Anchor piles are widely used in marine aquaculture, and their uplift resistance capacity largely determines their safety, especially in harsh ocean environments. However, a practical guide on its design and installation is wanting. Laboratory experiments were conducted to investigate the effect of the initial tension angle, pile diameter, embedded depth, and pile configuration on the uplift resistance capacity of anchor piles for marine aquaculture under oblique loads. The results show that increasing the initial tension angle of circular and square single piles can significantly improve the uplift resistance capacity. The failure load of the square single pile was slightly higher than that of the circular single pile. Increasing the pile diameter can effectively improve the failure load and delay the development speed of the pile top displacement. Increasing the embedded depth can effectively improve the failure load and increase the lateral displacement of the pile top. The uplift resistance capacity of the dual anchor piles was better than that of the single anchor piles. The layout configuration has little effect on the failure load, but has a large effect on the displacement development.