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Abstract

Background
As the most abundant internal mRNA modification, N6-methyladenosine (m6A) is associated with various
cancers. However, RNA modification m6A has not been studied in chromophobe renal cell carcinoma
(chRCC). The present study aimed to comprehensively analyze the global m6A modification pattern in
chRCC.

Methods
Three subjects with chRCC were enrolled in our study. Transcriptome-wide m6A methylone and
transcriptome analysis in chRCC and tumor-adjacent normal tissues were detected via m6A-SEAL-seq and
RNA-sEq. m6A-modified mRNAs were further validated by m6A-immunoprecipition followed by
quantitative real-time PCR (m6A-IP-qPCR). The least absolute shrinkage and selection operator (LASSO)
Cox regression and multivariate Cox proportional hazards regression analysis were used to determine the
candidate gene.

Results
We performed qPCR in six subjects of chRCC and found that the expression levels of m6A writer subunit
WTAP, m6A erasers FTO and ALKBH5, and m6A reader YTHDF2 were significantly downregulated in
chRCC tissues compared with corresponding tumor-adjacent normal tissues. In all three subjects, 12,841
confident m6A peaks representing 10,102 transcripts and 15,024 confident m6A peaks representing
11,396 transcripts were respectively identified in chRCC and tumor-adjacent normal tissues. Analysis of
differential m6A levels identified 644 hypermethylated m6A peaks and 1,304 hypomethylated m6A peaks
in chRCC compared with tumor-adjacent normal tissues. Gene Ontology (GO) analysis revealed that
genes with hypomethylated m6A peaks (1,137) were associated with pathways in cancer. Compared with
tumor-adjacent normal tissues, 3,911 genes were significantly dysregulated in chRCC, including 2,344
downregulated and 1,567 upregulated mRNAs. Functional enrichment analysis revealed that the
dysregulated genes in chRCC were significantly enriched in multiple metabolic processes. We identified
two hypomethylated genes NOTCH1 and FGFR1, which might respectively act as a tumor suppressor and
an oncogene in chRCC. Three m6A-dependent signatures were identified using Cox regression screen and
LASSO regression. Based on the significant prognostic signatures, we build a m6A-dependent prognostic
model, with the Concordance index (C-index) = 0.96. The Kaplan-Meier survival curve and log-rank
between the high-risk and low-risk group showed significant difference.

Conclusions
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This study presented the first m6A transcriptome-wide profile of human chRCC, which may provide clues
for the m6A methylation-based research on chRCC epitranscriptomic etiology and pathogenesis.

Background
According to the Global Cancer Observatory (GCO) database (2020), there are more than 431 thousand
kidney cancer incidence and more than 179 thousand people died due to kidney cancer all of the world.
Kidney cancer remains a high occurrence (15th ) and a leading cause of cancer-related deaths (16th ).
The molecular mechanisms of kidney cancer progression need to be solved urgently. There are three
main types of kidney cancer: clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma
(PRCC), and chromophobe renal cell carcinoma (chRCC). ccRCC is the most prevalent type of kidney
cancer and has been improved in pathogenesis and therapy [1–4]. PRCC is the second most common
type of renal carcinoma and also a well-studied type of renal cell carcinoma (RCC) currently [5, 6].
Whereas chRCC is an uncommon RCC subtype, accounting for 5–10% of all cases of RCC [7]. Previous
studies suggest that the clinical symptoms of chRCC are not typical. Surgery is the dominant treatment
method, and currently there is no standard treatment regimen for metastatic patients. With early
diagnosis, chRCC can be curable by surgery [8, 9]. However, chRCC is still a malignant neoplasm with a
mortality rate about 10%, and aggressive clinical course such as metastasis can occur [10]. Therefore, the
study of chRCC will contribute to the understanding of kidney cancer progression.

According to the RNA modification database, more than 170 types of modifications have been identified
in RNA molecule [11]. N6-methyladenine (m6A) is the most abundant mRNA modification in eukaryotes
and plays important roles in various biological functions including regulation of RNA stability [12–14], 3′-
end processing [15, 16], alternative splicing [17, 18], and translation efficiency at the post-transcriptional
level [14, 19, 20]. m6A is a dynamically reversible RNA modification, which is regulated by “writers”
(methyltransferases), “erasers” (demethylases), and “readers” (binding proteins). The majority of m6A
modifications are installed through the methyltransferase complex containing key catalytic subunits
METTL3-METTL14 heterodimer [21, 22] and other subunits like WTAP [23–25], and removed by
demethylases like FTO and ALKBH5 [26, 27]. m6A modification is recognized by m6A binding proteins,
such as YTH domain family proteins, for regulation of RNA processing and metabolism [28–30]. The
discoveries of these different m6A regulators contribute to a better understanding of the physiological
functions of m6A.

Numerous studies have demonstrated a close relationship between m6A modification and tumor
progression [31–34]. For instance, in bladder cancer, METTL3 installs m6A in pri-miR221/222 and
accelerates the maturation of miRNAs, leading to the proliferation of cancer cell [35]. In pancreatic cancer,
ALKBH5 inhibits cancer cell growth and progression through increasing PER1 mRNA levels by
demethylating m6A modification in PER1 and subsequently escaping from YTHDF2-mediated mRNA
decay [34]. These findings suggest that m6A modification plays vital roles in carcinogenesis through the
regulation of RNA processing and metabolism and provide new molecular mechanisms of cancer
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progression. Similarly, m6A regulators also have significant impacts on ccRCC [36]. METTL14 is
downregulated in ccRCC tissue and patients with lower METTL14 expression tend to have worse
prognoses [37], and the alteration of m6A regulators is associate with worse clinical characteristics [38].
In RPCC, a prognostic risk signature model with three m6A regulatory genes, IGF2BP3, KIAA1429 and
HNRNPC, could predict survival outcomes accurately [39]. With the development of high-throughput
sequencing, transcriptome-wide profiling of m6A distribution in multiple different human carcinomas
becomes available, which gives a way to interpret the molecular mechanisms between m6A modification
and RCC. In 2020, transcriptome-wide m6A mapping in ccRCC were reported, and the unique m6A-related
genes in ccRCC are associated with cancer-related pathways, providing a possible mechanism of m6A-
mediated gene regulation [40]. However, the transcriptome-wide distribution of m6A in chRCC has not
been figured out yet. Here, we report the transcriptome-wide m6A profiling in human chRCC by the use of
antibody-free methods m6A-SEAL-seq [41], which is a FTO-assisted chemical labeling m6A sequencing
method and has good sensitivity, specificity and reliability. This study will be helpful for providing a basis
for more in-depth studies of the biological functions of m6A in pathogenesis of human chRCC.

Methods
Patients and specimens 

A total of six patients with chRCC were involved in our study. chRCC tissues and corresponding tumor-
adjacent normal tissues were collected at the time of surgery from urology department, Peking University
Third Hospital. All specimens were immediately separated into 1.5 ml RNase-free centrifuge tubes and
stored at -80 ◦C before RNA isolation.

RNA Preparation
Total RNA was extracted from tissue specimens using TRIzol reagent (Magen) and poly(A)+ RNA was
isolated from total RNA using oligo(dT) 25 Dynabeads (Thermo Fisher Scientific). RNA concentration was
determined using a Nanodrop ultraviolet-visible light spectrophotometer (Thermo).

m6A-SEAL-seq and library construction

Poly(A)+ RNA isolated from each sample was fragmented by a magnesium RNA fragmentation module
(NEB) and subjected in FTO-assisted m6A oxidation step. In FTO-assisted m6A oxidation step, the
reaction was performed in 300 μl aliquots of aqueous solution containing 300 μM of
(NH4)2Fe(SO4)2·6H2O, 2 mM of L-ascorbic acid, 300 μM of α-KG, 100 mM pH 7.0 HEPES, 0.2 μM FTO, and

1 μg poly(A)+ RNA. After the FTO treatment at 37 °C for 5 min, RNA was purified by Oligo Clean &
Concentrator column (Zymo Research). 

hm6A-modified RNA converted from m6A by FTO oxidation was treated by 200 mM freshly prepared DTT
at 37 °C for 3 h in acidic aqueous solution (100 mM HEPES, pH 4.0). The product RNA was purified by
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ethanol precipitation. 

After ethanol precipitation, DTT-treated RNA was washed by 75% ethanol and dissolved in 200 μl
biotinylation buffer that contained 100 μM of MTSEA-XX-biotin (Biotum), 100 mM HEPES (pH 7.0), 1 mM
EDTA, and 20% DMF. The reaction was performed at 25 °C and 800 rpm in a ThermoMixer for 1 h. The
biotinylated RNA was purified by phenol-chloroform extraction.

50 ng of the biotinylated RNA was saved as input, and the rest was proceeded to affinity enrichment. 20
μl Dynabeads MyOne Streptavidin C1 (Invitrogen) was washed twice by 200 μl 0.1 M NaOH to remove
RNase contamination, and then washed with diethyl pyrocarbonate water to a neutral pH. The beads were
resuspended in 100 μl binding solution containing 10 μl of high-salt wash buffer (100 mM Tris pH 7.5, 10
mM EDTA, 1 M NaCl, 0.05% Tween 20) and 90 μl diethyl pyrocarbonate water, and incubated with the
biotinylated RNA for 1 h. The biotinylated RNA on beads was washed three times with 1 ml high salt
wash buffer. 50 μl of 100 mM DTT was used to release the biotinylated RNA at 37 °C for 15 min on a
ThermoMixer (800 rpm.). After collecting the supernatant, the second elution was performed with 50 μl of
100 mM DTT at 50 °C for 5 min to completely release the RNA. The twice-eluted RNA was combined and
purified by ethanol precipitation. Library construction was performed using NEBNext Ultra II Directional
RNA Library Prep Kit for Illumina according to the manufacturer’s protocol. Libraries were sequenced on
the Illumina HiSeq XTen platform with a paired-end model (PE150). 

Analysis of m6A-seq data

Sequencing reads were trimmed and mapped to the reference genome (GRCh38) by using Cutadapt
(v1.18) [42] and HISAT2 (v2.1.0) [43], respectively. The m6A-enriched regions in chRCC and normal tissues
were identified using the MACS2 [44] peak-calling algorithm based on enrichment criteria (IP/Input) ≥ 2
and FDR < 0.05. Confident m6A peaks were subjected to Hypergeometric Optimization of Motif
EnRichment tools (HOMER) [45] for Motif Discovery. Genes with differentially methylated m6A sites were
identified by MeTDiff [46] based on enrichment criteria fold change ≥ 2 and FDR < 0.05. Tissue analysis,
Gene ontology (GO) and pathway enrichment analyses were performed by using DAVID.

Analysis of RNA-seq data

Adapter and low-quality reads were trimmed by using Cutadapt (v1.18) [42], and trimmed reads were
aligned to the reference genome (GRCh38) using HISAT2 (v2.1.0) [43]. The differential expression genes
between chRCC and adjacent normal tissues were screened by R package (DEseq2) [47] based on a
cutoff criterion of fold change ≥ 2 and FDR < 0.05.

Risk stratification and survival analysis

A cohort of 65 chRCC cases from The Cancer Genome Atlas (TCGA) database was used to illustrate the
relationship between the differential expressed DMMGs and chRCC patients. We randomly chose 40
samples from 65 cases as a training set to predict signature model and the rest samples form a testing
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set to verify the model (make sure the training set and testing set both contain tumor samples and
normal samples). Firstly, we used least absolute shrinkage and selection operator (LASSO) to select
candidate genes (glmnet package) in training set. Secondly, we performed the multi-variates cox
regression and removed genes not supported by PH hypothesis using the selected candidate genes in
training set. Thirdly, we performed the second regression (survival package) to calculate the coefficients
between candidate genes and 5-years survival using the remaining candidate genes in training set to
build a Cox model. The concordance index (C-index) was calculated to evaluate the prognostic power.
Risk score of each sample was calculated through the sum of the product of each candidate gene fpkm-
uq and its coefficient in training set. The patients were then classified into high-risk or low-risk group
using the risk score where the difference value of true positive and false positive reaches to the maximum
as the cutoff value. The Kaplan-Meier survival curve (survminer package) was performed to evaluate the
5-years survival, and the sensitivity and accuracy of the cox model to predict clinical outcome were
evaluated by the area under curve (AUC) of the receiver operating characteristic (ROC) curve (survival ROC
package). At last we test the signature model in the testing set, ccRCC dataset (a cohort of 602 cases
from TCGA database) and PRCC dataset (a cohort of 318 cases from TCGA database).

Results
The aberrant expression of several m6A regulators in chRCC tissue

Hematoxylin–eosin (HE) staining indicated that chRCC tissues composed of large vegetable-like
polygonal cells with eosinophilic cytoplasm, irregular nuclei, perinuclear clear halo, and prominent cell
membrane (Fig. 1b). In order to determine whether m6A modification functions in chRCC, we first
analyzed the expression levels of 8 m6A regulators, including 3 key writer subunits, 3 readers, and 2
erasers (m6A writer subunits: METTLE14, METTL3, and WTAP; m6A readers: YTHDF1, YTHDF2, and
YTHDF3; m6A erasers: ALKBH5 and FTO) in six patients. The qPCR results showed that the expression
levels of WTAP, YTHDF2, FTO, and ALKBH5 were downregulated markedly in chRCC tissues compared
with corresponding tumor-adjacent normal tissues (termed normal tissues) (Fig. 1c). The aberrant
expression of these m6A regulators in chRCC indicated that m6A modification might play a crucial role in
the progression of chRCC. 

Overview of m6A methylation feature in normal and chRCC tissues

To investigate whether m6A methylation landscape changes between the normal and chRCC tissues, we
performed m6A-SEAL-seq [41] using chRCC tissues and normal tissues from three subjects.
 Approximately 87.1-13.2 million reads were generated from each library and 82.8-12.8 million reads were
mapped to GRCh38 genome (Additional file 1: Dataset S1). m6A peaks were called in each sample using
the published m6A peak caller MACS2 algorithm [44] (fold enrichment (IP/input) ³ 2 and false discovery
rate (FDR) £ 0.05). The m6A peaks identified in all three replicates were classified as “confident m6A
peaks”. We identified 15,024 confident m6A peaks corresponding to 11,396 transcripts/genes in normal
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tissues, and 12,841 confident m6A peaks corresponding to 10,102 transcripts/genes in chRCC tissue (Fig.
2a). To evaluate the reliability and performance of m6A-SEAL-seq, we compared our confident m6A
peaks identified in normal tissues with the published m6A peaks identified in normal kidney tissues by
MeRIP-seq (GSE122744) [48]. 5686 out of 7261 (78.3%) of the m6A peaks in MeRIP-seq were overlapped
with our identified m6A peaks in m6A-SEAL-seq (Additional file 2: Fig. S1a). We then plotted the
distribution of distance between m6A peaks from m6A-SEAL-seq and MeRIP-seq, and found that our
confident m6A peaks were highly enriched around MeRIP-seq peaks (Additional file 2: Fig. S1b). We
further calculated normalized read coverages from m6A-SEAL-seq around MeRIP-seq peaks by deepTools
[49]. Their co-enrichment was further shown in Supplementary Figure 1C and 1D. These results suggest
that m6A-SEAL-seq is accurate and reliable.

We next investigated the m6A distribution across transcripts in normal and chRCC tissues. The metagene
profiles was used to display the distribution of m6A peaks across transcripts. The results showed that
confident m6A peaks in normal and chRCC tissues were both highly located within coding sequences
(CDS) and 3′ untranslated region (3′UTR) (Fig. 2b), which was consistent with the previous observation
[40]. To further locate confident m6A peaks, we divided the transcripts into five non-overlapping regions
and assigned the confident m6A peaks into these regions. The fraction of confident m6A peaks of normal
and chRCC tissues in these five regions showed that they were dominantly enriched in 3′UTR (40.46%,
40.55%), CDS (29.01%, 26.54%) and stop codon (17.32%, 18.59%) (Fig. 2c). We clustered the confident
m6A peaks in HOMER (Hypergeometric Optimization of Motif Enrichment) software [45] and found the
motif GGACH (H=U>A/C) in normal tissue and WRAC (W=G>C, R=G>A), RAACW (R=G>A, W=U>A) in
chRCC tissue (Supplementary Figure 3), which are similar to the known m6A motif, RRACH (R=G/A,
H=A/C/U). 

Further we asked which RNA molecules prefer to contain m6A modification. We assigned confident m6A
peaks to GRCh38 genome and found that 76.24% and 77.78% were mRNA, 18.42% and 17.16% were long
non-coding RNA (lncRNA) in normal and chRCC tissues, respectively (Fig. 2d). We noticed that the
confident m6A peaks number in chRCC tissues were less than that in normal tissues (Fig. 2a). We
subsequently assigned m6A peaks to chromosome, genes and the five non-overlapping regions. We
found that the number of confident m6A peaks in chRCC tissues were decreased globally among each
chromosome except chromosome Y, which didn’t have m6A peaks (Fig. 2e). By analyzing the distribution
of m6A peaks per gene, we found that most of m6A-motified mRNAs contained one or two m6A peak,
while a small number of them contained three or more (Fig. 2f), consistent with previous studies such as
ccRCC [40]. In each group of m6A peaks per gene, chRCC tissues always contain less gene number than
normal tissues (Fig. 2f). We also counted the number of m6A peaks among the five non-overlapping
regions in normal and chRCC tissues and found that chRCC tissues contain less m6A peak numbers
in 3′UTR, 5′UTR, CDS, and stop codon compared with normal tissues (Fig. 2g). These results suggest that
m6A modification level decreased in chRCC tissues.
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Differentially methylated m6A genes (DMMGs) participate in multi-cancer related pathways

To dissect the role of m6A modification, we subsequently identified differentially methylated m6A peaks
(DMMPs) between normal and chRCC tissues using the MeTDiff R package software [46] (p £ 0.05). We
identified 644 hypermethylated m6A peaks representing 593 transcripts and 1,304 hypomethylated m6A
peaks representing 1,137 transcripts in chRCC tissues of all three subjects compared with normal tissues
(Fig. 3a). Recall that our qPCR results in six subjects of chRCC showing that m6A writer subunit WTAP
and m6A erasers FTO and ALKBH5 were significantly downregulated in chRCC (Fig. 1c), the identified
hypomethylated m6A and hypermethylated m6A sites in chRCC could be directly induced by the aberrant
expression of WTAP and FTO/ALKBH5, respectively. The identified hyper- and
hypomethylated m6A peaks in chRCC tissues were respectively regarded as hyper and hypo group. Motif
search analysis using HOMER revealed one overrepensented motif GGACH (H=U>C/A) in
hypermethylated m6A peaks and two highly enriched motifs GGAC and GAACU in hypomethylated m6A
peaks; all these three identified motifs resemble the canonical m6A motif RRACH sequence (Additional file
2: Fig. S3).

We performed metagene profiling to examine the distribution of DMMPs within transcriptomes and found
that both hyper- and hypomethylated m6A peaks were highly enriched around the stop codon (Fig. 3b).
Further examination of m6A fraction in the five non-overlapping segments of transcripts revealed that the
m6A peaks in both hypo and hyper groups were dominantly enriched within 3′UTR (54.6% for hypo and
56.68% for hyper), CDS (25.92% and 23.14%) and around stop codon (13.19% and 11.02%) (Fig. 3c and
Additional file 2: Fig. S2a). The majority of hypo- and hypermethylated transcripts were mRNAs (80.44%
for hypo and 70.61% for hyper), and ~14-18% were lncRNA and the rest were other types of RNAs (Fig. 3d
and Additional file 2: Fig. S2b). 

The hypomethylated m6A peak number in chRCC is 2-fold more than the hypermethylated peaks (Fig. 3a),
in line with the finding that total identified m6A peaks in chRCC are less than those in normal tissues (Fig.
2a). Therefore, we firstly focused on the hypomethylated m6A peaks in chRCC. To explore the potential
role of hypo-methylated m6A peaks in chRCC, we took advantage of the algorithm DAVID to examine the
most preferential expression tissues of m6A hypomethylated genes. The results showed that m6A
hypomethylated genes were preferentially expressed in epithelium, followed by brain, placenta, and renal
cell carcinoma (RCC) (Fig. 3e), indicating the correlation between these genes and RCC. We
performed Gene Ontology (GO) enrichment analysis to uncover the functions of these genes. The results
revealed that m6A hypomethylated genes were enriched in many biological processes involved in kidney
development and cancer pathogenesis, including transcription, androgen receptor signaling pathway,
GTPase activity, and cell-cell adhesion (Fig. 3f). Pathway analysis showed that m6A hypomethylated
genes were mainly enriched in cancer-related pathways (Fig. 3g). These results suggested that the
hypomethylated m6A genes may participate in various pathophysiologic aspects of chRCC through
different pathways.
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We also explored the potential function of hypermethylated m6A peaks in chRCC. The results showed that
m6A hypermethylated genes were preferentially expressed in brain, followed by epithelium, duodenum,
fetal kidney, and ovary (Additional file 2: Fig. S2c). GO biological process analysis revealed that m6A
hypermethylated genes were significantly associated with protein phosphorylation, positive regulation of
cholesterol efflux, ubiquinone biosynthetic process, regulation of mitophagy, and so on (Additional file 2:
Fig. S2d). Pathway analysis showed that m6A hypermethylated genes were mainly enriched in ubiquitin
mediated proteolysis, metabolic pathways, and adherent junction (Additional file 2: Fig. S2e). Collectively,
the results reveal both m6A hypomethylated and hypermethylated genes are involved in many regulatory
pathways, especially hypomethylated genes directly enriched in cancer pathways, indicating that
dysregulation of m6A could be a regulatory factor in the pathogenesis of chRCC. 

The expression dysregulated genes in chRCC impair the normal functions of kidney

We next investigated the global mRNA expression patterns in normal and chRCC tissues by using the
RNA-seq dataset (m6A-SEAL-seq input library). The results showed that a total of 3,911 mRNAs were
significantly dysregulated in chRCC of three subjects compared with normal tissues, including 2,344
downregulated mRNAs and 1,567 upregulated mRNAs (fold change ≥ 2, p < 0.05) (Fig. 4a). Hierarchical
clustering depicted differential expression profiles in all the samples. (Fig. 4b).

We examined the preferentially expressed tissues of the dysregulated genes (3,911) using the algorithm
DAVID. The result showed that the dysregulated genes were preferentially expressed in kidney, followed
by liver and plasma (Fig. 4c), suggesting our data was reliable and these genes may participate in kidney
development. We further performed GO analysis and KEGG pathway analysis. GO analysis revealed that
the dysregulated genes were significantly enriched in metabolic process, transmembrane transport
including sodium ion transport, oxidation-reduction process, excretion, kidney development, angiogenesis,
and P450 pathway (Fig. 4d). In line with the result of GO, the KEGG analysis result also revealed that the
dysregulated genes were significantly associated with multiple metabolic pathways including many
amino acid metabolism or degradation, fatty acid degradation, cytochrome P450-related drug
metabolism and xenobiotics metabolism (Fig. 4e). These results showed that the expression levels of
around four thousand genes were dysregulated in chRCC, preliminarily illustrating that the dysregulated
genes in chRCC impair the normal function of kidney, especially metabolic function.

New m6A regulatory signature in the pathogenesis of chRCC

Considering that m6A can either destabilize m6A-modified transcripts through the recognition of YTHDF2
or stabilize m6A-modified transcripts through the recognition of IGF2BP [14], we investigated the
correlation between m6A methylation levels and transcript levels. We overlapped the m6A
hypermethylated and hypomethylated genes with the differentially expressed genes. In 593
hypermethylated genes, 44 genes were downregulated and 68 genes were upregulated in chRCC tissues
(Fig. 5a left). In 1,137 hypomethylated genes, 123 genes were downregulated and 51 genes were
upregulated (Fig. 5a right). We next took the m6A hypermethylated and hypomethylated genes as two
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groups to analyze their transcript accumulation in chRCC and normal tissues. The result showed that the
m6A hypermethylated genes (ie. transcripts with higher m6A levels) tended to preferentially exhibit
upregulated transcription levels in chRCC (Fig. 5b), revealing the positive correlation between m6A
methylation levels and transcript levels in chRCC. Note we found that the expression of YTHDF2
transcript was downregulated in chRCC (Fig. 1c). The positive correlation between m6A levels and
transcript levels in chRCC suggests m6A in chRCC tends to affect gene regulation positively, potentially
stabilizing m6A-modified transcripts or escaping from YTHDF2-mediated mRNA decay pathway due to
the lower expression YTHDF2 in chRCC.  

To further analyze the role of DMMGs in cancers, we intersected DMMGs with Cancer Gene Census (CGC)
database [50], a database consists of genes with strong indications of a role in cancer, and found that 73
and 23 genes were annotated in the hypomethylated and hypermethylated genes separately (Additional
file 1: Dataset S2 and Dataset S3). Among these cancer-related genes, 10 genes were differentially
expressed genes, including NOCH1 and FGFR1. NOTCH1 plays distinct roles in different cancers:
 NOTCH1 functions as a tumor suppressor gene in mouse skin and oral squamous cell carcinoma
(OSCC) [51], and the expression of NOTCH1 is decreased significantly in these cancer tissues [52];
whereas in Glioma and colon cancer, NOTCH1 functions as an oncogene and its expression level
is increased in these two cancer tissues [53-55]. According to Integrative Genomics Viewer (IGV) software,
the m6A modification level in NOTCH1 transcript was decreased significantly in chRCC compared to
normal tissues (Fig. 5c left) and qPCR results in six patients showed the transcript expression level of
NOTCH1 was reduced significantly in chRCC tissue (Fig. 5c right). The downregulated expression of
NOTCH1 in chRCC is consistent with its expression pattern in mouse skin and OSCC cancers, suggesting
NOTCH1 might act as a tumor suppressor in chRCC. Fibroblast growth factor receptor 1 (FGFR1) is a
known oncogene. In breast cancer, the expression level of FGFR1 shows positive correlation with the
amplification of cancer cell [56-58]. In lung cancer models, activation of FGFR1 promotes proliferation
and migration of tumor cell while inhibition of FGFR1 suppresses tumor growth [59]. We found the m6A
methylation level of FGFR1 was significantly decreased and the transcript expression level of FGFR1 was
increased in chRCC tissue (Fig. 5d right), which strongly suggests FGFR1 is an oncogene in chRCC similar
to that in breast cancer and lung cancer.

We conducted principal component analysis of the differential expressed DMMGs in 65 chRCC cases
from The Cancer Genome Atlas (TCGA) database. Based on the expression of these genes, we could
completely distinguish chRCC samples from normal samples (Fig. 5e). Cox regression screen and least
absolute shrinkage and selection operator (LASSO) identified three m6A-dependent signatures (Additional
file 1: Dataset S4) and defined a m6A-dependent cox model in the training set (Additional file 2: Fig.
S4a). Concordance index (C-index = 0.96) showed that the proposed model has a high prognostic power.
In this model, we separated patients into high-risk or low-risk group according to their risk score, and
patients with different 5-years survival could be distinguished completely between the two groups (Log-
rank p < 0.0001) (Fig. 5f). AUC of ROC curve also confirmed the prognostic power of the m6A-dependent
model (Additional file 2: Fig. S4b). Then the proposed model was applied to the testing set for prediction.
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We calculated risk score of each patient in the testing set and assigned to high-risk or low-risk group
according to the cut off value in the training set. The Kaplan-Meier survival curve and log-rank between
the two groups showed significant difference (Fig. 5g), which demonstrated the high predictive ability of
the m6A-dependent model. Furthermore, we also test the m6A-dependent model in ccRCC samples (a
cohort of 602 cases from TCGA database) and PRCC dataset (a cohort of 318 cases from TCGA
database). The results indicated that the m6A-dependent model is also suitable for ccRCC, but not PRCC
(Additional file 2: Fig. S4c, d).

Discussion
Although the incidence and mortality of chRCC is the least among the three types of kidney cancer, there
are still nearly thousands of people died owing to chRCC all of the world according to GCO statistic in
2020. Thereby, the underlying mechanism for adjuvant therapy is needed. Over the past few years, an
increasing amount of efforts have been tried to illustrate the mechanism of m6A modification in RCC,
leading to extensive accumulation about the correlation between m6A modification and RCC. However,
these researches mainly focused on ccRCC and RPCC, while chRCC were rarely studied. Here, we
demonstrated that m6A writer WTAP and m6A erasers FTO and ALKBH5 were downregulated in chRCC
tissues. Consistently, our m6A-SEAL-seq in three subjects of chRCC and corresponding tumor-adjacent
normal tissues identified 644 hypermethylated m6A peaks representing 593 transcripts and 1,304
hypomethylated m6A peaks representing 1,137 transcripts in chRCC tissues, which could be directly
induced by the aberrant expression of WTAP and FTO/ALKBH5. Further functional studies showed that
genes with hyper- or hypomethylated peaks were mainly enriched in kidney development and cancer
pathogenesis related pathway, which is a further proof of the fundamental role of m6A modification in
chRCC. We also found m6A reader YTHDF2 were downregulated in chRCC tissues. YTHDF2 is a well-
studied m6A reader and functions in m6A-dependent gene regulation by affecting RNA stability [12, 60–
63], suggesting there is an m6A-dependent RNA degradation and gene dysregulation in chRCC.
Cumulative fraction of RNA transcript accumulation between the m6A hypermethylated genes and
hypomethylated genes revealed the positive correlation between m6A methylation levels and transcript
levels in chRCC, which may be caused by m6A-mediated mRNA stabilization or escaping from YTHDF2-
mediated mRNA decay pathway due to the lower expression YTHDF2 in chRCC.

Our RNA-seq results identified 2,344 downregulated mRNAs and 1,567 upregulated mRNAs. The GO and
KEGG analysis of these dysregulated genes revealed that chRCC impairs the normal function of kidney,
especially in metabolism. By CGC database analysis [50], we found 96 genes with differential m6A
methylation levels (DMMGs) were causally implicated in cancers, including 73 hypomethylated genes
and 23 hypermethylated genes in chRCC. Among them, ZEB1 as an oncogene and PBRM1, ASXL2 and
SETD2 as tumor suppressor genes. Combined with our RNA-seq data, we found 10 cancer-related
DMMGs were differential expressed in chRCC, including NOTCH1 and FGFR1. The m6A methylation level
at 3′UTR of NOTCH1 and the transcript expression level of NOTCH1 were significantly reduced in chRCC.
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The m6A methylation level at 3′UTR of FGFR1 was also decreased, but the expression level of FGFR1 was
increased significantly. Considering previous functions of NOTCH1 and FGFR1 in other cancers, our
results suggest that NOTCH1 and FGFR1 might respectively act as a tumor suppressor and an oncogene
in chRCC. Base our preliminary results, we proposed a potential m6A regulatory role in pathogenesis of
chRCC, where the downregulated m6A writer subunit WTAP in chRCC reduces m6A levels in NOTCH1 and
FGFR1, leading to the decreased NOTCH1 expression and the upregulated FGFR1 expression through
m6A-mediated post-transcriptional gene regulation. Further functional studies are needed to clarify the
molecular mechanisms of above-mentioned genes in the development of chRCC.

Based on the significant prognostic signatures identified from the cox regression and LASSO analysis in
training set, we build a m6A-dependent prognostic model. With benign performance in testing data, this
prognostic model shows excellent predictive ability of the survival outcome, even in ccRCC. These results
indicated the m6A-dependent prognostic model could be used to comprehensively evaluate the survival
outcome of chRCC patients and ccRCC patients in clinical practice.

Conclusion
This study presented the first m6A transcriptome-wide profile of human chRCC, which provide a potential
link between abnormal m6A RNA modifications and cancer-related gene expressions. We hope it can be
helpful for the m6A methylation-based research on chRCC epitranscriptomic etiology and pathogenesis.
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Figure 1

Hematoxylin and eosin (HE) staining and relative expression level of known m6A-related genes in normal
and chRCC tissues by qPCR. a HE staining in normal tissues. b HE staining in chRCC tissues. c Relative
expression level of METLL3, METTL14, WTAP, YTHDF1, YTHDF2, YTHDF3, FTO and ALKBH5. Data are
presented as means ± SE, n = 6 biological replicates. *p < 0.05 (two-sided), * * * p < 0.005 (two-sided).
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Figure 2

Characterization of m6A modification in normal and chRCC tissues reveals decreased methylation
numbers in chRCC tissues. a Overlap of three biological replicates of m6A-SEAL-seq peaks in normal and
chRCC tissues. b Metagene profile illustrating the region distribution of m6A peaks across the indicated
mRNA segments. c Pie chart depicting the fraction of confident m6A peaks in each of the five non-
overlapping transcript segments (5′UTR, start codon, coding sequence [CDS], stop codon and 3′UTR) in
normal and chRCC tissues. d Pie chart depicting RNA types of m6A peaks in normal and chRCC tissues. e
The number of m6A peaks in human chromosomes. f The number of m6A peaks per gene. g The number
of m6A peaks in five non-overlapping transcript segments.
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Figure 3

Tissue analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
of hypomethylated genes in chRCC tissues. a Overlap of three biological replicates of hypermethylated
(left) and hypomethylated (right) m6A peaks in chRCC tissues. b Metagene profile illustrating the region
distribution of hypermethylated and hypomethylated m6A peaks across the indicated mRNA segments. c
Pie chart presenting the fraction of the confident hypomethylated m6A peaks across five non-overlapping
transcript segments. d Pie chart presenting RNA types (that is, transcript species) of the confident
hypomethylated m6A peaks identified in chRCC. e-g UP_TISSUE (e), Gene ontology (GO) (f) and KEGG (g)
analysis of the hypomethylated m6A genes.
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Figure 4

Differential expression genes in chRCC tissues compared with normal tissues. a Volcano plots showing
the differentially expressed genes in chRCC tissues compared with those in adjacent normal tissues. b
Heatmap plots showing the differentially expressed genes in chRCC tissues vs those in normal tissues. c-
e UP_TISSUE (c), Gene ontology (GO) (d) and KEGG (e) analysis of the differential expression genes.
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Figure 5

Conjoint analysis of m6A-SEAL-seq and RNA-seq data. a Overlap of hypermethylated genes with
upregulated genes and downregulated genes (left). Overlap of hypomethylated genes with upregulated
genes and downregulated genes (right). b Cumulative distribution displaying the expression level
changes in mRNAs with hypermethylated or hypomethylated m6A modification. c, d Integrative genomics
viewer (IGV) tracks showing the indicated m6A-SEAL-seq reads distribution on target transcripts and the
relative expression level in normal and chRCC tissues: (c) NOTCH1, (d) FGFR1. e Principal component
analysis for the expression profiles (fpkm-uq) of the differential expressed DMMGs to distinguish tumors
from normal samples in chRCC cohort (from The Cancer Genome Atlas database). f, g Survival analyses
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in the training set (f) and testing set (g). Log-rank p < 0.0001 showed a significant survival difference
between the two sub-groups.
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