Theoretical studies on [2+2] cycloaddition step involved in the Enantioselective Reduction of ketones with borane catalyzed by a B-MethoxyOxazaborolidine Catalyst Derived from Pinene has been performed by means of the Density Functional Theory method (DFT) at MPWB1K /6-31G (d,p). The formation of the M5a(S) complexes via transition state TSa(S) was the more favorable pathway among other [2+2]cycloaddition competing steps. The explanation of the formation of O-B and N-B through two-stage one-step mechanism was allowed by means of the electron localization function (ELF) topological analysis. NCI and QTAIM analysis of the two computed transition states TSa(S) and TSa(R) indicate that the difference between both in term of stability comes mainly from the orientation of the methanediyl group inside the pinene skeleton, which implies that CH-H…O interaction found at TSa(S) is the great factor that makes it more stable than TSa(R).