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Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous cancer with limited understanding of
its classification and tumor microenvironment. Here, we performed single-cell RNA sequencing on
144,878 cells from 14 pairs of iCCA tumors and non-tumor liver tissues. We found that S100P and SPP1
are two reliable markers for iCCA perihilar large duct type (iCCAphl) and peripheral small duct type
(iCCApps). S100P + SPP1- iCCAphl has significantly reduced levels of infiltrating CD3+ T cells, CD56+ NK
cells, and increased CCL18+ macrophages compared to S100P-SPP1 + iCCApps. The transcriptor
CREB3L1 is identified to regulate the S100P expression and promote tumor cell invasion. S100P-SPP1 + 
iCCApps has significantly more SPP1+ macrophage infiltration, less aggressiveness and better survival
than S100P + SPP1- iCCAphl. Moreover, S100P-SPP1 + iCCApps harbors tumor cells at different status of
differentiation, such as ALB + hepatocyte differentiation and ID3 + stemness. Our study extends our
understanding of the diversity of tumor cells in iCCA and provides clearer understanding of iCCA
classification.

Introduction
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver malignancy after
hepatocellular carcinoma, with poor outcome and rising incidence globally1. As a highly heterogeneous
disease, iCCA can originate from cholangiocytes located at any point of biliary tree above the second-
order bile ducts. Recently, the World Health Organization and European Network for the Study of
Cholangiocarcinoma have recognized that iCCA can be classified into two histologically distinct
subtypes, including perihilar large duct type (iCCAphl) and peripheral small duct type (iCCApps), according
to the level or size of the affected bile duct2, 3. Indeed, emerging evidence has indicated that the two
histological subtypes of iCCA harbored distinct cellular origins and pathogenesis4. 

Generally, iCCAphl is considered to be derived from large intrahepatic bile ducts and mainly composed
of mucin-producing cholangiocytes. This subtype of iCCA is characterized by mucus hypersecretion and
has higher lymph node metastasis rates and worse survival5 compared with iCCApps. It has been reported
that MUC5AC, one of the main components of mucus, is frequently overexpressed in iCCAphl and
associated with aggressive tumor behavior6. Also, S100P, a member of the S100 family of EF-hand
calcium-binding proteins, that highly expresses in various types of cancer and plays crucial roles in tumor
progression7, is also upregulated in mucin producing iCCAs and suggested to be an important marker8, 9

for iCCAphl. On the contrary, iCCApps is commonly believed originating from small intrahepatic bile ducts
with no or minimal mucin production. It has been found that iCCApps expresses CDH2 more frequently
than iCCAphl and presents distinctive clinical and molecular features10. Moreover, NCAM, a marker of
hepatic progenitor cells, was also expressed in iCCApps, as well as cholangiolocellular carcinoma (CLC)
which is thought to originate from canals of Hering/bile ductules3, 5. Although the two subtypes of iCCA
displayed significant differences in mucin production, shape of tumor cells and patient prognosis3, 4,
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there is no consensus and definite panel of markers to distinguish them, and our knowledge on their
biological, molecular, and therapeutic difference is still limited.

Single-cell RNA sequencing (scRNA-seq) is a powerful technology for cancer research. Previous scRNA-
seq studies have reported the complexity of the tumor microenvironment in iCCAs without taking into
consideration of the histological classification, which may not accurately reflect the diversity of this
tumor11, 12. Here, we performed a transcriptome analysis of 144,878 single cells from 14 iCCA samples.
We identified and independently validated that SPP1, together with S100P, are optimal discriminatory
biomarkers for iCCAphl and iCCApps. As compared with S100P-SPP1+ iCCApps, S100P+SPP1- iCCAphl had
increased CCL18+ macrophages infiltration, decreased SPP1+ macrophages, aggressive phenotypes and
worse prognosis. Our data shed new light on the classification of iCCA, which might guide the
development of rational precision therapies to benefit a wide range of patients.

Results
Single-cell profiling of the tumor ecosystem in iCCA.

We applied scRNA-seq and whole-exome sequencing (WES) on tumor and paired adjacent non-tumor liver
tissues from fourteen treatment-naïve iCCA patients (Fig. 1a and Supplementary Fig. 1a). All tumors were
negative for Hep-Par 1 (a sensitive marker of hepatocytes) expression (Supplementary Fig. 1b). The
patient clinicopathological characteristics are presented in Supplementary Data 1. We obtained single-cell
transcriptomes for 144,878 cells after quality control. Thirteen main cell clusters with the expression of
known marker genes were identified including epithelial cells, monocytes, macrophages, dendritic cells
(DC), natural killer (NK) cells, CD4+ T cells, regulatory T cells (Treg), CD8+ T cells, mucosal-associated
invariant T (MAIT) cells, B cells, plasma B cells, fibroblasts, and endothelial cells (Fig. 1b). Totally, we
identified 23,667 malignant cells by inferring large-scale copy number variations (CNVs) (Fig. 1c and
Supplementary Fig. 1c). This classification was further confirmed by the significant difference of
epithelial marker expression and unique molecular identifiers (UMIs) between malignant and non-
malignant cells (Fig. 1d and Supplementary Fig. 1d). Consistent with previous findings in other tumors,
malignant cells showed strong intertumoral heterogeneity and formed patient-specific clusters13, 14 (Fig.
1e). Also, infiltrating immune cells were found to be significantly heterogeneous among different patients
and between tumor and peri-tumor tissues (Supplementary Fig. 1e, f). For examples, macrophages, CD4+

T cells and Tregs were highly infiltrated in the tumor, while MAIT cells were mainly distributed in the
adjacent liver tissues (Fig. 1f). 

SPP1 is a representative marker for iCCApps.

To explore the subtypes of iCCA with different cell origins at the single cell level, we examined the
expression of seven previously proposed markers of iCCAphl (S100P, MUC5AC, TFF1, MUC1, and MUC6)
and iCCApps (NCAM1 and CDH2) in malignant cells2, 3 (Fig. 2a and Supplementary Fig. 2a). We found that
7 out of 14 iCCAs (P02, P03, P04, P06, P16, P17, and P18) exhibited high expression of iCCAphl markers
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such as S100P and MUC5AC, indicating their origin from large intrahepatic bile ducts. Notably, S100P+
cells accounted for 91.14% of total tumor cells from these seven iCCAs and displayed more
representative and extensive expression compared with the other markers (MUC5AC: 42.37%, TFF1:
77.61%, MUC1: 87.21%, and MUC6: 22.97%). The 14 iCCAs can be divided into two groups based
on S100P expression, which was confirmed by immunohistochemistry (Supplementary Fig 2b, c). For the
remaining seven S100P- iCCAs (P09, P10, P12, P13, P14, P15, and P19), they expressed iCCApps

markers NCAM1 and CDH2, which were mutually exclusive with the expression of S100P, confirming the
different origins of these tumor cells. However, the positive cells of NCAM1 (2.36%) and CDH2 (31.86%)
accounted for a very low proportion of the total tumor cells in these seven S100P- iCCAs. To find more
representative markers for iCCApps, we searched for genes mutually exclusive with S100P but expressed
extensively in iCCApps. Gene such as SPP1 had low expression in S100P+ and high expression in S100P-
cells, making it potential biomarkers (Fig. 2b and Supplementary Data 2). SPP1, also known as
osteopontin (OPN), is highly expressed in a variety of tumors and plays important roles in tumor
progression15. We confirmed that the seven S100P- iCCAs showed high expression of SPP1 both at the
cellular (87.17% of S100P- iCCAs’ tumor cells) and tissue level (Fig. 2c and Supplementary Fig. 2d). Thus,
we divided 14 iCCAs into S100P+SPP1- iCCAphl and S100P-SPP1+ iCCApps subgroups based on the
expression of S100P and SPP1.

According to our scRNA-seq data, most of the tumor cells either expressed S100P (23.95%) or SPP1
(60.05%), while only 10.01% and 5.98% tumor cells showed double negativity or double positivity,
respectively (Supplementary Fig. 2e). To further explore whether the expression of S100P and SPP1 in
iCCA were mutually exclusive in a larger cohort, immunohistochemistry was performed on a tissue
microarray (TMA) containing 201 iCCAs. We found that 92.54% iCCAs can be clearly divided into
S100P+SPP1- (33.83%, 68 patients) and S100P-SPP1+ (58.71%, 118 patients) iCCAs, while only 5.97%
(12 patients) and 1.49% (3 patients) were classified as S100P-SPP1- and S100P+SPP1+ iCCAs,
respectively (Fig. 2d and Supplementary Fig. 2f). Importantly, S100P+SPP1- iCCAs had a significantly
worse prognosis than S100P-SPP1+ iCCAs (P = 0.008, Fig. 2e), which was further confirmed by the
multivariate Cox regression analysis (HR, 1.922; 95% CI, 1.257-2.939; P = 0.003, Supplementary Data 3).
Also, S100P+SPP1- iCCAs significantly correlated with higher CA19-9 (P < 0.01), CEA (P < 0.01), Ki67
expression (P = 0.025), lymph node metastasis (P = 0.013) and advanced TNM stage (P = 0.021), but
negatively correlated with tumor size (P = 0.019), HBsAg status (P < 0.01) and liver cirrhosis (P =
0.049) (Fig. 2f and Supplementary Data 3). The higher percentage of HBsAg positive status and liver
cirrhosis in S100P-SPP1+ iCCAs further support the notion that iCCApps usually develops on a
background of chronic liver disease.5

We further evaluated the effect of S100P and SPP1 in distinguishing iCCAphl and iCCApps in two RNA-seq
databases of cholangiocarcinoma. Patients from Jusakul et al.’s dataset16 includes iCCA (81 patients)
and extrahepatic cholangiocarcinoma (ECC, 34 patients), while patients from Sia et al.’s dataset17 only
contains iCCA (109 patients). We found that 81.48% iCCAs can be divided into two independent groups
according to the expression of S100P and SPP1 in Jusakul et al.’s dataset (Fig. 2g and Supplementary
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Data 4). The S100P-SPP1+ samples almost exclusively exist in iCCA instead of ECC, further supporting
their distinct origination (Fig. 2h). Survival analysis showed that the prognosis of S100P+SPP1- iCCAs
were significantly worse than S100P-SPP1+ iCCAs (P < 0.01, Fig. 2i). Similar results were obtained from
Sia et al.’s dataset (Supplementary Fig. 3a, b). 

Analysis of the WES data found that S100P+SPP1- iCCAs tended to have more TP53 (4/14), SYNE1
(3/14), and EPHA2 (3/14) mutations, while S100P-SPP1+ iCCAs harbored more BAP1 (3/14) mutations,
which was consistent with previous studies10, 16 (Supplementary Fig. 3c, d). We also found that the DNA
methylation level of S100P in S100P+SPP1- was significantly lower than that in S100P-SPP1+, while no
apparent difference was observed in CNVs16, indicating potential epigenetic regulation of S100P in these
two iCCA subtypes (Supplementary Fig. 3e, f). Taken together, these results indicate that S100P and
SPP1 are two optimal biomarkers for distinguishing iCCAphl and iCCApps, which can effectively divide the
iCCA patients into two subtypes with different cell origins and clinicopathological characteristics.

Molecular profiles and transcription networks of S100P+SPP1- and S100P-SPP1+ iCCAs

The presence of two main subgroups of malignant cells in iCCA prompted us to investigate their unique
gene expression profiles. We first evaluated their intratumor heterogeneity (ITH) at the genomic and
single-cell transcriptome levels. The results showed no significant difference in genomic ITH, but a
significant higher transcriptomic ITH in S100P+SPP1- iCCAs (Fig. 3a). This was consistent with previous
study that higher transcriptomic ITH predicted poor survival11. Subsequently, we identified 755
differentially expressed genes between these two groups of malignant cells (|logFC|> 1.5 and P < .01,
Supplementary Fig. 4a and Supplementary Data 5). Genes up-regulated in S100P-SPP1+ cells were
mainly enriched in regulation of coagulation and complement activation, which were involved in
hepatocyte function (Fig. 3b). These cells presented high expression of hepatocyte-specific genes such
as SERPINE2, APOB, and CPB2, further supporting their hepatocyte-like differentiation (Supplementary
Fig. 4b). In contrast, genes upregulated in S100P+SPP1- cells were related to mucus secretion, protein
localization to endoplasmic reticulum (ER), and epithelial structure maintenance. Remarkably, we found
that PSCA, which encodes a tumor antigen and up-regulated in prostate18 and bladder19 cancers, was
highly expressed in S100P+SPP1- iCCAs, making it a promising candidate for immunotherapy of
iCCAphl (Supplementary Fig. 4c). 

We further applied SCENIC analysis to characterize transcription networks between S100P+SPP1- and
S100P-SPP1+ cells20. The results showed that transcription factors such as ATF3, CREB5, MEIS2,
and EGR1 were upregulated in S100P-SPP1+ cells, while S100P+SPP1- cells showed up-regulation of
transcription factors like CREB3L1, PPARG, CDX2, and HOXB7 (Fig. 3c and Supplementary Fig. 4d).
Survival analysis from Jusakul et al.’s dataset showed that transcription factors that highly expressed in
iCCAphl (PPARG, MECOM, HOXB7, IRF7, FOXA3) and iCCApps (ONECUT1, HNF1B, MEIS2), were associated
with worse and better prognosis, respectively16 (Supplementary Fig. 4e). Notably, SCENIC analysis
revealed that CREB3L1, which is induced by ER stress and contributes to maximal induction of the
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unfolded protein response21, was a potential transcription factor regulating S100P. Also, CREB3L1
expression strongly and positively correlated with S100P expression (r = 0.58, p < 2.2e-16, Fig. 3d). To
determine whether S100P is a direct target of CREB3L1, we performed dual-luciferase report assay and
found that the S100P promoter activity was markedly increased in a dose-dependent manner after
overexpression of CREB3L1 (Fig. 3e). Transwell assays showed that CREB3L1 knockdown significantly
weakened the invasion capacity of HuCCT1 and RBE cells (Fig. 3f, g). RNA‐seq analysis showed that
CREB3L1 not only modulated the expression of S100P, but also affected the expression of various
upregulated genes in S100P+SPP1- cells, such as OASL, RCN3, and OAS1 (Fig. 3h). Pathway analysis
indicated that CREB3L1 was involved in co-translational protein targeting to membrane, establishment of
protein localization to ER, and actin filament reorganization (Fig. 3i). Together, these results reveal the
distinct transcriptional profiles of S100P+SPP1- and S100P-SPP1+ cells, identifying CREB3L1 as a
potential transcriptor of S100P that promotes invasion of iCCAphl.

Different polarization of infiltrated macrophages in iCCAphl and iCCApps

Despite studies have profiled the tumor immune microenvironment of iCCA by scRNA-seq11, 12, the
difference of immune landscape between iCCAphl and iCCApps remains unclear. First, we evaluated the
infiltration of T cells, B cells, NK cells, and macrophages in 186 iCCAs from the TMA cohort by
immunostaining. Results showed that more CD3+ T cells (P < 0.01) and CD56+ NK cells (P < 0.01) were
infiltrated in S100P-SPP1+ iCCApps (118 patients) compared to S100P+SPP1- iCCAphl (68 patients),
indicating a more robust antitumor microenvironment in iCCApps (Supplementary Fig. 5a). Although there
was no significant difference in CD68+ macrophages and CD20+ B cells, more CD68+CD206+

macrophages were found to be infiltrated in S100P+SPP1- iCCAphl (P < 0.01) (Supplementary Fig. 5b, c).
Then, we focused on macrophages to evaluate distinct macrophage subsets infiltrated in the two
subtypes of iCCAs.

A total of six clusters present in the myeloid lineage with the expression of specific marker genes,
including one monocyte (Mono_FCN1), two macrophages (Macro_c1_SPP1 and Macro_c2_CCL18), and
three DCs (DC_c1_CD1C, DC_c2_XCR1, and DC_c3_CD1A) (Fig. 4a, b and Supplementary Data 6).
Macrophages and CD1a+ DCs (DC_c3_CD1A) were significantly enriched in tumors compared with paired
non-tumor tissues, while monocytes, CD1c+ DCs (DC_c1_CD1C), and cDC1 DCs (DC_c2_XCR1) showed
the opposite trend (Supplementary Fig. 5d). Indeed, we observed that, SPP1+ macrophages, which have
been reported in colon cancer and closely interact with cancer-associated fibroblasts (CAFs)22, were more
infiltrated in S100P-SPP1+ iCCApps, while CCL18+ macrophages, which were abundant in advanced
hepatocellular carcinoma23, were mostly infiltrated in S100P+SPP1- iCCAphl (Fig. 4c, d). Though both
macrophages subsets have been defined as tumor associated macrophages, they varied in signaling
pathways and metabolic features24 (Supplementary Fig. 6a, b). Consistently, we found that SPP1+

macrophages showed increased level of oxidative phosphorylation and glycine, serine, threonine and
tyrosine metabolism, while CCL18+ macrophages had elevated cytokine-cytokine receptor interaction,
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nitrogen and riboflavin metabolism (Supplementary Fig. 6c). By calculating pro-/anti-inflammatory and
M1/M2 polarization scores25, we found that SPP1+ macrophages were more potent in both pro- and anti-
inflammatory responses and skewed toward M1 polarization (Fig. 4e, f). In contrast, CCL18+

macrophages showed a dominant M2-like phenotype with the high expression of CD163, MARCO, and
CSF1R, suggesting their stronger tumor-promoting role than SPP1+ macrophages (Supplementary
Fig. 6d). Immunostaining on TMA cohort further confirmed that SPP1+CCL18- macrophages were more
abundant in S100P-SPP1+ iCCApps, while SPP1-CCL18+ macrophages were mostly enriched in
S100P+SPP1- iCCAphl (Fig. 4g, h), which were again validated by the results from Jusakul et al.’s data16

(Supplementary Fig. 6e). Together, these results indicate that iCCAphl has a unique immune ecosystem,
with increased CCL18+ macrophages, reduced CD3+ T and CD56+ NK cells as compared with iCCApps.

iCCApps contains tumor cells at different status of differentiation

The expression of ALB is generally considered as a marker of hepatocytes. Several studies have
demonstrated the expression of ALB in iCCA, but the features of these ALB+ tumor cells are still unclear8,

26, 27. Here, we detected a group of ALB expressing tumor cells at the single cell level, most of which
(79.4%) were present in the S100P-SPP1+ iCCApps (Supplementary Fig. 7a-c). Due to the different origins
of iCCAphl and iCCApps, we here only focused on these seven S100P-SPP1+ iCCApps to explore their
heterogeneity. By comparing the gene expression profiles of ALB+ and ALB- cells, we found that ALB-
cells highly expressed ID3, which negatively regulates the basic helix-loop-helix and involved in cell
differentiation, and neoplastic transformation28 (Fig. 5a, Supplementary Fig. 7d and Supplementary Data
7). ALB+ cells highly expressed hepatocyte specific genes such as CPB2, ASGR1, FGA, as well as
cholangiocyte markers KRT19, KRT18, and EPCAM, but did not express AFP, a marker of hepatic
progenitor cells (Fig. 5b and Supplementary Fig. 7e). Genes that highly expressed in ALB+ cells were
mainly involved in hepatocyte-specific processes, such as complement activation, detoxification, fatty
acid catabolic process, and bile acid secretion, suggesting their hepatocyte
differentiation (Supplementary Fig. 7f). SCENIC analysis showed that genes specifically upregulated in
ALB+ cells were regulated by NR5A2, BATF, and NFIA (Supplementary Fig. 7g). In contrast, ID3+ cells
highly expressed genes such as MDK, ZEB1, and LGR5 that playing important roles in tumor stemness29,

30, 31, 32. SCENIC analysis predicted that transcription factors SOX11, PAX2, IRX2, IRX3, FOXC1, and EN2
were responsible for genes upregulated in these cells.

Previous studies have designated ID3+ cells as hepatoblasts which could give rise to both hepatocytes
and cholangiocytes33. To reveal the differentiation process in iCCA, we explored the gene expression
patterns along this transition by trajectory analysis. Tumor cells from P09 and P10 were selected for this
analysis as they contained comparable number of ALB+ and ID3+ cells (Fig. 5c and Supplementary
Fig. 7h). We found that ALB+ cells were mainly located at the terminal of this trajectory and genes
involved in regulation of coagulation, ER lumen and response to ER stress were increased gradually along
the trajectory (Fig. 5d). Also, the expression of MKI67 showed the same trend as ALB, implying an
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increased proliferation capacity of ALB+ cells. ID3+ cells located opposite to ALB+ cells in the trajectory
and were enriched for pathways in collagen containing extracellular matrix and negative regulation of cell
adhesion. For example, the expression of COL12A1, which encodes the alpha chain of type XII collagen
and is overexpressed in several cancer types34, 35, decreased gradually along transition from ALB- cells to
ALB+ cells (Fig. 5e).

By evaluating the expression of 16 identified marker genes of ID3+ and ALB+ cells in Jusakul et al.’s
dataset16, we validated that S100P-SPP1+ patients can also be clearly divided into two subclasses with
mutually exclusive expression of 16 genes (Fig. 5f). In addition to the exclusivity between ALB and ID3, a
significantly negative correlation between ID3 and MKI67 expression was also observed, suggesting the
slow proliferation of these tumors (Fig. 5g). Taken together, these results demonstrate that iCCApps is a
heterogeneous tumor with tumor cells at various status of differentiation such as hepatocyte
differentiation or stemness.

ID3+ tumor cells indicate abundant stroma components and worse prognosis in iCCApps.

We next explored the clinical and histological characteristics of ID3+ iCCApps. By immunostaining, we find
that ID3 was predominantly expressed in the nucleus of tumor cells that located in the tumor center and
were surrounded by rich stromal components (Fig. 6a). To further explore the relationship between ID3
expression and tumor stroma, we analyzed the correlation between ID3 expression and CAFs in two
public databases16, 17. Results showed that ID3 expression positively correlated with CAFs’ gene
signature, such as PDGFRB, COL1A1, and PDPN (Fig. 6b and Supplementary Fig. 7i). 

Since CAFs play important roles in tumor progression and chemoresistance36, we speculated that ID3
expression was related to iCCA prognosis. We selected 118 S100P-SPP1+ iCCApps from our TMA cohort
to explore the prognostic values of ID3+ tumor cells and PDGFRβ+ stromal cells (most of which were
CAFs) (Fig. 6c). As expected, the proportion of CK19+ID3+ tumor cells positively correlated with the
proportion of CK19-PDGFRβ+ cells (r = 0.46, P < 0.001), while the proportion of CK19+ID3- tumor cells
negatively correlated with the proportion of CK19-PDGFRβ+ cells (r = -0.46, P < 0.001) (Fig. 6d). Survival
curves indicated that the proportion of CK19+ID3+ tumor cells (P = 0.016) and CK19-PDGFRβ+ cells (P =
0.005) both significantly correlated with poor prognosis in iCCApps (Fig. 6e). Thus, these results
demonstrate that ID3+ cells commonly correlated with the presence of CAFs and patient survival in
iCCApps.

Discussion
iCCAs can be divided into different subgroups according to the tumor anatomical location and the origin
of tumor cells. In this study, we generated scRNA-seq profiles of 14 primary iCCAs and identified SPP1 as
a representative marker for iCCApps. We found that 92.5% iCCAs can be classified as iCCAphl and iCCApps

according to the expression of S100P and SPP1, and there are significant differences in
clinicopathological characteristics, gene regulatory networks and immune infiltration between these two
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iCCA subtypes. Moreover, we confirmed the presence of tumor cells at various differentiation in iCCApps at
the single-cell level. This study broadens our understanding of the origin of iCCA and provides valuable
markers for patient classification (Fig. 7), which may stem for novel diagnostic and therapeutic strategies
for iCCA.

Cholangiocarcinoma can be divided into iCCA or ECC according to the tumor location in the biliary tree. It
has been found that a part of mucin-producing cholangiocarcinoma presented in iCCA has high
invasiveness and high expression of S100P, which is very similar to ECC8. We here identified
S100P+SPP1- cells highly expressed mucus related genes such as MUC5AC, MUC1, and MUC6 at single
cell level. Despite that this subtype is often detected in smaller tumor size, it had more lymph node
metastases, and high levels of CA19-9, Ki67, and CEA. Mucins synthesis begin in the ER and they are
extremely susceptible to misfolding due to their large sizes and structure complexity, which can
eventually lead to ER stress37. We indeed observed many genes associated with mucins synthesis or ER
stress upregulated in iCCAphl, such as XBP138, AGR239, and CREB3L121, which may be involved in the
progression of this subtype of iCCA. S100P+SPP1- iCCAphl had less CD3+ T and CD56+ NK cells, but more
CCL18+ macrophage infiltration than S100P-SPP1+ iCCApps, indicating its dampened anti-tumor immune
response that may contribute to the higher invasive potential.

SPP1 is considered to play a cancer-promoting role and is often associated with a worse prognosis in
various tumors, but its prognostic significance in iCCA is still controversial40, 41. One important reason for
this inconsistence is that the classification of iCCA is not properly considered. iCCApps is believed
originating from mucin-negative cuboidal cholangiocytes or ductules containing hepatic progenitor cells.
It has been reported that CDH2 and NCAM1, are representative markers of these iCCAs3, 5. Based on our
results, the expression of SPP1 is mutually exclusive with S100P, showing a better specificity and
sensitivity than CDH2 or NCAM1 as a marker of iCCApps. S100P-SPP1+ iCCApps had less lymph node
metastasis, larger tumor volume, and better prognosis than S100P+SPP1- iCCAphl. One research has
reported that iCCA with cholangiolocellular differentiation highly expressed CRP and CDH2, while iCCA
without cholangiolocellular differentiation highly expressed TFF1 and S100P. The two groups of iCCAs
showed significant differences in clinicopathological characteristics and patient outcomes9. The results
from this study are very similar to the findings of our study. S100P-SPP1+ iCCApps showed high
expression of CRP and CDH2, which correspond to the iCCAs with cholangiolocellular differentiation.
Studies have revealed that iCCApps often occurs in the background of chronic hepatitis or liver cirrhosis5.
We observed SPP1+ macrophages, which has been reported involving in liver inflammation and fibrosis42,
were highly infiltrated in iCCApps, indicating that these macrophages may be involved in the occurrence
and development of iCCApps.

Heterogeneity in tumor cell differentiation was observed in iCCA because of the complicated cell origin
and formation. In the present study, two major subsets of tumor cells, ALB+ and ID3+ tumor cells, were
identified in iCCApps. The expression of ALB mRNA has been detected by in situ hybridization in about
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40% of all iCCAs43, but the specific biology of these ALB+ cells is still not clear. The results of our study
showed that these ALB+ cells have the characteristics of hepatocyte differentiation. However, these cells
also expressed EPCAM and KRT19, indicating that these may be hepatocyte-like cells in the early stage of
differentiation rather than mature hepatocytes. The stem-like ID3+ cells coexisting in iCCApps may be the
precursor cells of ALB+ cells. There are several reasons for this conjecture. First, these ID3+ cells highly
expressed many stemness-related genes, such as ID4, MDK, ZEB1, and LGR5. Of note, it has been reported
that the expression of ID3 and LGR5 could promote stem cell features in iCCA29, 32. Second, previous
study has identified ID3+ cells at the early stages of development in human and mouse fetal livers, which
are able to differentiate into both hepatocytes or cholangiocytes33. Therefore, the presence of ID3+ cells
may be one of the reasons for the diversity of iCCApps. Additionally, we found that ID3+ cells were
generally located in the interior area of the iCCApps and positively correlated with the CAF content. The
location of these ID3+ cells and the presence of the large amount of CAFs surrounding them may be an
important reason for the poor prognosis of this type of iCCA.

A few limitations of the current study should not be ignored. There were 1.49% S100P+SPP1+ and 5.97%
S100P-SPP1- iCCAs in our validation cohort. We did not analyze the clinicopathological features of these
iCCAs because of their small number. Also, due to the small number of S100P+SPP1+ and S100P-SPP1-
cells in scRNA-seq data, we could not evaluate the molecular characteristics of these two types of tumor
cells at the single cell level accurately. Therefore, future studies with a larger sample size containing these
two iCCA subtypes may help to resolve this issue. 

In summary, our study provides two optimal markers to differentiate iCCA from different origins and
revealed the clinical, molecular, biological and immunological diversity between iCCAphl and iCCApps. The
two markers, S100P and SPP1, could serve as the easy-to-use reference to guide iCCA patient
stratification and personalized management, and lay the foundation for basic and translational research
of iCCAs from different origins. 

Methods
Patient samples

Fourteen patients had liver resection and were pathologically diagnosed as iCCA from January 2019 to
January 2020 were enrolled for scRNA-seq. None of the patients received chemotherapy, radiotherapy or
any other anti-tumor therapy before surgery. Fresh paired tumor and non-tumor liver tissues were
obtained during surgical resection. The adjacent normal tissues were at least 3 cm away from the
matched tumor tissue. This study was conducted in accordance with the ethical standards of the
Research Ethics Committee of Zhongshan Hospital with patients’ informed consent.

Tissue microarray and immunohistochemistry
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Tissue microarray was constructed as described44. Paraffin-embedded tissue samples from 201 iCCA
patients who underwent primary and curative resection for their tumor in Liver Cancer Institute,
Zhongshan Hospital of Fudan University (Shanghai, China) between 2012 and 2015 were selected. The
tissue microarrays were baked at 60 °C for 1 h, dewaxed in xylene, rehydrated through a gradient
concentration and blocked the endogenous peroxidase activity by 3% hydrogen peroxide. The sections
were incubated with 10% goat serum for 30 min to block non-specific binding sites and then incubated
with the primary antibodies including S100P (1:1500 dilution), SPP1 (1:2000 dilution) at 4°C overnight.
Detailed information of antibodies was provided in the Supplementary Data S8. After repeated washing,
the sections were incubated at room temperature with secondary antibody and visualized by DAB
solution and counterstained with haematoxylin. IHC staining score was assessed by two independent
pathologists who were blinded to the patients’ clinicopathological data. The score for IHC intensity was
scaled as 0 for no IHC signal, 1 for weak, 2 for moderate, and 3 for strong. A positive IHC stain was
defined by a visible staining pattern (score 1 to 3) compared to the negative control (score 0).

Preparation of single-cell suspensions

Fresh iCCA tumor tissues and adjacent non-tumor liver tissues were obtained immediately following
tumor resection and transferred to the 50 mL centrifugal tube filled with RPMI-1640 medium (Gibco) with
10% fetal bovine serum (Gibco) and transported rapidly to the laboratory on ice. Specimens were then
washed twice with cold 1× PBS (Gibco) and digested with Miltenyi Tumor Dissociation Kit and the
GentleMACS (Miltenyi, Bergisch Gladbach, Germany) following manufacturer’s instructions. The
dissociated cells were subsequently passed through a 70 µm cell-strainer (BD) to remove clumps and
undigested tissue. After centrifugation, the cell pellet was washed twice with MACS buffer (PBS
containing 1% FBS, 0.5% EDTA, and 0.05% gentamycin) and then re-suspended in sorting buffer (PBS
supplemented with 1% FBS). Single-cell suspensions were stained with DRAQ5 (1:200, 10 min) and DAPI
(1:200, 5 min). Finally, DRAQ5+DAPI- cells were sorted into RPMI-1640 media supplemented with 10%
FBS by FACSAria (BD Biosciences).

Single-cell RNA-sequencing

Libraries for scRNA-seq were generated using the Chromium Single Cell 3’ library and Gel Bead &
Multiplex Kit from 10x Genomics. 10×Genomics Chromium barcoding system was used to construct
10×barcoded cDNA library following the manufacturer's instructions. All libraries were sequenced on
Illumina HiSeq4000 until sufficient saturation was reached. 

scRNA-seq data processing

CellRanger (v3.1.0) was applied for read mapping and gene expression quantification. Cells with less
than 1000 UMIs or >20% mitochondria genes were excluded. We also used 3 algorithms (DoubletFinder,
DoubletDetection, Scrublet)45, 46, 47to find doublets and remove cells which were identified as a doublet by
at least one algorithm. The total number of transcripts in each cell was normalized to 10,000, followed by
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log transformation. Then we used Seurat (v3)48 to detect highly variable genes, perform PCA, graph-
based clustering and t-SNE.

Classification of malignant cells

As malignant cells harbor significantly more copy number variation (CNV) than normal cells, we first
estimated CNV from scRNA-seq following the steps described in previous study49. In brief, genes were
first sorted according to their genomic location at each chromosome, and then a sliding window of 100
genes was applied to calculate the average relative expression values to derive CNVi (CNV of the ith
window). We defined CNV score of each cell as the mean of squared CNVi across all windows. In
additional, we calculated CNV correlation score by computing the spearman correlation of the CNVi of a
cell and the average CNVi of the single-cells with top 3% CNV scores from the same tumor. Malignant
cells were then defined as those with CNV signal above 0.04 and CNV correlation above 0.5. Moreover, we
determined the epithelial score of each cell using 14 epithelial markers from Puram et al.50and found the
epithelial score of malignant cells is significantly higher than that of non-malignant cells, which proves
the robustness of our classification.

Classification of non-malignant cells

For all non-malignant cells, we first used SingleR51 to classify cells into 7 major cell types: myeloid cell,
NK cell, CD8+ T cell, CD4+ T cell, B cell, endothelial cell and fibroblast. Other cell types (e.g. hepatocyte,
neutrophil and mast cell) with fewer than 100 cells are excluded. Then we applied the graph-based
clustering method implemented in Seurat to group cells into subtypes and each subtype was further
annotated according to its marker genes.

Bulk whole exome sequencing and data processing

Whole-exome sequencing was performed as described previously44. In brief, DNA was extracted from
iCCA tumor and non-tumor liver tissues from these fourteen patients using a DNeasy Blood and Tissue kit
(Qiagen), and DNA concentration and purity were determined using a NanoQuant Plate Infinite M200 PRO
reader (Tecan Austria GmbH). After enrichment of exonic DNA fragments with a SureSelect Human All
Exon Kit (Agilent, 50 Mb V5), sequencing was performed on Illunima HiSeq4000.

Raw sequencing reads were mapped to human genome version 38 (hg38) using BWA-MEM52. After
removing duplicated reads, SNV and indel were detected using Mutect2 (https://doi.org/10.1101/861054)
and annotated with Oncotator53. Copy number alteration (CNA) was identified using FACETS54.

Tumor heterogeneity analysis

For WES data, cancer cell fraction (CCF) and clonality of each mutation was determined following the
process described in Nicholas et al.55 Genomic heterogeneity was calculated as the proportion of

https://doi.org/10.1101/861054
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subclonal mutations in a tumor. For scRNA-seq data, we estimated transcriptomic heterogeneity
according to the method in Ma et al.11

Differential expression and pathway analysis

Differentially expressed genes (fold change > 4 and P value < 0.001) were identified using the QLF model
implemented in edgeR (v3.26.3)56. Pathway enrichment analysis was performed using clusterprofiler57

based on GOBP gene sets from MSigDB.

Gene regulatory network inference

Gene regulatory networks were identified using SCENIC (v1.1.0)20 with default settings. To reduce the
computing time, a python implementation in SCENIC (GRNBoost) was used.

Developmental trajectory analysis 

Monocle58 was applied to infer the developmental trajectory with each tumor. Only top 1000 variable
genes identified by differentialGeneTest were selected for constructing the developmental tree.

Public datasets analysis

Mutation, gene expression and methylation data from Jusaka et, al.16 were retrieved from. Gene
expression data from Sia et al.17 was retrieved from.

Dual luciferase assay

The dual reporter plasmid expressing firefly luciferase under the human S100P promoter and Renilla
luciferase under the SV40 promoter was constructed. Different concentrations of expression plasmids
were transiently transfected into the HEK-293T cells with Renilla luciferase plasmid. Firefly luciferase
activity was measured with a Dual Luciferase Assay Kit (Promega) 24 hours after transfection and
normalized with a Renilla luciferase reference plasmid. Results are assessed as the ratio of Firefly
luciferase activity to Renilla luciferase activity.

RNAi and transfection

Human CREB3L1 siRNA (si-CREB3L1) lentivirus vectors and non-specific siRNA (si-Ctrl) lentivirus vectors
were synthesized by GeneChem Technology (Shanghai, China). The si-CREB3L1 sequences are at
nucleotide positions131 – 149 as reported previously59. Non-targeting siRNA was used as the negative
control. Lentivirus transfection was performed following the manufacturer’s instructions and the
efficiency of silencing was confirmed by immunoblotting.

Transwell invasion assay
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Cell invasion was determined by Transwell invasion assay. Briefly, transwell inserts were firstly coated
with Matrigel (BD, USA). Then, 1 × 105 cells suspended in 0.2 mL serum-free medium were added into
inserts and 0.5 mL medium containing 20% FBS was added to the lower compartment as a
chemoattractant. After culturing for 48 h, the cells on the upper membrane were carefully removed using
a cotton bud and cells on the lower surface were fixed with methanol for 15 min and successively stained
with 0.1% crystal violet solution for 10 min. Photographs were then taken and the number of cells that
passed through the Matrigel were counted. Assays were performed in duplicate in three independent
experiments.

Multiplex immunohistochemistry and quantitative analysis

In brief, 4μm FFPE TMAs sections were deparaffinized in xylene and then rehydrated in 100%, 90%, 70%
alcohol successively. Antigen unmasking was performed with a preheated epitope retrieval solution,
endogenous peroxidase was inactivated by incubation in 3% H2O2 for 20 min. Next, the sections were pre-
incubated with 10% normal goat serum and then incubated overnight with primary antibodies (panel 1:
CK19, S100P, SPP1, CD68, CCL18; panel 2: CK19, ID3, PDGFRβ; panel 3: EPCAM, S100P, PSCA. Detailed
information of antibodies was provided in the Supplementary Data S7). Next, sections were incubated
with the corresponding HRP-conjugated second antibodies (Vector Lab, CA) for 30 min at room
temperature. The antigenic binding sites were visualized using the OPAL dye. Opal -520 (PerkinElmer
Inc.), Opal- 570 (PerkinElmer Inc.), Opal -620 (PerkinElmer Inc.), Opal -650 (PerkinElmer Inc.), Opal -690
(PerkinElmer Inc.) were applied to each antibody, respectively.

Data were analyzed as previously described60. Images were analyzed and quantified by inForm software
(v2.3, PerkinElmer Inc.) based active machine learning algorithm with a pre-visual cutoff followed by
single-cell based mean pixel fluorescence intensity to achieve accuracy. Threshold value of each marker
was identified and displayed by both FCS Express 6 Plus v6.04.0034 (De Novo Software) with FACS alike
density plot and Inform Score that could adjust the cutoff based on the score map and original staining
images to improve the accuracy. 

Statistical analysis

Statistical analysis was performed with the R (v3.6.1), SPSS (v22, IBM, Armonk, NY) and Prism 6.0
(SanDiego, CA) softwares. Comparisons were performed using   test and unpaired two-sided Wilcoxon
rank-sum test unless specified. The cumulative survival time was estimated by Kaplan–Meier estimator
with log-rank test.
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Figure 1

ScRNA-seq profiling of 14 iCCAs. a Schematic representation of the experimental strategy. b Heatmap
showing the expression of marker genes in the indicated cell types. c Chromosomal landscape of inferred
large-scale CNVs. The P18 tumor is shown with individual cells (rows) and chromosomal positions
(columns). Amplifications (red) or deletions (blue) were inferred by averaging expression over 100-gene
stretches on the respective chromosomes. d Epithelial score of malignant and non-malignant cells.
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Boxplots represent medians and quartiles; violin plots represent overall distribution of the data. e t-SNE
plot of malignant and nonmalignant cells from 14 iCCAs. f Boxplot showing the fraction of non-
malignant cells in peri-tumor and tumor. **P < 0.01.

Figure 2

iCCA can be classified into two subtypes according to the expression of S100P and SPP1. a t-SNE plot
showing expression level of S100P in malignant cells. b Proportion of positive cells with gene expression
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in S100P+ (x-axis) and S100P- cells (y-axis). c t-SNE plot showing expression level of SPP1 in malignant
cells. d Representative images of immunohistochemical expression of S100P and SPP1 in iCCAs from
TMA cohort. Patient 1: S100P+SPP1-, Patient 2: S100P-SPP1+. Scale bar, 100μm. e Kaplan-Meier plot of
the S100P+SPP1- and S100P-SPP1+ based on TMA data. f The scatter diagrams showing the
differences in CA19-9, CEA, Ki67, and tumor size between the two groups (Wilcox test). g Scatterplot of
S100P and SPP1 expression in Jusakul et al. dataset. A Gaussian mixture model with two mixture
components was used to identify S100P+/- and SPP1+/- patients (right and top distribution curves).
Solid circles represent iCCA and open circles represent ECC. Red represents S100P+SPP1- while blue
represents S100P-SPP1+. h Graphical representation of the proportion of S100P+SPP1- and S100P-
SPP1+ in iCCA and ECC. i Kaplan-Meier plot of the S100P+SPP1- and S100P-SPP1+ based on Jusakul et
al. dataset.
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Figure 3

Different gene expression profiles between S100P+SPP1- and S100P-SPP1+ cells. a Boxplot of the
genomic heterogeneity (left) and transcriptomic heterogeneity (right) of S100P+SPP1- and S100P-SPP1+
iCCAs (Wilcox test). b Top enriched pathways for genes with specific expression in S100P+SPP1- and
S100P-SPP1+ cells. c Network representation of selected differentially expressed transcription factors
between S100P+SPP1- and S100P-SPP1+ cells, as analyzed by SCENIC. Transcription factors in
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S100P+SPP1- are shown in red; transcription factors in S100P-SPP1+ are shown in blue. Bar graph
showing the difference score for the selected set of differentially expressed transcription factors in
S100P+SPP1- (red) and S100P-SPP1+ (blue). d Scatter plot showing the correlation of CREB3L1
expression (x-axis) with S100P expression (y-axis). Correlation is evaluated by the Spearman correlation
coefficient. e The relative luciferase activity in HEK-293T cells following co-transfection with plasmid
containing S100P promoter and increasing doses of the CREB3L1 expression vector (Student’s t test). f, g
Representative images of the Transwell invasion assay f and a statistical histogram g (Student’s t test). h
Heatmap displaying expression levels of differentially expressed genes in Si-CREB3L1 versus Si-Ctl in
HuCCT1 cells. i Top enriched pathways for down-regulated genes in Si-CREB3L1 HuCCT1 cells. **P <
0.01.
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Figure 4

Two different subsets of macrophages infiltrated in iCCAphl and iCCApps. a The t-SNE plot showing the
subtypes of myeloid cells derived from iCCA peri-tumor and tumor. b Heatmap showing the expression of
marker genes in each subtype of myeloid cells. c t-SNE plot of myeloid cells from S100P+SPP1- (red
dots) and S100P-SPP1+ (blue dots). d Bar plot showing the proportion of macrophage subsets from
S100P+SPP1- and S100P-SPP1+. e, f Scatterplots showing pro-/anti-inflammatory scores e and M1/M2
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scores f for two macrophage subsets (Wilcoxon test). g, h Representative mIHC images (left) and
statistical graphs (right) to show the distribution of CD68+SPP1+CCL18- and CD68+SPP1-CCL18+
macrophages in S100P+SPP1- g and S100P-SPP1+ h, respectively: CK19 (green), S100P (red), SPP1
(purple), CD68 (white), CCL18 (yellow), and DAPI (blue). White arrows (CD68+SPP1+CCL18-), yellow
arrows (CD68+SPP1-CCL18+). Wilcox test, Scale bar, 50μm. **P < 0.01.

Figure 5
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Tumor cells at different status of differentiation exist in S100P-SPP1+ iCCAs. a t-SNE plot showing
expression levels of ALB and ID3 in 7 S100P-SPP1+ iCCAs. b Heatmap showing expression levels of
differentially expressed genes (rows) between ALB+ and ALB- S100P-SPP1+ tumor cells (columns). c
Trajectory of tumor cells from P09 and P10 separately in a two-dimensional state-space defined by
Monocle. d Differentially expressed genes along the pseudo-time were clustered hierarchically into two
profiles. The representative gene functions and pathways were shown. e Heatmap showing expression of
representative genes. Color key from blue to red indicates relative expression levels from low to high. f
Heatmap of ALB+ and ALB- specific genes (rows) and hierarchical clustering result in 34 S100P-SPP1+
iCCA (columns) from Jusakul et al. dataset. g Correlation between expression of ID3 and expression of
ALB and MKI67. Blue line represents the linear regression curve. Correlation is evaluated by the Spearman
correlation coefficient.



Page 30/32

Figure 6

Prognostic significance of CK19+ID3+ tumor cells in S100P-SPP1+ iCCAs. a Representative
immunostaining of ID3 in the indicated S100P-SPP1+ iCCAs. ID3+ tumor cells were predominantly
located in the intratumor region. Scale bar, 400μm (up) and 100μm (down). b Correlation between ID3
expression and CAFs. iCCA from Jusakul et al. were ordered by their ID3 expression level as shown by
bar-plot (top). Heatmap (middle) showing expression levels of selected CAF markers (rows) each tumor
(columns). Colored bar (bottom) showing the CAFs score estimated by MCP-Counter of each tumor. c
Representative mIHC images showing the distribution of CK19+ID3+, CK19+ID3- tumor cells and CK19-
PDGFRβ+ cells in S100P-SPP1+ iCCA from TMA cohort: CK19 (green), ID3 (yellow), PDGFRβ (red), and
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DAPI (blue). White arrows (CK19+ID3+), yellow arrows (CK19+ID3-). red arrows (CK19-PDGFRβ+) Scale
bar, 200μm. d Correlation analysis between the proportion of CK19+ID3+ (up) and CK19+ID3- (down)
within CK19+ tumor cells and the proportion of CK19-PDGFRβ+ cells within CK19- cells per core,
respectively. (Spearman correlation coefficient). e Kaplan-Meier analysis of overall survival (OS) in
S100P-SPP1+ iCCA tumors according to the proportion of CK19+ID3+ within CK19+ tumor cells (up) and
CK19-PDGFRβ+ within CK19- cells (down) in the TMA cohort.

Figure 7

Schematics for the classification of iCCA. Two major subtypes of iCCA were identified in this study.
Morphological features, cellular component, immune infiltration and prognosis varied significantly
between these two iCCA subtypes.
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