Patients and study design
Patients admitted to the intensive care unit (ICU) of Chuncheon Sacred Hospital (South Korea) between July 2017 and October 2018 were prospectively recruited. All patients placed on mechanical ventilation at the time of ICU admission were included in the study. The exclusion criteria were age < 18 years, initiation of mechanical ventilation > 48 h after ICU admission and a duration of mechanical ventilation < 7 days.
In 2005, the ATS/IDSA guidelines introduced HCAP as a new category of pneumonia requiring therapy similar to that prescribed for nosocomial pneumonia, namely broad-spectrum antibiotics[3]. However, several studies showed that HCAP is a heterogeneous disease, and that broad-spectrum antibiotic therapy may not be necessary for all patients with HCAP[6, 8, 14]. Therefore, attempts were made to refine the definition of HCAP based on risk factors for MDR infections. On the basis of the available data[5, 8, 10, 12, 14, 15], we redefined NHAI patients as those meeting at least one of the following criteria: (1) nursing home resident with poor functional status; (2) recent (past 90 days) hospitalization; or (3) recent (past 180 days) antibiotic therapy.
The 60 patients (41 with and 19 without pneumonia) enrolled in this study were divided into NHAI and non-NHAI groups and prospectively followed. This study was approved by the Institutional Review Board of Chuncheon Sacred Heart Hospital (IRB approval number: 2017‐47).
Data collection and clinical outcome measures
Data on demographic characteristics (age, sex, preexisting comorbidities), the indications for intubation, the presence of acute respiratory distress syndrome (ARDS), the arterial oxygen tension/fraction of inspired oxygen (SaO2/FiO2) ratio, and the Glasgow Coma Scale (GCS), Acute Physiology and Chronic Health Evaluation (APACHE) II) and Sequential Organ Failure Assessment (SOFA) scores were recorded. The Charlson Comorbidity Index (CCI) score was calculated as described previously[16]. The clinical outcomes of interest in this study were the 28-day all-cause and final hospital mortality rates. Respiratory samples were acquired by endotracheal aspiration, with serial samples collected 1, 3 and 7 days after the initiation of mechanical ventilation.
DNA extraction, PCR and sequencing
Genomic DNA was extracted using a commercial microbial DNA isolation kit (MP Biomedicals, USA) and then amplified using primers targeting the V3–V4 region of the prokaryotic 16S rRNA gene. The amplicons were purified using XSEP MagBead (CELEMICS), and then subjected to PCR using the Nextera Index Kit (Illumina, USA) following the manufacturer’s instructions. The resultant product was further purified using XSEP MagBead (CELEMICS). The prepared bacterial amplicon library was then quantified, mixed with multiple libraries and sequenced using the MiSeq v3 platform (Illumina).
The raw sequencing data files were preprocessed before downstream data analysis. To remove sequences with low-quality scores, the raw sequence reads were pre-filtered using PRINSEQ[17]. Adapter sequences were removed using CUTADAPT[18]. Paired-end reads were merged using PEAR[19] and then filtered with PRINSEQ. Chimeric sequences and singletons were screened and reduced using USEARCH[20]. Finally, 180 samples were analyzed and an average of 133,219 reads per sample were obtained (minimum, 29,247; maximum, 587,337). The downstream data analysis was carried out using QIIME[21] with the EzBioCloud 16S rRNA gene sequence database[22]. Operational taxonomic units (OTUs) were defined as clusters of sequences with ≥ 97% identity.
Data processing and statistical analysis
Various Microbial community comparisons were performed using Quantitative Insights in Microbial Ecology software (QIIME, v. 1.8) and the R package Vegan. In the analysis, two period samples (day 1 and day 7) were selected to clarify the differences between groups and to confirm the changes over time. The microbial sequences from the ETAs represented 554 genera and 2,009 species. Absolute OTU of each subject for both time points was combined, and species were filtered by two criteria; 1) eliminating strains that appear only in a few patients, 2) removing strains that account for less than 1000 OTU. Finally, 11 predominant genera (Acinetobacter, Streptococcus, Corynebacterium, Staphylococcus, Prevotella, Neisseria, Veillonella, Mycoplasma, Granulicatella, Actinomyces, Campylobacter) and 8 predominant species (Acinetobacter baumannii, Streptococcus mitis, Corynebacterium ulcerans, Staphylococcus caprae, Veillonell adispar, Granulicatella adiacens, Streptococcus parasanguinis, Streptococcus lactarius) were included in the statistical analysis.
Ace, Chao1, the Shannon index and the Simpson index were used to express α-diversity; β‐diversity (inter-sample diversity) was defined as the extent of the similarity between microbial communities based on the degree of structural overlap. Nonmetric multidimensional scaling plots based on weighted UniFrac distances were used to visualize the differences between groups in microbial community structure. Principle coordinate analysis was conducted using a permutational multivariate ANOVA (PERMANOVA), performed via the Adonis function of the R package vegan (1,000 permutations).
We conducted statistical analysis to identify the association of pneumonia and NHAI risk factor on the abundance with each OTU. Each subject was measured at two different time points (day 1 and 7) and generalized linear mixed effects models (GLMM) was utilized to handle the repeatedly observed measurement. Pneumonia and NHAI risk factor were considered as response variables. Relative abundances of OTUs at each time point were Log2 transformed, and its effect was evaluated by including it as a covariate. We also considered the paired and longitudinal distance-based approach (Pldist) to detect the longitudinal changes in the microbiome over time with various outcome types[23]. It can also calculate differences in non-phylogenetic dissimilarities such as Gower’s distance, Bray-Curtis dissimilarities, Jaccard distance and Kulczynski distance between time points. Last we found that pneumonia and NHAI risk factor are time-invariant and thus considered four methods for cross-sectional data; phylogenetic tree-based microbiome association test (TMAT), OMiAT (version 5.1), Wilcoxon test and reference frame method [24, 25]. For the cross-sectional methods, means of log-transformed read count per million (CPM) at two different point (day 1 and 7) were considered as the response variables. Among all approaches, other tests except for reference frame method can adjust the effect of the other covariates and age, sex, APACHE score and CCI were included as covariates for both. GLMM was conducted with SAS 9.4 (Cary, NC), and the other analyses were done with R software. All test results were considered significant using a p value of ≤ 0.05.