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Abstract 

Spatial metabolomics can reveal intercellular heterogeneity and tissue organization. To achieve highest 

spatial resolution, we reported a novel Spatial single nuclEar metAboloMics (SEAM) method, a scalable 

platform combining high resolution imaging mass spectrometry (IMS) and a series of computational algo-

rithms, that can display multiscale/multicolor tissue tomography together with identification and clustering 

of single nuclei by their in situ metabolic fingerprints. We firstly applied SEAM to a range of wild type 

mouse tissues, then delineate a consistent pattern of metabolic zonation in mouse liver. We further studied 

spatial metabolome in human fibrotic liver. Intriguingly, we discovered novel subpopulations of hepato-

cytes with special metabolic features associated with their proximity to fibrotic niche, which was further 

validated by spatial transcriptomics with Geo-seq. These demonstrations highlight how SEAM may be 

used to explore the spatial metabolome and tissue anatomy at single cell level, hence leading to a deeper 

understanding of the tissue metabolic organization. 

Introduction 

The hierarchical organization of multicellular organisms is stably maintained by homeostasis at different 

levels. At the tissue level, such homeostasis is often further modulated by the combination of intracellular 

gene expression network and extracellular (microenvironmental) signals1-4. Cell and its extracellular en-

vironment interact dynamically through various signaling mediators, including metabolites, secretome, 

and ligand-receptor interactions. Metabolites from extracellular environment can significantly influence 

cell behavior or even transform its identity. For instance, extensive alcohol intake not only activates the 

detoxification activity of hepatocytes but also alters the epigenetic landscape of hepatocytes5. Conversely, 

cell releasing metabolites can also have impact on its microenvironment. One classic example is baso-

phils and mast cells releasing histamine to increase the permeability of the capillaries when encountering 

infection6. To facilitate a deeper and more systematic understanding of the multi-scale nature of biological 

processes (e.g. organ development or tumor microenvironment), various single cell omics-technologies 

have been rapidly developed and utilized7. Currently, advanced imaging mass spectrometry (IMS) based 

techniques are also being made possible to profile a large number of metabolites spatially and/or tempo-

rally, providing new dimensional insights to those hierarchical processes8,9.  

  In spatially resolved metabolomics studies, different techniques have been developed including ma-

trix-assisted laser desorption/ionization (MALDI-MS)10, desorption electrospray ionization (DESI-MS)11, 

laser ablation inductively coupled plasma (LA-ICP-MS)12, and secondary ion mass spectrometry 

(SIMS)13. MALDI-MS utilized t-MALDI ion source for imaging of phospholipids and a few other biomole-

cule classes in thin, matrix-coated tissue sections and cell cultures at a pixel size of about 1–2 µm14. 

With further improvement, MALDI-2 was introduced by adapting a t-MALDI-2 ion source to an Orbitrap 

mass analyzer and a pixel size of 600 nm was achieved on brain tissue15. DESI-MS has been utilized to 

visualize tissue level metabolomic alterations in 256 esophageal cancer patients11. Recently, based on 

SIMS, 3D OrbiSIMS, a label-free IMS with subcellular lateral resolution, and high mass-resolving power, 

has been developed16. These techniques will increasingly be used in future spatial metabolomics appli-

cations.  



Although the above techniques achieved unprecedented subcellular resolution, several analytical 

complications still exist, e.g. single cell segmentation and cell fingerprint extraction. Previous studies 

typically segmented cells using hematoxylin-eosin (H&E) staining, which suffered from either inaccurate 

segmentation due to imperfect registration of adjacent slides, or labeling on the same slides, which 

might bring exogenous substances leading to sabotaging sample integrity17. Another cell segmentation 

strategy exploited convolution neural network (CNN) trained on pixel-wise annotated cells, demanding 

for huge human expert labour18. As for cell fingerprint extraction, the common practice that took the av-

erage of pixel profiles within each cell caused the impairment of distributive information19,20. These defi-

ciencies hinder the efforts for the quantification of single cell metabolome while preserving spatial infor-

mation. Consequently, although there have been instrumental-wise improvements for IMS, the down-

stream analytical methods still require further development for users to fully exploit spatial metabolomic 

features. 

  To overcome those deficiencies, we proposed Spatial single nuclEar metAboloMics (SEAM), a novel 

platform leveraging the spatial metabolome provided by SIMS and a comprehensive series of computa-

tional algorithms for delineating in situ single cell level metabolome and tissue microenvironment. To our 

knowledge, this is the first study capable of segmenting and analyzing single nuclear metabolic profiles 

directly on tissue sections. Importantly, SEAM is label-free and only requires minimal experimental prep-

aration, which avoids the introduction of exogenous substance and preserves samples' native state. As 

a proof of principle, we comprehensively calibrated SEAM using popular cell cultures, and then system-

atically scaled up to various mouse tissues, including wild type mouse lung, kidney, small intestine, and 

liver. Finally, we discovered different hepatocyte metabolic subpopulations and their spatial network or-

ganization within the tissue microenvironment in human fibrotic liver. 

 

Results 

Overview 

SEAM is an integrated platform for qualitative and quantitative analysis of tissue metabolic cell typing and 

in situ microenvironment. The whole pipeline is composed of two main parts: IMS assay and computa-

tional analysis suite (Fig. 1a). 

As an IMS technology, time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides both mass 

spectra (chemical information) and ion images (spatial information), of biomolecules on tissue sections 

(Fig 1a, top left). Typically, hundreds of peaks in a mass spectrum could be extracted from a 400 × 400 

μm2 scan area on a tissue section. Every experiment outputs multiplex SIMS data with 256×256 pixels in 

spatial resolution, and each pixel is associated with a vector of over 200 selected m/z peaks (Fig. 1a and 

see Methods). With the reference of H&E staining, to facilitate users with quickly viewing of the metabolic 

spatial pattern across the full spectrum, rather than manually reading hundreds of m/z images one by one, 

SEAM provides SIMS-View to compress the multiplex SIMS images from hundreds of channels into three, 

while preserving local and global structures in the feature space (Fig. 1a, bottom left and middle). Then 



the three-channel images are mapped to CIELAB color spaces21 and can be rapidly surveyed by human 

vision.  

To compensate for the potential information loss of dimensionality reduction by taking the advantage of 

compositional characteristics and spatial continuity, SEAM can further build a spatial single nucleus map 

and delineate the organization of metabolically distinct in situ cell subpopulations (Fig. 1a bottom right). 

More specifically, SEAM provides three additional data analysis modules (see Methods): single nucleus 

segmentation (SIMS-Cut, Fig. 2a), single nucleus representation (SIMS-ID, Fig. 2b) and differential me-

tabolite analysis (SIMS-Diff).  

   

SEAM can resolve metabolomic profiles at single cell resolution on various tissues with different 

cell densities 

To demonstrate the universality and as a sanity check, we tested SEAM using mouse liver (Fig. 1a bottom 

row), lung, kidney, and small intestine samples(Fig. 1b). Qualitative visualization of SIMS-View may illus-

trate the corresponding tissue structures: e.g. in the liver, the metabolites show gradual changes spread-

ing out from the central vein (CV)22; in the lung and kidney, the specific structure of the local metabolic 

niches, such as bronchioles and glomerulus23; and in the small intestine, the characteristic anatomic pat-

tern along the intestinal villus axis24 (Supplementary Figs. 1-3).  

  In addition to the spectral projection by UMAP in SIMS-View, one can selectively add more histological 

or functional information back by using those different SEAM modules through quantitatively characteriz-

ing the spatial and compositional information within the single nuclear metabolome. Compared with the 

SIMS-View, clustering results using the single nuclear representation module SIMS-ID can mark strong 

correspondence to the well-established cell types, for example, hepatocytes and endothelial cells in the 

liver, Clara cells in the lung, as well as enterocytes and lamina propria in the small intestine (Supplemen-

tary Figs. 1-3).  

Algorithms design and modular data analysis for SEAM 

SIMS-View is a fast visualization tool designed for SIMS data, which takes advantage of the efficiency as 

well as the local and global structure preservation of UMAP25. It takes multiplex SIMS data as input and 

outputs a single human-readable image using three steps. First, SIMS data is regarded as 256×256 in-

dependent pixels, each represented by a fixed-length vector, and each pixel is feature-wise normalized to 

avoid feature bias. Next, the 65536 pixels are fed into UMAP to reduce the dimensionality to 3. Finally, 

each of the three resulting dimensions is scaled and color-coded by CIELAB color space, and all pixels 

are mapped back to their original positions. SIMS-View provides a global view of all the ion distribution 

features in one single image at the pixel level.   

  To solve the cell segmentation problem, various in situ works used different methods. Some used 

matched H&E stain17, others took one simple measurement as input18,26. And most of them used super-



vised segmentation, via either pixel-wise classification or modeling the whole image using CNN. Interest-

ingly, based on the visualization of SIMS-View results on different samples, the nuclei of cells showed 

similar color for most cells yet different from other non-nuclear areas (Fig. 1a, b). Therefore, we decided 

to isolate the nucleus to demarcating every single cell. To avoid extra staining and heavy annotation labor 

which would sabotage the original metabolic state of samples, we developed SIMS-Cut, an unsupervised 

label-free algorithm, to segment regions of interest (ROIs) using corresponding metabolic markers, for 

example, adenine (m/z 134) as the nuclear marker16. The input data format is multiplex by selecting those 

ion species highly co-localized with nuclei, which is highly consistent across different samples (Supple-

mentary Fig. 4a). And the core of SIMS-Cut is an expectation-maximization (EM) algorithm, aiming to 

solve an optimization problem of a probabilistic graphical model (PGM)27 which combines a restricted 

Boltzmann machine (RBM)28-31, and a Potts model32,33 (Fig. 2a, Supplementary Fig. 4d). The RBM (Sup-

plementary Fig. 4c) is suitable for modeling the appearance of a multi-image pixel given its label (fore-

ground/background), and the Potts model (Supplementary Fig. 4b) encourages the resulting segmenta-

tion masks to be smooth.  

  To demonstrate the superior performance of SIMS-Cut, we compared with several popular unsuper-

vised segmentation algorithms (Supplementary Fig. 5c), using different cell cultures with adenine (m/z 

134) as the ground truth (Supplementary Fig. 5a, and see Methods). The results showed that SIMS-Cut 

could consistently outperform contestants in all cases visually and quantitatively (Supplementary Figs. 

5a-c, 6). To test the suitability on tissue samples, we also applied SIMS-Cut on various wild type mouse 

tissues, ranging from lung, kidney, small intestine, and liver (Supplementary Figs. 7, 8). For the more 

challenging case, where cells might display distinct sizes and densities, SIMS-Cut was finally applied on 

human liver fibrosis tissues from multiple patients, and all resulted in consistent and satisfactory perfor-

mance (Supplementary Figs. 9, 10). 

  After segmentation, the metabolic fingerprint of each segmented nucleus needs to be extracted and 

represented. Given the fact that SIMS captures the cumulative intensities along the z-axis for each pixel, 

extracting the metabolic fingerprint of each cell (both nucleus and cytoplasm) can be done by combining 

its segmentation mask and corresponding SIMS data. Existing works often represented cells by compu-

ting the average of all the pixels containing within each cell19,20, which required strong assumptions like 

Gaussian or unimodal, and suffered from loss of pixel variation (Supplementary Fig. 11c). To obtain better 

results, SIMS-ID represents cells using the bipartite graph of pixels and cells constructed by a self-super-

vised learning algorithm34-36, which can soften the hard labeling produced by SIMS-Cut (Fig. 2b and Sup-

plementary Fig. 11a, b). The resulting representation showed superior discriminative power, noise robust-

ness, and pixel distribution preservation.  

  To test the distinguishing features mentioned above, we constructed 11 datasets (See Methods) con-

taining both mixed cell populations simulated based on single cell line cultures (Supplementary Figs. 5a, 

12), and mixed-cultured cells (Supplementary fig. 13). To compare the discriminative power between 

SIMS-ID and the conventional mean representation, we tested supervised classification using KNN 

equipped with cross-validation and unsupervised clustering using several standard algorithms (K-Means37, 

SC338, SIMLR39, T-SNE40 followed by K-Means, and UMAP followed by HDBSCAN41), then applied them 



on both representation methods to compare on datasets 4,5,6,7, each containing 4 cell clusters (Supple-

mentary Fig. 12a), whose ground truth is naturally derived in silico; and on datasets 10,11, two mixed-

cultured datasets, whose ground truth is provided by BrdU/IdU labeling42 (Supplementary Fig. 13, and 

see Methods) without affecting on cell metabolic fingerprint (Supplementary Fig. 21). The results showed 

superior performance of SIMS-ID in both supervised (Supplementary Fig. 17) and unsupervised (Supple-

mentary Fig. 18) cases, even in cases of minor fold changes on two feature dimensions (Supplementary 

Figs. 12a, 17). To evaluate the sensitivity of capturing pixel distribution of cells, we first tested SIMS-ID 

with dataset 3, where it could identify the change of the pixel distribution from the original data to Gaussian 

(Supplementary Fig. 16), then on dataset 8 and 9 (Supplementary Fig. 12b,c), where SIMS-ID could dis-

tinguish cell types with unimodal and multimodal distributions (Supplementary Fig. 19), or different joint 

distributions even on two feature dimensions (Supplementary Fig. 20). To test the robustness to inaccu-

rate segmentation and pixel-wise multiplicative noise, SIMS-ID was applied on dataset 1 and 2, and 

showed consistently better performance than the mean representation (Supplementary Figs. 14, 15). The 

SEAM analyses of datasets 10,11 are shown in Supplementary Figs. 22, 23. 

  The resulting representation of SIMS-ID lies in high dimensional feature space. SIMLR39 is a popular 

single cell clustering algorithm, which automatically learns cell to cell affinity with multiple kernel ensemble 

learning, and shows satisfactory performances when combined with SIMS-ID (Supplementary Fig. 18). 

We simply adopted SIMLR as our clustering method. 

  To characterize the key metabolites differentiating clusters, and account for the variation of pixels within 

cells, we developed SIMS-Diff as our differential analysis algorithm. SIMS-Diff regards cells as distribu-

tions of pixels and uses earth mover's distance (EMD, see Methods)43 as the dissimilarities among cells. 

Using this, the discriminative power of one feature with respect to a given cluster partition can be meas-

ured as the ratio of between cluster variation (BCV) and within cluster variation (WCV).  

 

SEAM reveals cell spatial metabolic states in wild type mouse liver. 

Liver is an important metabolic organ consisting of repeating hexagonal-shaped units called lobules44. 

Spatial heterogeneity of metabolic mechanism has been thoroughly investigated using immunohistochem-

istry (IHC) analyses45, transcriptome22, and epigenome46, but, to our knowledge, single cell level of direct 

spatial metabolome has not been reported. This allows us to fill up the gap by a proof-of-concept demon-

stration of SEAM. 

  To this end, wild type mice were used to obtain sequential liver sections, and CV centered regions were 

selected for SEAM analysis. The SIMS data consists of approximately 200~300 ion species after spectral 

peak selection and filtering (See Methods), and SIMS-Cut detected 724 nuclei in the square. To extract 

metabolic cell fingerprint, we used SIMS-ID to represent each cell with a fixed-length vector, which was 

fed into SIMLR to obtain metabolic distinct cell subpopulations. SIMLR reached an optimal k = 8, and the 

resulting 8 metabolically distinct subpopulations correspond to major liver cell types, including Kupffer 

cells, 2 subpopulations of endothelial cells, and 4 subpopulations of hepatocytes (Fig. 2c).  



The identified subpopulations showed specific spatial patterns consistent with the known liver organi-

zation (Fig. 2c). Kupffer cells are specialized macrophages in the liver, which typically line on the walls of 

the sinusoids. Endothelial cells correspond to vascular endothelial cells and liver sinusoidal endothelial 

cells, typically lying between the crevices of hepatocytes and receiving blood from both the hepatic artery 

and the portal veins into the hepatic parenchyma47. Hepatocytes (the parenchymal cells) constitute 80% 

of the mass and 60% of cell composition in a healthy mammalian liver, performing various metabolic 

functions strongly associated with their positions44. SIMS-Diff identified differential ion species among the 

subpopulations (Fig. 3a, b). We found m/z 60, 76, and 77 as metabolic markers of endothelial cells, while 

m/z 134, 181, and 91 enriched in Kupffer cells (m/z 134 is reported to be adenine, reflecting the higher 

nucleus-to-cytoplasm ratio). Hepatocytes, which differ from liver non-parenchymal cells, were character-

ized by m/z 255, 279, and 281, corresponding to the fatty acid metabolism of parenchymal tissue. Inter-

estingly, hepatocyte may be sub-classified by C1, C2, C3, and C4 each showing different metabolic fin-

gerprints (Fig. 3a, b).  

 

Hepatocyte metabolic clusters show a consistent but complementary spatial pattern with liver 

zonation 

Having identified the metabolic heterogeneity among hepatocytes in wild type mouse liver lobule, we 

searched for differential gene expression corroboration in the literature. Hepatocyte C1 was visually lo-

calized around CV, and quantitative analysis revealed that the cells in Hepatocyte C1 showed significantly 

smaller distances from CV compared with the other hepatocytes (! < 10%&, one-side Wilcoxon rank sum 

test) (Fig. 3d). We also found 6 ion species markers and observed the gradual changes along the liver 

lobule (Fig. 3c), as well as the zonation pattern of each representative metabolite in single cell level, 

showing consistent pattern with reported spatial transcriptome22 (Fig. 3e). Additionally, replicate experi-

ments on different CV regions also showed consistent metabolic patterns and cluster-specific metabolites, 

indicating the robustness and effectiveness of our method (Supplementary Figs. 24a, 25a-f). We reported 

SEAM results of the liver portal node (PN) as our negative control (Supplementary Fig. 25g, h). Consistent 

with the spatial expression of GLUL22, the spatial pattern of m/z 58, 59, 69, 71, 87, and 101 showed higher 

expression in the nearest 1~2 layers of hepatocytes from CV (Fig. 3c, e). We further conducted the IHC 

of two liver zonation markers, Glutamine synthetase (GS), the protein encoded by GLUL, and Cytochrome 

P450 2E1 (Cyp2e1), at the adjacent slides and confirmed liver zonation pattern (Supplementary Fig. 24b-

d). This example provided SEAM with a positive control that it can accurately and comprehensively char-

acterize the spatial heterogeneity within a well-studied tissue microenvironment. 

 

SEAM identified metabolically different hepatocyte subpopulations associated with the fibrotic 

niche.  

Liver cirrhosis has been a major killer, and progressive liver fibrosis often results in liver cirrhosis48. Having 



been proven effective in the case of wild type mouse liver, SEAM was applied to human liver fibrosis to 

characterize the metabolic microenvironment around a fibrotic niche. We hypothesized that there should 

be metabolic alterations of hepatocytes around the fibrotic niche, and such alteration might be associated 

with the distance between hepatocytes and fibrotic boundary (FBD) at a local scale. 

  To test this hypothesis, we collected 10 non-tumor tissue regions from 3 liver cancer patients (Supple-

mentary Table. 2) and made a sequential 10μm slides for SIMS and other assays. We selected 4 regions 

from one sample, each containing a fibrotic niche, and conducted SIMS experiments (Fig. 4a, b). The 

resulting data consists of approximately 200~300 ion species after spectral peak selection and filtering 

(See Methods). The color-coded pixel visualizations produced by SIMS-View depicted a qualitative spatial 

pattern within each region (Fig. 4c left column). To quantitatively characterize the cell composition and 

spatial organization, SIMS-Cut detected 902, 716, 546, and 682 nuclei in four square regions respectively. 

SIMS-ID and SIMLR were subsequently performed to get metabolically distinct cell subpopulations. The 

consistent manifolds and clusters shown by UMAP (Fig. 4c middle column) and the spatial single nucleus 

map (Fig. 4c right column) confirmed the reliability and robustness of SEAM. The identified subpopulations, 

corresponding to Kupffer cells, immune cells, fibroblasts, endothelial cells, and 3 subpopulations of 

hepatocytes, exhibited the specific spatial distributions (Fig. 4d) and the matching metabolic fingerprints 

(Fig. 4e). The correspondence and incongruity between cell subpopulations of human and mouse liver 

samples were also analyzed (See Methods and Supplementary Fig. 26).  

Intriguingly, we observed that Hepatocyte C1 was visually localized near the FBD, and its associated 

metabolic markers, e.g. m/z 69, 55, and 57, showed the consistent spatial pattern across 10 regions (Fig. 

4f, g, and Supplementary Figs. 27, 28). To quantify the association between the hepatocyte metabolic 

alteration and the distance to the FBD, we separately conducted two statistical analyses on 10 regions of 

3 patients (Supplementary Table. 2) given defined FBD (see Methods and Supplementary Fig. 30 second 

column): the distance from FBD to hepatocyte C1/C2 (distance-based analysis), and the normalized count 

ratio between hepatocyte C1 and C2 (count-based analysis). Using R1 as a demonstration, we first de-

fined 5 zones (zone 0~4) with increasing areas (Fig. 4h left), each representing an accumulative territory 

between the FBD and the corresponding parallel strip (parallel strips are indicated by gray solid lines, and 

the accumulative territories of zones are indicated by gray dotted brackets), then the distances from FBD 

to Hepatocyte C1/C2 within the 5 zones were subsequently summarized by a series of paired boxplots 

(Fig. 4h right, n=10). Meanwhile, we calculated the normalized count ratio between Hepatocyte C1 and 

C2 within an area as a function of the distance from the outer edge (indicated by the gray solid line in Fig. 

4i left) to the FBD (Fig. 4i right, n=10). The result of the distance-based analysis showed that Hepatocyte 

C1 was significantly closer to FBD than C2 to FBD within the 5 zones (one-side Wilcoxon rank sum test, 

Fig. 4h right, n=10), and the relative proximity exhibited high similarity across 10 regions (Supplementary 

Fig. 30 third column). Complementarily, the count-based analysis showed that the normalized count of C1 

is consistently higher than C2, specifically, C1 was about ~30-50% denser than C2 within 100µm (a typical 

hepatocyte size is ~25µm) to the FBD and reduced quickly to about the same level as C2 after ~350µm 

(Fig. 4i right, n=10), and this trend was highly similar across 10 regions (Supplementary Fig. 30 fourth 

column). Detail of FBD determination, zone partition, distance, and normalized count ratio calculation, as 

well as other necessary terms definition, is exactly described in Methods. The above statistical analyses 

verified our hypothesis that the metabolic alteration of the hepatocyte subpopulations might be associated 

with the spatial proximity to the fibrotic niche. To verify the variation of microenvironment was not only 

reflected at the metabolic level, we subsequently performed Geo-seq, a spatial transcriptome assay at 

the same ROIs of different hepatocyte subpopulations. 



 

Spatial transcriptome validated metabolism associated gene expression alteration in heterogene-

ous hepatocytes identified by SEAM 

To get a deeper understanding of SEAM results, we performed Geo-seq with a modified protocol (See 

Methods) of the transcribed RNA samples isolated from the tissues of the corresponding ROIs from the 

adjacent slides (Fig. 5a, b, and Supplementary Fig. 31). To increase reproducibility, multiple adjacent 

slides were used (Supplementary Fig.32-35). The Geo-seq slides showed high continuity with the corre-

sponding SIMS slides in terms of spatial histology (Fig. 5b). Hepatocyte C1 from SEAM’s result, which 

was proximal to fibrotic niche and enriched with ions species m/z 69 series were defined as Hepa69-high, 

whereas Hepatocyte C2, which were distal and not enriched with ions species m/z 69 series were defined 

as Hepa69-low. We also collected the fibrotic regions as the FB samples. In total, 15 cDNA libraries were 

constructed successfully (Hepa69-high n=6, Hepa69-low n=5, and FB n=4). Principle component analysis 

(PCA) plot indicated that two different groups (Hepa69-high -proximal and Hepa69-low -distal) of hepatocytes 

shared higher similarity relative to FB samples (Fig. 5c). More importantly, Hepa69-high samples were con-

sistently closer to FB samples than Hepa69-low to FB samples in PCA space (Fig. 5c and Supplementary 

Fig. 36). To validate the expression pattern of each group, we first compared gene expression profiles 

between hepatocytes (i.e. Hepa69-high/ Hepa69-low) and FB, then performed gene ontology (GO) enrichment 

for both up-regulated and down-regulated differentially expressed genes (DEGs) (See Methods and Sup-

plementary Fig. 37, 38). Up-regulated DEGs were mainly involved in liver biosynthesis pathways for both 

Hepa69-high and Hepa69-low groups and down-regulated DEGs were highly enriched in lymphocyte activa-

tion and humoral immune response pathways. We further looked at the well-known marker genes specific 

for hepatocytes (ASL, HP & SAA1), fibrosis (TGFB1, PDGFB & COL4A1), and immune response (IGHM, 

IGHG3 & IGHV4-59). Both hepatocytes groups showed high levels of hepatocyte marker genes. Whereas 

genes typically activated in fibrotic regions for fibrosis and immune response were highly expressed in FB 

samples (Supplementary Fig. 39). There were 718 differentially expressed genes (DEGs) fitting into the 

criteria of adjust P-value < 0.05 and log fold change (LFC) standard error < 3. The expression heatmap 

indicated that these genes had different expression patterns between the proximal hepatocytes (Hepa69-

high) and the distal (Hepa69-low) (Fig. 5d). We inputted the DEGs for GO enrichment analysis (Fig. 5e). 

There were 17 genes enriched in the first GO entry, 16 of them were consistently higher in Hepa69-high 

than Hepa69-low (Fig. 5f). Genes of solute carrier transporters families with different functions were enriched 

in the fibrosis proximal (Hepa69-high) group, indicating the corresponding metabolite transmembrane ex-

change activities were elevated. 

 

Discussion 

In this study, we have developed SEAM, a platform combining experiments, and computational algorithms 

to quantitatively characterize the metabolic intra- or inter-cellular features with multiscale spatial resolution. 

Unlike other IMS instruments such as DESI (40–60μm)11, SIMS can provide a high spatial resolution 



allowing one to visualize detailed metabolic structures in tissue histology. With fast and minimal sample 

processing, SIMS maximumly preserves the native state of samples. Given the nature of SIMS, although 

it breaks most of the molecules into fragments, making it more difficult to annotate (a common challenging 

issue for MS studies), it produces high multiplexity of metabolic features with the potential of characteriz-

ing cell and fine tissue microenvironment. Benefiting from both high spatial resolution and high multiplexity 

of SIMS, the algorithms of SEAM start solely from the features generated by SIMS and run a pipeline 

enabling metabolic analysis from pixels to single nuclei, then to the selected metabolic molecules with 

spatial information annotated. Previously, there have been reports on spatial metabolic features at tissue 

level or in vitro single cell level16. But, to our knowledge, this is the first study capable of segmenting and 

analyzing single nuclear metabolic profiles directly on tissue sections. In addition, this algorithmic pipeline 

is principally scalable to other spatial omics studies based on other IMS platforms, transcriptomics, and 

proteomics with minimum adjustments, and it’s also easy to work together with bioinformatics tools such 

as CIPHER to predict and prioritize disease-related metabolic molecules49. 

Apart from the scalability of SEAM’s algorithms, we have demonstrated that the range of SEAM 

applications could cover from in vitro cell culture assays to various tissue samples. Firstly, in the mixed 

cell-cultured assay, SEAM could easily deconvolute the different cell lines co-cultured together. Addition-

ally, in different wild-type murine tissue samples, SEAM successfully segmented single nuclei without 

extra labeling required. The single nuclear metabolic profile analysis was also consistent with conventional 

tissue histological characterization (Supplementary Figs. 1-3). Specifically, in the liver, a spatially well-

orchestrated but complex organ, the CV-PN axis zonation has been well-established at single cell tran-

scriptome level in wild type mouse22. We observed consistent zonation patterns at single cell level in CV 

centered region with the gradational decrease of certain characteristic metabolites. Lastly, we found that 

hepatocyte subpopulations (among which, to our knowledge, the novel C1 has never been reported before) 

differentiated by different metabolic features were also transcriptionally distinct shown by Geo-seq (Fig. 

5c-f). The elevated expression level of solute carrier genes can potentially explain the enrichment of a list 

of metabolite species found by SEAM (Fig. 4). These genes are involved amino acid transport 

(SLC36A4, SLC3A2 & SLC38A9)50-52, phosphate transport (SLC17A2 & SLC17A4)53 and Gamma-Ami-

nobutyric Acid (GABA) transport (SLC6A12)54. SLC3A2 has already been reported to play a central role 

in fibronectin matrix assembly, which also concurs with our result as the proximal samples were more 

close to the fibrotic region51. It indicates that spatial microenvironment differences could influence cellular 

metabolic homeostasis, which may in turn further alter the gene regulation and downstream response due 

to cell adaptation and genetic/epigenetic feedback. 

 In summary, SEAM provides a high spatial resolution single nuclear metabolome profiling pipeline 

requiring minimal sample preparation and labeling. It is automatically scalable to different biological sam-

ples ranging from cell culture assays to complex tissue samples. It can have a great impact on differenti-

ating subtle tissue metabolic changes undetectable for or complementary to other conventional assays. 

With future improvement of IMS resolution and molecule annotation capability, SEAM would be able to 

provide more detailed spatial metabolome profiles with higher resolution and broader functionality. 



ONLINE METHODS 

IMS experiments 

TOF-SIMS 5 (ION-TOF GmbH, Münster, Germany) equipped with a Bi liquid metal ion gun (LMIG) 

is used in this study, collected TOF-SIMS spectra and images of tissue samples using a 30 keV 

Bi3+ LMIG with a high spatial resolution (HSR) mode. The Bi3+ current in the HSR mode was 0.1 

pA (100 ns pulse width, unbunched beam). The total Bi3+ accumulated ion dose was about 2.0 × 

1010 ions/cm2, the typical probe sizes of the Bi3+ LMIG was ~200 nm in HSR mode. The secondary 

ion images were acquired using Bi3+ LMIG rastering over a 400 × 400 μm2 area with 256 × 256 

pixels. The Bi3+ LMIG was operated at a cycle time of 150 μs (mass range: 0 ~2000 u). Negative 

spectra were mass-calibrated using CH2
-, O-, OH-, PO2

-. A flood gun with low energy electrons was 

used to compensate for charge buildup on sample surface. A 10-keV Ar2500
+ commercial gas clus-

ter ion gun (GCIB) was used as a sputter gun (rastering over a 550 × 550 μm2 area, incident angle 

45°) to carry out the depth profiling. A final 2D image was an overlay of 80~120 layers of depth 

profiling scan images. 

In initial cell analysis, a high mass resolution (HMR) mode was used with 0.8 pA (<1 ns pulse width, 

bunched beam) Bi3+ current, the mass resolutions (measured at C2H-) were typically>6000. The 

total Bi3+ LMIG accumulated ion dose was between 1011 and 1012 ions/cm2, rastering over a 300 

× 300 μm2 area with 256 × 256 pixels. The Bi3+ LMIG was operated at a cycle time 150 μs (mass 

range: 0 ~2000 u). Negative spectra were mass-calibrated using CH2
-, O-, OH-, PO2

-. A flood gun 

with low energy electrons was used to compensate for charge buildup on sample surface. A 10-

keV Ar2500
+ commercial gas cluster ion gun (GCIB) was used as a sputter gun (rastering over a 

450 × 450 μm2 area, incident angle 45°) to carry out the depth profiling. A final 2D image was an 

overlay of 50-80 layers of depth profiling scan images. 

Peak selection. To avoid noise interference and improve follow-up analysis efficiency and accu-

racy, picking out peaks from a full spectrum was necessary. A Peak Search process in SurfaceLab 

was carried out with the parameters as bellow��mass range 50-500; minimum counts 10000; min-

imum signal/noise ratio 1000. Typically, 200-500 peaks were picked out from a full spectrum. 

SIMS data preprocessing. Each peak corresponds to a highly spatially resolved and spectrally 

filtered ion image: the former originated from a specific one or a class of chemical substances in 

the tissue sample while the latter shows its characteristic spatial distribution features in this tissue 

square (Fig. 1a, top right). For further data analysis, each ion image can be exported as an Amer-

ican Standard Code for Information Interchange (ASCII) mode data file by the SIMS built-in data 

processing software SurfaceLab, which contains three columns corresponding to the X-axis, Y-

axis coordinates and signal intensity values. 

 



Biological experiments 

Cell culture. Human non-small cell lung cancer cell line A549, human cervix carcinoma cell line 

Hela, murine hepatoma cell line Hepa 1-6 and murine liver epithelial cell line NCTC 1469 cell lines 

were grown on microscope cover glass (CITOGLAS, China) with Dulbecco's Modified Eagle Me-

dium (DMEM) (Gibco, USA) containing high glucose, L-glutamine, sodium pyruvate and 10% dia-

lyzed, heat-inactivated FBS (Gibco, USA). Human mammary gland cell line MCF 10A was grown 

on microscope cover glass (CITOGLAS, China) with DMEM/F12 (1:1) (Gibco, USA) containing 

insulin 10ug/ml, EGF 20ng/ml, cholera toxin 100ng/ml, hydrocortisone 0.5mg/ml and 5% equine 

serum. Human breast adenocarcinoma cell line MDA-MB-468 cell line was grown on microscope 

cover glass (CITOGLAS, China) with L-15 medium containing 10% FBS (Gibco, USA) and free air 

exchange. 

BrdU cell mix-culture experiment. Following protocol from the previous study, A549 and Hela 

cell lines were both cultured with and without 20μM BrdU (Sigma, USA) for 48 hours before seed-

ing. A549 with BrdU were then replated with non-BrdU Hela at the same density on microscope 

cover glass (CITOGLAS, China) for 20 hours and vice versa for non-BrdU A549 and Hela with 

BrdU. The same mix-culture procedure for IdU (Sigma, USA) was applied at Hepa 1-6 and NCTC 

1469 cell lines.  

Mice. C57BL/6N mice were purchased from Charles River. All mice were housed in isolated ven-

tilated cages (maxima six mice per cage) barrier facility at Tsinghua University. The mice were 

maintained on a 12/12-hour light/dark cycle, 22-26℃ with sterile pellet food and water ad libitum. 

The laboratory animal facility has been accredited by AAALAC (Association for Assessment and 

Accreditation of  Laboratory Animal Care International) and the IACUC (Institutional Animal Care 

and Use Committee) of Tsinghua University approved all animal protocols used in this study (Ani-

mal Welfare Assurance Number F16-00228 (A5061-01)).  

Intrahepatic cholangiocarcinoma (ICC) patient non-tumor liver tissues. The ICC non-tumor 

liver tissues were obtained from leftover pieces from surgery. The protocol of this study was com-

pliant with the principles of the Declaration of Helsinki and was also approved by the Institutional 

Review Board (IRB) and Ethics Committee (EC) of Peking Union Medical College Hospital 

(PUMCH) (JS-2492). 

Tissue section preparation. Mouse and human tissues were isolated individually and embedded 

in Optimum Cutting Temperature (O.C.T) compound (SAKURA, USA), then snap-frozen in liquid 

nitrogen. Cryo-section were performed using CM1900 Cryostat (Leica, Germany) to obtain 3μm ~ 

10μm continuously adjacent sections. 

Histology staining. Tissue cryo-sections were thawed at room temperature for 5 min then washed 

in PBS twice, 5min each time. Slides were fixed in 4% paraformaldehyde (PFA) for 20 min at room 

temperature then washed in PBS once. H&E stainings were then performed using the H&E staining 

kit (Leagene, China). Images were obtained from Axio Scan. Z1 (ZEISS, Germany) or Cytation5 



(Biotek, USA). 

Immunohistochemistry. Tissue cryo-sections were thawed at room temperature for 5 min then 

washed in PBS twice, 5min each time. Samples were permeabilized and blocked in 5% BSA solu-

tion (Sigma, USA) with 0.4% Triton-X100 (AMRESCO, USA) for 2h at room temperature. Dilute 

and apply primary antibody in PBS with 0.1% Triton-X100 with suited concentration according to 

each antibody and incubate in a humid dark chamber at 4℃ overnight. Wash three times in PBS 

with 0.1% Triton-X100, 10min each. Dilute and apply secondary antibody in PBS with 0.1% Triton-

X100 and incubate in a humid dark chamber at room temperature for 2h. Wash three times in PBS 

with 0.1% Triton-X100, 10min each. Slides were mounted using ProLong™ Gold Antifade 

Mountant (ThermoFisher, USA). Images were captured either by LSM780 confocal microscope 

(ZEISS, Germany) or Cytation5 (Biotek, USA).  

Modified Geo-seq. A spatial transcriptome analysis method, Geo-seq, previously described by 

Chen, Jun, et al55. A modified version was adopted. Tissue cryosections were mounted on the PEN 

membrane slide and stored at -80 degree freezer for short term storage. Slides were stained in 

0.5% cresyl violet and dehydrated in serial ethanol. Tissue blocks were obtained in a 0.2 ml PCR 

tube by LMD7000 (Leica, Germany). Buffer RLT (Qiagen, Germany) with DTT (Sigma, USA) were 

added and shaken vigorously for tissue lysis and RNA release. RNA Clean beads (Vazyme, China) 

1.8x were added to isolate total RNA. Prepare annealing procedure in the same tube with 3ul H2O, 

1ul dNTP, 1ul Oligo(dT), and 0.5ul RNase Inhibitor (RI) (Life Technologies, USA). Incubated at 72 

degrees 3min and immediately transfer in ice for 2min. Prepare reverse transcription reaction in 

the same tube with 2ul 5x RT buffer, 0.5ul DTT, 0.5ul RI, 0.5ul Template Switch Oligo (TSO, Sangon 

Biotech, China), 1ul Maxima reverse transcriptase (Life Technologies, USA). Incubate with 50 de-

grees with 1 hour and deactivate reverse transcriptase with 85 degrees for 5 min. Amplified the 

first strand product with 12.5ul 2x KAPA HIFI HotStart ReadyMix (Sigma, USA), 0.5ul TSO-PCR 

primer (Sangon Biotech, China) and 2ul H2O. The reaction condition was 95 degrees 3min, 98 

degree 20s, 67 degree 15s, 72 degrees 6min for 21 cycles, and 72 degrees for 5min. PCR product 

was purified with 0.8x DNA Clean beads (Vazyme, China). The next generation sequencing (NGS) 

library was then constructed by TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme, China). 

Libraries were sequenced by Illumina Xten Pair-end 150bp by Annoroad. 

 

RNA-seq data processing and analysis 

RNA-seq data were firstly performed with adaptor removal and quality filtering by Trim Galore56. 

The qualified reads were then mapped to the human gencode reference genome using STAR and 

generated BAM files57,58. Duplication was removed by PICARD (http://broadinstitute.github.io/pi-

card/) for all the BAM files. Read count for each gene was performed by HTSeq-count with refer-

ence to gencode human gene annotation, release 32 (GRCh38.p13)57,59. Different gene expres-

sion analyses were analyzed using DESeq2 in R60. 



 

SIMS-Cut framework 

Given an M×N×N SIMS data, with M filtered metabolic peaks and N×N image as input, SIMS-

Cut first select m metabolites co-localizing with nucleus (Supplementary Fig. 4a), and then itera-

tively solves a maximum a posteriori (MAP) problem (Supplementary Fig. 4d) to get an N×N bi-

nary matrix Y that indicates a nucleus.  

 Y)* = ,1								nuclei	region0															otherwise 		i, j ∈ [1, N] 
(1) 

Since the SIMS data is superimposed of a certain thickness of biological slice in its nature, we 

regard the segmented nuclei region as a cell containing molecular fragments in both cytoplasm 

and nucleus. The main part of SIMS-Cut can be formulated as finding an optimal Y∗: 
 Y∗ = argmaxE p(Y|X) (2) 

where 

 P(Y|X) = P(X|Y)P(Y)
P(X) ∝ P(X|Y)P(Y) (3) 

X = [x)*], i, j ∈ [1,N] and x)* ∈ RN, which is the m dimensional metabolic density at the coordinate 

of (i,j). This Bayesian formulation aims to find the optimal label assignment Y* that produces the 

maximum posterior probability given X. 

As with traditional hidden Markov random field (HMRF) based image segmentation61,62, SIMS-Cut 

uses a similar graphical model, consisting of P(Y), the smoothing model for unknown label field Y 

before guarantee spatial homogeneity, and P(X│Y), the data model for the conditional distribution 

of pixel metabolic profiles X given corresponding pixel label.   

Smoothing model. The label prior, P(Y) is modeled as a special Markov random field (MRF), 

called Potts model32. According to the Hammersley-Clifford theory63,64, P(X) follows a Gibbs distri-

bution65:  

 P(Y) = 1
Z exp	(−U(Y)) 

(4) 

Where U is called energy function, which is calculated by summing over the potential of all second-

order cliques V, each clique corresponds to a pair of neighboring pixels(e.g. the 4-neighborhood 

system). Z is called a partition function, making P(Y) a valid probability density function (pdf). 

 

 U(Y) = S V(y)V,*V , y)W,*W)()V,*V),()W,*W)∈XYZ[\]^Y_`
 (5) 



V is defined on doubleton, penalizing the heterogeneity of labels.  

 Vay)V,*V , y)W,*Wb = c−1, if	y)V,*V = y)W,*W+1, if	y)V,*V ≠ y)W,*W 
(6) 

Data model. According to the graphical model (Supplementary Fig. 4b), and d-separate27, 

 P(X|Y) = g P(x)*|y)*)
),*∈[h,i]

 (7) 

While the multivariate Gaussian distribution is typically suited for the data model of color image 

segmentation66,67, its model capacity is limited and its assumptions are too strong for SIMS data. 

Instead, we use Restricted Boltzmann Machines (RBM)28-31 to model the conditional distribution of 

data intensities given label assignment. 

RBM as a generative model is typically a two-layer bipartite undirected graph. It's composed of a 

visible layer which is m dimensional metabolic profile in our case and a hidden layer which is a 

kind of d dimensional memory providing model capacity. In theory, RBM is a Universal approxima-

tion for any pdf with a large enough number of hidden layers30. Here we use two separate RBMs 

to model Pax)*jy)* = 0b and Pax)*jy)* = 1b respectively, and we describe one RBM in the following. 

For the sake of notation simplicity, in the following, we use V = kvmn, p ∈ [1,m] to denote x)* (the 

subscript is removable thanks to the conditional independence given by (7)).  

The graphical model of RBM is shown in Supplementary Fig. 4c. H = khpn, q ∈ [1, d] is the hidden 

layer variable, and V is the visible layer variable. C = kcpn, q ∈ [1, d], B = kbmn, p ∈ [1,m], and W =
kwmpn, p ∈ [1,m], q ∈ [1, d] are parameters. The joint probability density function is: 

 P(V,H) = 1
Z e%w(x,y) 

(8) 

where E is the energy function: 
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(9) 

and Z is the partition function: 

 Z =Se%w(x,y)
x,y

 (10) 

The probability that an RBM model assigns a vector V, e.g. x)* is given by (8). 

 pax)*jy)* = ab = RBM(V;W~, C~, B~) = 1
Z~Se%w(x,y)

y

= 1
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(11) 

Note that the superscripts indicates the parameters of specific RBM. 



Partition function of RBMs Estimation. For a specific pixel given its segmentation label a, the 

log probability that RBM assigns metabolic profiling x)* is computed as: 

 logPax)*jy)* = ab = −F~ax)*b − logZ~ (12) 

Here F~(x)*) is the free energy of RBM corresponding to class a, which can be rapidly calculated. 

To estimate the partition function Z, we build a softmax model to classify x)* at every pixel to its 

label y)*: 
 logPay)* = ajx)*b = e%äÄaãåçb%\YéèÄ

∑ e(%äêåçaãåçb%\Yéèêåç	)ëåç
 

(13) 

MAP. Our objective can be an expression as: 

 argmaxE	logP(X|Y) + logP(Y) = argmaxESlogPax)*jy)*b
),*

+ log P(Y)

= argmaxESlogRBM(x)*;Wëåç , Cëåç , Bëåç) + log P(Y)
),*

 

(14) 

It's a nonconvex problem, we develop an EM-style algorithm to alternating between two steps to 

reach a locally optimal point iteratively. 

Each iteration of SIMS-Cut consists of three sub-problems, each of which can be solved efficiently. 

The input of each iteration is the segmentation mask output by the previous iteration, and the first 

level's input is simply k-means clustering of an input image. The segmentation mask will converge 

in no more than 20 levels according to our experiments.  

In the first sub-problem, the parameters of two RBMs are estimated given the label of each pixel 

input from the previous level. Estimated as the parameters of RBMs, solving the partition function 

is time-consuming, thus the second sub-problem bypasses the obstacle and at the same time 

controls the bias of each iteration with the help of a simple binary classification task68. And the third 

and last sub-problem uses the well-known graph-cut algorithm32,33,69,70 to obtain the pixel labels, 

i.e. the segmentation mask for the current iteration. As the process of iterations, the intermediate 

segmentation masks gradually shrinkage, while local homogeneity and nucleus centralization are 

simultaneously kept. Finally, the reaping algorithm is used to salvage as many isolated nuclei as 

possible during the shrinkage process. More details about solving these sub-problems are as fol-

lows: 

Initialization of Y, C, B, W. The parameters of RBM, e.g. C, B, W is randomly initialized using a 

Gaussian with zero mean and unit variance. The label assignment Y is initialized using k-means. 

Sub-problem 1:  Fix Y to update C,B,W. This step is Equivalent to learn two independent RBMs. 

Since Y is given, the training data for the two RBMs can be extracted from X. An efficient learning 

algorithm, persistent contrastive divergence (PCD)71,72 can be applied. Also, PCD algorithm is 

based on Maximum likelihood estimation, leading to an increase of objective.  

Sub-problem 2: Fix Y,C,B,W to update two partition functions. Partition function estimation of 



RBM is time consuming even if all its parameters are known. Based on the efficient way to deal 

with the unknown partition functions29,68, we build an auxiliary binary classification task and treat 

the two partition functions as parameters to estimate. Furthermore, a hyper-parameter beta can 

be tuned to control the process of iteration (see Details and online code).  

Sub-problem 3: Fix C, B, W, and two partition functions to update Y. This step is equivalent to 

an energy minimization problem, and global optimized Y can be efficiently using a graph cut algo-

rithm.  

Reaping. Using our parameter setting, the above algorithm converges to all-zeros Y within 20 

iterations. Because of the spatially different contrast of SIMS image, some nucleus may be lost 

during the iteration. We develop an enhancement algorithm to maintain the intermediate identified 

nucleus. 

Due to the bias, as the levels grow high, the region of within-nucleus gets smaller. But the MRF-

based segmentation makes the intermediate segmentation mask of each level homogenous and 

evident. To get the final non-connected nucleus mask, a reaping algorithm is proposed in Algorithm 

1. 

Algorithm 1 

Input: íì: segmentation masks for each level; îï: upper bound of nuclei area; îñ: lower bound 

of nuclei area;  

Step 1: Create a queue Q to maintain isolated segments. Create an all-zeros mask íóòô 

Step 2: Initialize Q by putting all isolated segments of level 2 to the head of Q; initialize íóòô using 

íö. 

Step 3: pop a segment q from head of Q, set the segment region of íóòô to zeros. 

Step 4: for l from k+1 to K, where q belongs to íì 

 if l reaches K 

  then set the q region of íóòô to ones 

 if two or more segments in íñ belongs to q 

  then push these new segments to tail of Q; 

  set these segment region of íóòô to ones; 

  break 

Step 5: return to step 3, until Q is empty 

Step 6: return íóòô 

Implementation details and parameters setting. We use correlation distance to select top 20 

co-localized ions with Adenine (m/z 134), whose conditional probabilities given labels are modeled 



by two label-specific RBMs. K-means on a 134 intensity map is used to initialize the segmentation 

label, we set k=4 and set clusters with the lowest center as background, other 3 clusters as fore-

ground. For the smoothing model, we use the 4-neighborhood system. For the data model, we use 

two Generative RBMs, each with 20 visible nodes and 50 hidden nodes. For RBM training, persis-

tent contrast divergence (PCD) is used for 10 epochs each level.   

For convenience, we use a Matlab toolbox for RBM modeling and training73. When optimizing the 

energy minimization problem, we use the Matlab version of the Boykov-Kolmogorov algorithm69 

provided by https://vision.cs.uwaterloo.ca/code/. The original algorithm takes the smoothing model 

as a neighbor weights matrix, whose format is described in the code comment, but we modified 

the matrix by average filtering with a window size of 21 to provide more smooth quality (optional). 

To weight between the data model and the smoothing model, we divide the weights matrix by a 

constant (typically 5~10, we use 5 for best practice). 

To bypasses the time-consuming partition function estimating problem of the two RBMs, a simple 

classifier is performed during each iteration. Note that the exact value of the two partition functions 

needn't be known68,74, the difference matters instead. We first calculate the free energy of all N × N 

pixels separately using the parameters of the two RBMs and sort the difference. Then sort the 

difference and take every N-1 interval as classification cutoff. At the same time, one confusion 

matrix for each cut off is maintained, so N-1 F measures controlled by beta corresponding to every 

interval can be calculated. Finally, the partition function difference with the best F measure is se-

lected. The beta parameter (typically 0.5~1) is tuned to control the convergence process.  

During the SIMS-Cut procedure provided in the methods section, due to the beta parameter, as 

the levels grow high, the region of within-nucleus gets smaller. But the MRF-based segmentation 

makes the intermediate segmentation mask of each level homogenous and evident. To get the 

final non-connected nucleus mask, a reaping algorithm is proposed. The detail is as follows: Sup-

pose after L level's segmentation, SIMS-Cut converges to an all-background segmentation mask. 

Since each level is an intermediate segmentation mask given beta and upper level's estimated 

parameters. The hierarchical structure can be modeled as a tree, whose nodes are nucleus of all 

levels, root is a dummy node, the second highest level is the nucleus of first segmentation. Node i 

is the child of node j if i belong to the next level of j, and the segmentation region of i is a subset of 

segmentation region of j. The leaf nodes are nucleus in the lowest level, the last level of SIMS-Cut 

procedure. From top to bottom, nodes are split alongside the tree structure, and the reaping algo-

rithm can capture nodes that are optimally split (i.e. according to m/z 134 intensity).  

 

SIMS-ID Framework 

After SIMS-Cut, hundreds of separated nuclei has been detected from an N × N image, each pixel 

containing M dimensional metabolic profiles. Thus, each nucleus contains a diverse number of 



connecting pixels, represented by fixed dimensional vectors. SIMS-ID conducted an auxiliary clas-

sification task to assign a single fixed dimensional vector to each nucleus, which is robust to 

over/under segmentation in SIMS-Cut. The representation learned by SIMS-ID compresses all the 

pixel metabolic information using a distilled softmax space75, regarding a nucleus as a whole while 

including distribution information of pixels. A fixed dimensional representation of the nucleus helps 

further analysis of single nuclei data analysis, like clustering, visualization, and so on. 

Data preprocessing. Due to the variability of tissue thickness, and variation in ionization and de-

tector efficiency, SIMS data need to be preprocessed. We use Variance-stabilizing normalization76, 

specifically, the median spectrum is used to estimate the normalization factor, and logarithm was 

used as variance-stabilizing transformation. 

Motivation. SIMS-ID is based on the observation that the outputs of a trained neural network 

contain much richer information than just a one-hot classifier. Hinton, G. et al observe that mutual 

similarity between classes can be distilled from a trained softmax based neural network classifier, 

e.g. an image of a BMW, may only have a very small chance of being mistaken for a garbage truck, 

but that mistake is still many times more probable than mistaking it for a carrot75. Lu, Y. applies 

factor analysis to reveal the visual similarity of image classes77. Wu, Z. utilizes a similar concept 

to train an instance-level classifier as an auxiliary task for unsupervised representation learning78.  

Auxiliary classifier construction. SIMS-ID first constructed a multiple-layer dense neural net-

work armed with a softmax activation at the last layer for classification, then preprocessed pixel 

data are input to classify each pixel to the right nuclei, after training, the temperature of softmax 

output is raised to a user-set value to soften the probabilistic distribution, and finally the distilled 

softmax output of each input pixel can be considered a similarity between the nuclei to which that 

pixel belongs and other nuclei, from that pixel's point of view. Further experiments showed that the 

overfitting of the auxiliary classifier doesn't hurt the performance of afterward analysis. 

Interpretation. The auxiliary classifier can naturally capture apparent similarity among classes, i.e. 

nucleus without being directed to do so. The distilled information, i.e. the high-temperature softmax 

output of each pixel can be expressed as a	P × C matrix PCM, where P is the number pixels within 

all nucleus, and C is the number of the identified nuclei. The matrix can be interpreted using three 

distinct ways.  

Nucleus Similarity measure from each pixel’s view. Each row of PCM can be considered as a 

similarity measure between the corresponding nuclei and other nuclei. If the i-th pixel belongs to 

the j-th nuclei, for the i-th row of PCM, after dividing each element by the j-th element of the row, 

we can get a normalized similarity vector, whose j-th element is 1. Moreover, in the auxiliary clas-

sification phase, the more easily confused with the correct class, i.e. nuclei, the higher the corre-

sponding element of normalized PCM is. 

Nucleus representation of multiple instance learning. In the multiple instance learning (MIL) 

literature79,80, a bag of instances can typically be represented by similarities between this bag and 

all instances. A column of normalized PCM can be considered as the probability of each pixel 



belonging to that nucleus. 

The adjacency matrix of nucleus-pixel bipartite graph. The original one-hot pixel-nucleus rela-

tionship doesn't provide any information between nuclei. After knowledge distillation, the one-hot 

relationship is shattered to a more smooth knowledge, from which nucleus relationship can be 

discovered. The normalized PCM can be interpreted as an adjacency matrix identifying to the bi-

partite graph, and the (i,j)-th entry of PCM is the weight between the i-th pixel and j-th nucleus. 

Parameters setting and network structure. The pixel classification network structure is shown 

in Supplementary Fig. 11b. We use multiple layer perceptrons except for the last layer, ReLU81 

activation function for each layer, softmax as probability output, and Adam82 as an optimizer. The 

number of neurons of the first layer is M, the number of observed metabolites and the number of 

neurons of the last layer is the same as the number of the nucleus. Since overfitting doesn't hurt 

the representation performance according to our experiment, we set all the pixels as training data, 

and the number of training epochs is set to 100~300.  

 

Clustering 

Represented by fixed-length vectors, the nuclei can be straightforwardly clustered and visualized 

in low dimensional space. The number of cells that one SIMS experiment captures typically ranges 

from 400~1000, and the length of the representation vector for each cell is equal to the number of 

pixels within segmented cells, typically ranging from 5000~15000. With the consideration of both 

data characteristics and experimental performance (Supplementary Fig. 18), we apply SIMLR39, a 

single cell clustering algorithm, which automatically learns the low-rank similarity matrix by means 

of multiple kernel ensemble. Besides, SIMLR also provides means of estimating the number of 

clusters, which we can take as a guideline to explore populations of metabolic cell states in different 

scales. 

 

SIMS-Diff framework 

The goal of this algorithm is quantification the feature's discriminative power to tell clusters apart. 

Due to the nature of our data, the traditional two-sample test can’t be directly applied. We assume 

that discriminative features can produce a similarity matrix with a block diagonal structure. There-

fore, we use the ratio between BCV and WCV to evaluate the compactness of the similarity matrix, 

where BCV is between cluster variation, and WCV is within cluster variation. For each feature, we 

use EMD (earth mover's distance)43 as a metric for two nuclei represented by histograms, and the 

variation can be simply evaluated by summing all pairwise distances.  

Earth mover’s distance as a valid metric for histograms. EMD originally arose in the field of 



optimal transporting problems, recent studies show that it can be fruitfully applied to compare his-

tograms. Thus, if one thinks of a histogram as a pile of dirt, then the EMD between two histograms 

is the minimum cost required to move the dirt in one pile to the other. Here, the cost is defined as 

the amount of dirt moved multiplied by the distance it is moved. Univariate EMD has several nice 

properties: (1) it's a true distance; (2) it doesn't need to assume the distribution form of histograms; 

(3) it's computationally efficient. 

Discriminative feature identification using EMD. For each feature, a C×C EMD matrix can be 

calculated, whose (i,j)-th entry is the distance between i-th nuclei histogram and j-th nuclei histo-

gram. Then we use the given clustering result to sort the rows and columns, and discriminative 

features may pose a block diagonal EMD matrix. The ratio between BCV and WCV can be used 

to evaluate the feature's discriminative power between two clusters. BCV can be simply calculated 

by summing over all pairwise distance between the two clusters, and similarly, WCV can be simply 

calculated by summing over all pairwise distance within two clusters independently. 

 

Multimodal intersection analysis between mouse and human liver samples. 

To access the correspondence between clusters identified in mouse and human samples, we 

adopted modified multimodal intersection analysis (MIA)83. Specifically, we ranked metabolites by 

the score computed using SCANPY84, which is z-score underlying the computation of a p-value 

(Student's t-test) for each gene for each cluster. Next gene sets of each cluster were defined as 

genes with the top 20 associated scores. And the significance of the intersection of gene sets 

between any pair of clusters was inferred using the hypergeometric distribution. The MIA map was 

finally displayed as a heatmap, with each element defined as the negative logarithm P-value (hy-

pergeometric test) of the corresponding cluster pair. 

Statistical analysis of human samples 

To exactly describe the statistical analysis in Fig. 4, we defined following terms: FBDù) is the fi-

brotic boundary of region Ri; PSP(j, FBDù)) is a parallel strip whose distance to FBDù) is equal to 

j µm; AREA(j, i)  is the territory between FBDù)  and PSP(j, FBDù)) ; Zone(j, i)  is short for 

AREA((j + 1) × 100, i) ; CFBD(cell), Zone(j, k))		 is the distance (µm) between cell)  and FBDù° 
within Zone(j, k) ; NCC(population), areah, areaö)  is the ratio between the number of cells in 

population) within areah and the number of cells in population) within areaö. 
The FBD is approximated according to SIMS-View and spatial single nucleus map (Supplementary 

Fig. 30). Coming to cases where FBD couldn't be well fitted by a single line segment, polylines are 

used, and the distance to FBD is simply adjusted to be the smallest among distances to all line 

segments. 



The statistical analysis of Fig. 4h is conducted as following: In zone j, j ∈ {0,1,2,3,4}, the red box-

plot is the summarization of ßCFBDacell), Zone(j, k)b	j	k ∈ {1,2,3,4,5,6,7,8,9,10}, cell) ∈
Hepatocyte	C1} , and the green boxplot is the summarization of ßCFBDacell), Zone(j, k)bj	k ∈
{1,2,3,4,5,6,7,8,9,10}, cell) ∈ Hepatocyte	C2}. The P-value is based on Wilcoxon rank sum test.  

The statistical analysis of Fig. 4i is conducted as following: the x-axis is the distance between 

PSP(j, FBDù)) and corresponding fibrotic boundary (FBDù)), 	≠ ∈ {1,2,3,4,5,6,7,8,9,10}, Æ ∈ [0,450]; 
the y-axis is the normalized count ratio between C1 and C2, which is 

iØØ(Øh,∞ùw∞(*,)),∞ùw∞(*áÄ±	,)	))
iØØ(Øö,∞ùw∞(*,)),∞ùw∞(*áÄ±,)	)) , i ∈

{1,2,3,4,5,6,7,8,9,10}, j ∈ [0,450]. 
All parameters of boxplots are set as default using Seaborn (https://seaborn.pydata.org), a Python 

statistical data visualization toolbox. 

 

 

Datasets 

Simulated datasets: Four different human cell lines are cultured as a source of simulation (Sup-

plementary Fig. 5a), and all the following datasets are manual alteration and a combination of the 

four cell lines. 

Dataset 1: Use 4 cell lines as 4 clusters, for each cell, randomly add ≤≥≠¥µ_∂∑∏≠≥×#π≠∫µª¥ number 

of all-zero pixels. 

Dataset 2: Use 4 cell lines as 4 clusters, for each pixel, multiply it with a random number drawn 

from º(0,≤≥≠¥µ_∂∑∏≠≥). 
Dataset 3: Use 4 cell lines as cluster1, and the altered version of 4 cell lines as cluster2. Alteration 

method: for each cell, first randomly select ≤≥≠¥µ_∂∑∏≠≥×#π≠∫µª pixels, then replace these pixels 

with samples drawn from feature-independent Gaussian fitted with original data. 

Dataset 4: Use A549 cell line as cluster1, and use the 3 differently altered version as the other 3 

clusters. Alteration method: First, randomly select 2 dimensions, i and j. Then, for cluster2, multiply 

fold_change to the i-th dimension of all pixels of 10A cells, and the j-th dimension remains un-

changed.  For Cluster3, multiply fold_change to both i-th and j-th dimension of all pixels of 10A 

cells. For cluster4: multiply fold_change to the j-th dimension of all pixels of 10A cells, and the i-th 

dimension remains unchanged. The simulating method of dataset 4 is illustrated as (supplemen-

tary Fig. 12a). 

Dataset 5: Similar to dataset 4 but using Hela cell line. 

Dataset 6: Similar to dataset 4 but using SK-BR-3 cell line. 

Dataset 7: Similar to dataset 4 but using MCF 10A cell line. 



Dataset 8: Use 10A cell line as cluster1, and use the 3 differently altered version as the other 

clusters. Alteration method: First, randomly select 2 dimensions, i and j, and calculate the Ωµ∑≤_≠ 
and æ∑∂≠∑≤øµ_≠ for each cell. Second, for each cell, randomly divide pixels into two partitions of an 

equal number of pixels. Next, for cluster2, for each cell, replace the i-th dimension of the first 

partition with data drawn from ¿∑¡¥¥≠∑≤(¬≥ª√_øℎ∑≤≈×Ωµ∑≤_≠, æ∑∂≠∑≤øµ_≠), and replace the i-th 

dimension of the second partition with data drawn from ¿∑¡¥¥≠∑≤((2−¬≥ª√_øℎ∑≤≈µ)×Ωµ∑≤_≠, 
æ∑∂≠∑≤øµ_≠). The j-th dimension remains unchanged. For cluster4, for each cell, replace the j-th 

dimension of the first partition with data drawn from ¿∑¡¥¥≠∑≤(¬≥ª√_øℎ∑≤≈µ×Ωµ∑≤_Æ, æ∑∂≠∑≤øµ_Æ), 
and replace the j-th dimension of the second partition with data drawn from 

¿∑¡¥¥≠∑≤((2−¬≥ª√_øℎ∑≤≈µ)×Ωµ∑≤_Æ, æ∑∂≠∑≤øµ_Æ). The i-th dimension remains unchanged. For 

cluster3, the alteration for the i-th dimension is the same as cluster2, and the j-th dimension is the 

same with cluster4. The simulating method of dataset 8 is illustrated as (supplementary Fig. 12b). 

Dataset 9: Use 2 differently altered versions of 10A cell line as two clusters. Alteration method: 

First, randomly select 2 dimensions, i and j, and calculate the Ωµ∑≤_≠ and æ∑∂≠∑≤øµ_≠ for each cell. 

Second, for each cell, randomly divide pixels into two partitions of an equal number of pixels. Next, 

for cluster1, for each cell, replace the i-th dimension of the first partition with data drawn from 

¿∑¡¥¥≠∑≤(¬≥ª√_øℎ∑≤≈×Ωµ∑≤_≠, æ∑∂≠∑≤øµ_≠), and replace the i-th dimension of the second partition 

with data drawn from ¿∑¡¥¥≠∑≤((2−¬≥ª√_øℎ∑≤≈µ)×Ωµ∑≤_≠, æ∑∂≠∑≤øµ_≠). And replace the j-th di-

mension of the first partition with data drawn from ¿∑¡¥¥≠∑≤(¬≥ª√_øℎ∑≤≈µ×Ωµ∑≤_Æ, æ∑∂≠∑≤øµ_Æ), 
and replace the j-th dimension of the second partition with data drawn from 

¿∑¡¥¥≠∑≤((2−¬≥ª√_øℎ∑≤≈µ)×Ωµ∑≤_Æ, æ∑∂≠∑≤øµ_Æ). For cluster2, for each cell, replace the i-th di-

mension of the first partition with data drawn from ¿∑¡¥¥≠∑≤(¬≥ª√_øℎ∑≤≈×Ωµ∑≤_≠, æ∑∂≠∑≤øµ_≠), 
and replace the i-th dimension of the second partition with data drawn from 

¿∑¡¥¥≠∑≤((2−¬≥ª√_øℎ∑≤≈µ)×Ωµ∑≤_≠, æ∑∂≠∑≤øµ_≠). And replace the j-th dimension of the second 

partition with data drawn from ¿∑¡¥¥≠∑≤(¬≥ª√_øℎ∑≤≈µ×Ωµ∑≤_Æ, æ∑∂≠∑≤øµ_Æ), and replace the j-th 

dimension of the first partition with data drawn from ¿∑¡¥¥≠∑≤((2−¬≥ª√_øℎ∑≤≈µ)×Ωµ∑≤_Æ, 
æ∑∂≠∑≤øµ_Æ). The simulating method of dataset 9 is illustrated as (supplementary Fig. 12c). 

 

Mixture cell datasets: Mixture cell culture uses BrdU/IdU as ground truth label (Supplementary 

Fig. 13), and the BrdU/IdU stain does not affect the cell metabolic profiling (Supplementary Fig. 

21). 

Dataset 10: A549 cell line stained with BrdU is mixed with Hela cell line (Supplementary Fig. 13a, 

b). 

Dataset 11: NCTC1469 cell line stained with IdU is mixed with Hepa1-6 cell line (Supplementary 

Fig. 13c, d). 

 



Reporting Summary 

Further information on research design is available in the Nature Research Reporting Summary linked to 

this article. 

Data availability 

Raw SIMS data for mouse liver and lung (Fig. 1,2,3), and human liver R1 (Fig. 4) are available at 

Github (https://github.com/yuanzhiyuan/SEAM/tree/master/SEAM/data/raw_tar). The rest of raw 

SIMS data and processed SIMS data are available at figshare (10.6084/m9.figshare.12622883, 

10.6084/m9.figshare.12622841, 10.6084/m9.figshare.12622838 and 

10.6084/m9.figshare.12622922). Geo-seq (Fig. 5) raw sequencing data and processed data have 

been deposited to NCBI GEO with accession number GSE153463. 

Code availability  

An open-source Python and MATLAB implementation of SEAM is available at GitHub (https:// 

github.com/yuanzhiyuan/SEAM, and https://github.com/yuanzhiyuan/SIMS-Cut). 
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Fig. 4 | SEAM identifies hepatocyte subtypes with differential metabolic state associated 
with spatial localization. a, H&E staining of human liver sample post TOF-SIMS analysis. Scale 
bar 500μm. b, Zoom in H&E images of 4 different regions. Bottom. White arrows indicate fibrotic 

and inflammation niche. Scale bar 100μm. c, SEAM results of 4 regions. First column is color-
coded pixel visualizations. Scale bar 100μm. Second column is UMAP colored by cell clusters. 

Third column is spatial single nucleus map. d, Spatial single nucleus maps of respective clusters 
merged with grey scaled ion image of m/z 134. Scale bar 100μm. e, Differential metabolite 
analysis of cell clusters. f, (Top and middle row) Hepatocyte C1 enriched metabolites. Scale bar 

100μm. (Bottom row left) Merged ion image of m/z 69(Red) and m/z 134 (Blue). (Bottom row 
middle and right) Spatial localization of hepatocyte C1 and C2 respectively merged with grey-

scaled ion image of m/z 69. h, Hepatocyte C1 is consistently closer to fibrotic boundary (FBD) than 
C2 within all 5 zones. (Left) Schematic diagram of zone definition and distance calculation. (Right) 
Paired boxplots of distances between C1/C2 and FBD. For Wilcoxon Rank Sum test, P-value > 

0.05 is not shown on the plot. P-value ≤ 0.05 (*), P-value ≤ 0.01 (**), P-value ≤ 0.001 (***) and P-
value ≤ 0.0001 (****) are shown. i, Normalized count of hepatocyte C1 is consistently higher than 

C2. (Left) Schematic diagram of normalized count ratio calculation. (Right) Normalized count ratio 
between C1 and C2 is a function of the distance of the outer edge (indicated by the gray line in the 
left part of Fig. 4i) to the FBD.
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Figures

Figure 1

SEAM captures spatial metabolic heterogeneity at single nucleus resolution. a, Overview of SEAM. (Left)
Tissue samples on glass slides are analyzed by TOF-SIMS to generate multiplex SIMS data containing
mass spectrometry and ion images (Right). (Bottom left) H&E staining of mouse liver central vein region.



(Bottom middle) Color-coded pixel visualization is obtained by SIMS-View. (Bottom right) Spatial single
nucleus map is obtained by a sequential of algorithms: SIMS-Cut (segmentation), SIMS-ID
(representation), and SIMS-Cluster (clustering). b, SEAM scales to different mouse tissues with different
cell density and distribution pattern. First row is color-coded pixel visualization by SIMS-view to
differentiate metabolic patterns at pixel level. Second row is spatial single nucleus map for cell type
visualization at original tissue space. Scale bar 100μm. In Fig. 1a, Mouse illustration: Image by
OpenClipart-Vectors from Pixabay. Liver illustration: Image by zachvanstone8 from Pixabay.

Figure 2



Algorithms design and performance. a, Sketch of SIMS-Cut, leveraging Potts model as prior for pixel
labels and Restricted Boltzmann Machines as conditional distribution of pixel intensities. (Left) Top 20
nucleus-localized ions. (Middle) Iterative optimization between subproblems (See Methods). (Right) Cell
segmentation mask. b, Sketch of SIMS-ID, learning vector-formed representation for each segmented cells
using self-representation learning. (Left) multiplex SIMS data combined with cell segmentation mask.
(Middle) A neural network for a auxiliary classi�cation task. (Right) Single nucleus representation output.
c, Demonstration of algorithms on central vein (CV) of wild type mouse liver. (Left) UMAP visualization of
single nucleus using SIMS-ID representation, colored by SIMS-Cluster identi�ed cell types. (Middle)
Spatial single nucleus map. White arrow indicates CV. Scale bar 100μm. (Right top) Respective layout of
cell populations. Scale bar 100μm. (Right bottom) Zoom in images of each population merged with grey
scaled image of m/z 134.Red dotted area indicate liver sinusoid. Scale bar 10μm.

Figure 3



SEAM detects zonation-like metabolic pattern in wild type mouse liver. a, Differential metabolite analysis
of mouse liver tissue in Fig. 2c. b, UMAP colored by abundance of representative differential metabolites.
c, Ion images of a ion series with zonation-like distribution identi�ed by differential analysis in Fig. 3a.
Scale bar 100μm. d, Hepatocyte C1 subpopulation shows zonation-like distribution. (Left) Schematic
diagram of strategy of measuring cell-to-CV distance. (Right) Hepatocyte C1 shows signi�cantly smaller
distance to CV than other clusters. e, Metabolite series show zonation-like distribution. (Left) Schematic
diagram of strategy of measuring metabolite-to-CV distance: Concentric circles with distance of
arithmetic sequence from CV partition the liver lobule into 9 zones. (Right) 6 metabolic markers of
Hepatocyte C1 show gradient decrease away from CV. X-axis: zone number, Y-axis: enrichment score of
each metabolites, which is the proportion of hepatocytes that highly express each metabolites in each
zones.



Figure 4

SEAM identi�es hepatocyte subtypes with differential metabolic state associated with spatial
localization. a, H&E staining of human liver sample post TOF-SIMS analysis. Scale bar 500μm. b, Zoom
in H&E images of 4 different regions. Bottom. White arrows indicate �brotic and in�ammation niche.
Scale bar 100μm. c, SEAM results of 4 regions. First column is colorcoded pixel visualizations. Scale bar
100μm. Second column is UMAP colored by cell clusters. Third column is spatial single nucleus map. d,



Spatial single nucleus maps of respective clusters merged with grey scaled ion image of m/z 134. Scale
bar 100μm. e, Differential metabolite analysis of cell clusters. f, (Top and middle row) Hepatocyte C1
enriched metabolites. Scale bar 100μm. (Bottom row left) Merged ion image of m/z 69(Red) and m/z 134
(Blue). (Bottom row middle and right) Spatial localization of hepatocyte C1 and C2 respectively merged
with greyscaled ion image of m/z 69. h, Hepatocyte C1 is consistently closer to �brotic boundary (FBD)
than C2 within all 5 zones. (Left) Schematic diagram of zone de�nition and distance calculation. (Right)
Paired boxplots of distances between C1/C2 and FBD. For Wilcoxon Rank Sum test, P-value > 0.05 is not
shown on the plot. P-value ≤ 0.05 (*), P-value ≤ 0.01 (**), P-value ≤ 0.001 (***) and Pvalue ≤ 0.0001 (****)
are shown. i, Normalized count of hepatocyte C1 is consistently higher than C2. (Left) Schematic diagram
of normalized count ratio calculation. (Right) Normalized count ratio between C1 and C2 is a function of
the distance of the outer edge (indicated by the gray line in the left part of Fig. 4i) to the FBD.

Figure 5



Spatial transcriptome validated metabolism associated gene expression alteration in heterogeneous
hepatocyte subtypes identi�ed by SEAM. a, Serial sections were made for cross validation among
different assays. b, Geo-seq was performed at same location (Right) in the adjacent slide of SEAM assay
(Middle, m/z 134 in blue and m/z 69 in red) to obtain continuous tissue spatial structure. Yellow dashed
area representatively indicate the captured regions for Geoseq. Scale bar 100μm. c, PCA plot of
transcriptomic pro�les from a total 15 samples of different regions. d, Heatmap of �ltered differentially
expressed genes (DEGs) between Hepa69high and Hepa69low cells. e, GO enrichment of DEGs. f,
Heatmap of DEGs enriched in GO terms in e. Upper part is consensus 14 genes in top 3 GO terms, and
lower part is 8 genes enriched in last GO term.
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