approximated according to SIMS-View and spatial single nucleus map (Supplementary
Fig. 30). Coming to cases where FBD couldn't be well fitted by a single line segment, polylines are
used, and the distance to FBD is simply adjusted to be the smallest among distances to all line

segments.
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The statistical analysis of Fig. 4h is conducted as following: In zone j, j € {0,1,2,3,4}, the red box-
plot is the summarization of {CFBD(cell;, Zone(jk)) | k € {1,2,3,4,5,6,7,8,9,10}, cell; €
Hepatocyte C1}, and the green boxplot is the summarization of {CFBD(cell;, Zone(j,k))|k €
{1,2,3,4,5,6,7,8,9,10}, cell; € Hepatocyte C2}. The P-value is based on Wilcoxon rank sum test.

The statistical analysis of Fig. 4i is conducted as following: the x-axis is the distance between
PSP(j,FBDg;) and corresponding fibrotic boundary (FBDg;), i € {1,2,3,4,5,6,7,8,9,10}, € [0,450];

NCC(C1,AREA(,i),AREA(jmax i) .
NCC(C2,AREA(),i),AREA(jmaxi)) ’

the y-axis is the normalized count ratio between C1 and C2, which is
{1,2,3,4,5,6,7,8,9,10},j € [0,450].

All parameters of boxplots are set as default using Seaborn (https://seaborn.pydata.org), a Python

statistical data visualization toolbox.

Datasets

Simulated datasets: Four different human cell lines are cultured as a source of simulation (Sup-
plementary Fig. 5a), and all the following datasets are manual alteration and a combination of the

four cell lines.

Dataset 1: Use 4 cell lines as 4 clusters, for each cell, randomly add noise_ratiox#pixels number

of all-zero pixels.

Dataset 2: Use 4 cell lines as 4 clusters, for each pixel, multiply it with a random number drawn

from U(0,noise_ratio).

Dataset 3: Use 4 cell lines as cluster1, and the altered version of 4 cell lines as cluster2. Alteration
method: for each cell, first randomly select noise_ratiox#pixel pixels, then replace these pixels

with samples drawn from feature-independent Gaussian fitted with original data.

Dataset 4: Use A549 cell line as cluster1, and use the 3 differently altered version as the other 3
clusters. Alteration method: First, randomly select 2 dimensions, i and j. Then, for cluster2, multiply
fold_change to the i-th dimension of all pixels of 10A cells, and the j-th dimension remains un-
changed. For Cluster3, multiply fold_change to both i-th and j-th dimension of all pixels of 10A
cells. For cluster4: multiply fold_change to the j-th dimension of all pixels of 10A cells, and the i-th
dimension remains unchanged. The simulating method of dataset 4 is illustrated as (supplemen-

tary Fig. 12a).
Dataset 5: Similar to dataset 4 but using Hela cell line.
Dataset 6: Similar to dataset 4 but using SK-BR-3 cell line.

Dataset 7: Similar to dataset 4 but using MCF 10A cell line.
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Dataset 8: Use 10A cell line as cluster1, and use the 3 differently altered version as the other
clusters. Alteration method: First, randomly select 2 dimensions, i and j, and calculate the mean_i
and variance_i for each cell. Second, for each cell, randomly divide pixels into two partitions of an
equal number of pixels. Next, for cluster2, for each cell, replace the i-th dimension of the first
partition with data drawn from Gaussian(fold_changxmean_i, variance_i), and replace the i-th
dimension of the second partition with data drawn from Gaussian((2-fold_change)xmean_li,
variance_i). The j-th dimension remains unchanged. For cluster4, for each cell, replace the j-th
dimension of the first partition with data drawn from Gaussian(fold_changexmean_j, variance_j),
and replace the jth dimension of the second partiton with data drawn from
Gaussian((2-fold_change)xmean_j, variance_j). The i-th dimension remains unchanged. For
cluster3, the alteration for the i-th dimension is the same as cluster2, and the j-th dimension is the

same with cluster4. The simulating method of dataset 8 is illustrated as (supplementary Fig. 12b).

Dataset 9: Use 2 differently altered versions of 10A cell line as two clusters. Alteration method:
First, randomly select 2 dimensions, i and j, and calculate the mean_i and variance_i for each cell.
Second, for each cell, randomly divide pixels into two partitions of an equal number of pixels. Next,
for cluster1, for each cell, replace the i-th dimension of the first partition with data drawn from
Gaussian(fold_changxmean_i, variance_i), and replace the i-th dimension of the second partition
with data drawn from Gaussian((2-fold_change)xmean_i, variance_i). And replace the j-th di-
mension of the first partition with data drawn from Gaussian(fold_changexmean_j, variance_j),
and replace the jth dimension of the second partiton with data drawn from
Gaussian((2-fold_change)xmean_j, variance_j). For cluster2, for each cell, replace the i-th di-
mension of the first partition with data drawn from Gaussian(fold_changxmean_i, variance_i),
and replace the ith dimension of the second partition with data drawn from
Gaussian((2-fold_change)xmean_i, variance_i). And replace the j-th dimension of the second
partition with data drawn from Gaussian(fold_changexmean_j, variance_j), and replace the j-th
dimension of the first partition with data drawn from Gaussian((2-fold_change)xmean_j,

variance_j). The simulating method of dataset 9 is illustrated as (supplementary Fig. 12c).

Mixture cell datasets: Mixture cell culture uses BrdU/IdU as ground truth label (Supplementary
Fig. 13), and the BrdU/IdU stain does not affect the cell metabolic profiling (Supplementary Fig.
21).

Dataset 10: A549 cell line stained with BrdU is mixed with Hela cell line (Supplementary Fig. 13a,
b).

Dataset 11: NCTC1469 cell line stained with IdU is mixed with Hepa1-6 cell line (Supplementary
Fig. 13c, d).



796 Reporting Summary

797 Further information on research design is available in the Nature Research Reporting Summary linked to
798 this article.

799 Data availability

800 Raw SIMS data for mouse liver and lung (Fig. 1,2,3), and human liver R1 (Fig. 4) are available at
801 Github (https://github.com/yuanzhiyuan/SEAM/tree/master/SEAM/data/raw_tar). The rest of raw
802 SIMS data and processed SIMS data are available at figshare (10.6084/m9.figshare.12622883,
803 10.6084/m9.figshare. 12622841, 10.6084/m9.figshare. 12622838 and
804 10.6084/m9.figshare.12622922). Geo-seq (Fig. 5) raw sequencing data and processed data have
805 been deposited to NCBI GEO with accession number GSE153463.

806 Code availability

807  An open-source Python and MATLAB implementation of SEAM is available at GitHub (https:/

808 github.com/yuanzhiyuan/SEAM, and https://github.com/yuanzhiyuan/SIMS-Cut).

809
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Fig. 1 | SEAM captures spatial metabolic heterogeneity at single nucleus resolution.

a, Overview of SEAM. (Left) Tissue samples on glass slides are analyzed by TOF-SIMS to
generate multiplex SIMS data containing mass spectrometry and ion images (Right). (Bottom left)
H&E staining of mouse liver central vein region. (Bottom middle) Color-coded pixel visualization is
obtained by SIMS-View. (Bottom right) Spatial single nucleus map is obtained by a sequential of
algorithms: SIMS-Cut (segmentation), SIMS-ID (representation), and SIMS-Cluster (clustering). b,
SEAM scales to different mouse tissues with different cell density and distribution pattern. First row
is color-coded pixel visualization by SIMS-view to differentiate metabolic patterns at pixel level.
Second row is spatial single nucleus map for cell type visualization at original tissue space. Scale
bar 100um. In Fig. 1a, Mouse illustration: Image by OpenClipart-Vectors from Pixabay. Liver
illustration: Image by zachvanstone8 from Pixabay.
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subproblems (See Methods). (Right) Cell segmentation mask. b, Sketch of SIMS-ID, learning
vector-formed representation for each segmented cells using self-representation learning. (Left)
multiplex SIMS data combined with cell segmentation mask. (Middle) A neural network for a
auxiliary classification task. (Right) Single nucleus representation output. ¢, Demonstration of
algorithms on central vein (CV) of wild type mouse liver. (Left) UMAP visualization of single nucleus
using SIMS-ID representation, colored by SIMS-Cluster identified cell types. (Middle) Spatial single
nucleus map. White arrow indicates CV. Scale bar 100pm. (Right top) Respective layout of cell
populations. Scale bar 100um. (Right bottom) Zoom in images of each population merged with
grey scaled image of m/z 134.Red dotted area indicate liver sinusoid. Scale bar 10um.
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identified by differential analysis in Fig. 3a. Scale bar 100um. d, Hepatocyte C1 subpopulation
shows zonation-like distribution. (Left) Schematic diagram of strategy of measuring cell-to-CV
distance. (Right) Hepatocyte C1 shows significantly smaller distance to CV than other clusters. e,
Metabolite series show zonation-like distribution. (Left) Schematic diagram of strategy of
measuring metabolite-to-CV distance: Concentric circles with distance of arithmetic sequence from
CV partition the liver lobule into 9 zones. (Right) 6 metabolic markers of Hepatocyte C1 show
gradient decrease away from CV. X-axis: zone number, Y-axis: enrichment score of each
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Fig. 4 | SEAM identifies hepatocyte subtypes with differential metabolic state associated
with spatial localization. a, H&E staining of human liver sample post TOF-SIMS analysis. Scale
bar 500um. b, Zoom in H&E images of 4 different regions. Bottom. White arrows indicate fibrotic
and inflammation niche. Scale bar 100um. ¢, SEAM results of 4 regions. First column is color-
coded pixel visualizations. Scale bar 100pm. Second column is UMAP colored by cell clusters.
Third column is spatial single nucleus map. d, Spatial single nucleus maps of respective clusters
merged with grey scaled ion image of m/z 134. Scale bar 100um. e, Differential metabolite
analysis of cell clusters. f, (Top and middle row) Hepatocyte C1 enriched metabolites. Scale bar
100pm. (Bottom row left) Merged ion image of m/z 69(Red) and m/z 134 (Blue). (Bottom row
middle and right) Spatial localization of hepatocyte C1 and C2 respectively merged with grey-
scaled ion image of m/z 69. h, Hepatocyte C1 is consistently closer to fibrotic boundary (FBD) than
C2 within all 5 zones. (Left) Schematic diagram of zone definition and distance calculation. (Right)
Paired boxplots of distances between C1/C2 and FBD. For Wilcoxon Rank Sum test, P-value >
0.05 is not shown on the plot. P-value < 0.05 (*), P-value < 0.01 (**), P-value < 0.001 (***) and P-
value < 0.0001 (****) are shown. i, Normalized count of hepatocyte C1 is consistently higher than
C2. (Left) Schematic diagram of normalized count ratio calculation. (Right) Normalized count ratio
between C1 and C2 is a function of the distance of the outer edge (indicated by the gray line in the
left part of Fig. 4i) to the FBD.
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Fig. 5 | Spatial transcriptome validated metabolism associated gene expression alteration in
heterogeneous hepatocyte subtypes identified by SEAM. a, Serial sections were made for
cross validation among different assays. b, Geo-seq was performed at same location (Right) in the
adjacent slide of SEAM assay (Middle, m/z 134 in blue and m/z 69 in red) to obtain continuous
tissue spatial structure. Yellow dashed area representatively indicate the captured regions for Geo-
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regions. d, Heatmap of filtered differentially expressed genes (DEGs) between Hepa®®hdh and
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part is consensus 14 genes in top 3 GO terms, and lower part is 8 genes enriched in last GO term.
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Figure 1

SEAM captures spatial metabolic heterogeneity at single nucleus resolution. a, Overview of SEAM. (Left)
Tissue samples on glass slides are analyzed by TOF-SIMS to generate multiplex SIMS data containing
mass spectrometry and ion images (Right). (Bottom left) H&E staining of mouse liver central vein region.



(Bottom middle) Color-coded pixel visualization is obtained by SIMS-View. (Bottom right) Spatial single
nucleus map is obtained by a sequential of algorithms: SIMS-Cut (segmentation), SIMS-ID
(representation), and SIMS-Cluster (clustering). b, SEAM scales to different mouse tissues with different
cell density and distribution pattern. First row is color-coded pixel visualization by SIMS-view to
differentiate metabolic patterns at pixel level. Second row is spatial single nucleus map for cell type
visualization at original tissue space. Scale bar 100pm. In Fig. 1a, Mouse illustration: Image by
OpenClipart-Vectors from Pixabay. Liver illustration: Image by zachvanstone8 from Pixabay.
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Algorithms design and performance. a, Sketch of SIMS-Cut, leveraging Potts model as prior for pixel
labels and Restricted Boltzmann Machines as conditional distribution of pixel intensities. (Left) Top 20
nucleus-localized ions. (Middle) lterative optimization between subproblems (See Methods). (Right) Cell
segmentation mask. b, Sketch of SIMS-ID, learning vector-formed representation for each segmented cells
using self-representation learning. (Left) multiplex SIMS data combined with cell segmentation mask.
(Middle) A neural network for a auxiliary classification task. (Right) Single nucleus representation output.
¢, Demonstration of algorithms on central vein (CV) of wild type mouse liver. (Left) UMAP visualization of
single nucleus using SIMS-ID representation, colored by SIMS-Cluster identified cell types. (Middle)
Spatial single nucleus map. White arrow indicates CV. Scale bar 100um. (Right top) Respective layout of
cell populations. Scale bar 100um. (Right bottom) Zoom in images of each population merged with grey
scaled image of m/z 134.Red dotted area indicate liver sinusoid. Scale bar 10pum.
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SEAM detects zonation-like metabolic pattern in wild type mouse liver. a, Differential metabolite analysis
of mouse liver tissue in Fig. 2c. b, UMAP colored by abundance of representative differential metabolites.
c, lon images of a ion series with zonation-like distribution identified by differential analysis in Fig. 3a.
Scale bar 100um. d, Hepatocyte C1 subpopulation shows zonation-like distribution. (Left) Schematic
diagram of strategy of measuring cell-to-CV distance. (Right) Hepatocyte C1 shows significantly smaller
distance to CV than other clusters. e, Metabolite series show zonation-like distribution. (Left) Schematic
diagram of strategy of measuring metabolite-to-CV distance: Concentric circles with distance of
arithmetic sequence from CV partition the liver lobule into 9 zones. (Right) 6 metabolic markers of
Hepatocyte C1 show gradient decrease away from CV. X-axis: zone number, Y-axis: enrichment score of
each metabolites, which is the proportion of hepatocytes that highly express each metabolites in each
zones.
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Figure 4

SEAM identifies hepatocyte subtypes with differential metabolic state associated with spatial
localization. a, H&E staining of human liver sample post TOF-SIMS analysis. Scale bar 500pm. b, Zoom
in H&E images of 4 different regions. Bottom. White arrows indicate fibrotic and inflammation niche.
Scale bar 100pum. ¢, SEAM results of 4 regions. First column is colorcoded pixel visualizations. Scale bar
100um. Second column is UMAP colored by cell clusters. Third column is spatial single nucleus map. d,



Spatial single nucleus maps of respective clusters merged with grey scaled ion image of m/z 134. Scale
bar 100um. e, Differential metabolite analysis of cell clusters. f, (Top and middle row) Hepatocyte C1
enriched metabolites. Scale bar 100um. (Bottom row left) Merged ion image of m/z 69(Red) and m/z 134
(Blue). (Bottom row middle and right) Spatial localization of hepatocyte C1 and C2 respectively merged
with greyscaled ion image of m/z 69. h, Hepatocyte C1 is consistently closer to fibrotic boundary (FBD)
than C2 within all 5 zones. (Left) Schematic diagram of zone definition and distance calculation. (Right)
Paired boxplots of distances between C1/C2 and FBD. For Wilcoxon Rank Sum test, P-value > 0.05 is not
shown on the plot. P-value < 0.05 (*), P-value < 0.01 (**), P-value < 0.001 (***) and Pvalue < 0.0001 (****)
are shown. i, Normalized count of hepatocyte C1 is consistently higher than C2. (Left) Schematic diagram
of normalized count ratio calculation. (Right) Normalized count ratio between C1 and C2 is a function of
the distance of the outer edge (indicated by the gray line in the left part of Fig. 4i) to the FBD.
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Spatial transcriptome validated metabolism associated gene expression alteration in heterogeneous
hepatocyte subtypes identified by SEAM. a, Serial sections were made for cross validation among
different assays. b, Geo-seq was performed at same location (Right) in the adjacent slide of SEAM assay
(Middle, m/z 134 in blue and m/z 69 in red) to obtain continuous tissue spatial structure. Yellow dashed
area representatively indicate the captured regions for Geoseq. Scale bar 100um. c, PCA plot of
transcriptomic profiles from a total 15 samples of different regions. d, Heatmap of filtered differentially
expressed genes (DEGs) between Hepa69high and Hepa69low cells. e, GO enrichment of DEGs. f,
Heatmap of DEGs enriched in GO terms in e. Upper part is consensus 14 genes in top 3 GO terms, and
lower part is 8 genes enriched in last GO term.
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