Plant lipid metabolism in response to Phytophthora sojae infection in susceptible and tolerant soybean cultivars

DOI: https://doi.org/10.21203/rs.3.rs-639514/v1

Abstract

Soybean is one of the most cultivated crops globally and a staple food for much of the world's population. The annual global crop losses due to infection by the Phytophthora sojae are currently estimated at approximately $2B USD, yet we have limited understanding of the role of lipid metabolism in the adaptative strategies used to limit infection and crop loss. We employed a multi-modal lipidomics approach to investigate how soybean cultivars remodel their lipid metabolism to successfully limit infection by Phytophthora sojae. Both the tolerant and susceptible soybean cultivars showed alterations in lipid metabolism in response to Phytophthora sojae infection. Relative to non-inoculated controls, induced accumulation of stigmasterol was observed in the susceptible cultivar whereas, induced accumulation of phospholipids and glycerolipids occurred in tolerant soybean cultivar. We have generated a comprehensive metabolic map of susceptible and tolerant soybean root and stem lipid metabolism to identify lipid modulators of host immune or tolerance response to Phytophthora sojae infection and identified potential pathways and unique lipid biomarkers like TG(15:0/22:0/22:5), TG(10:0/10:0/10:0), TG(10:0/10:0/14:0), DG(18:3/18:3), DG(16:0/18:3) and DG(24:0/18:2) as possible targets for the development of future plant protection solutions.

Full Text

This preprint is available for download as a PDF.