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Abstract
Background

Despite its functional importance in various fundamental bioprocesses, studies of N6-methyladenosine
(m6A) in the pulmonary arterial hypertension (PAH) are lacking. Here we studied the potential relevance of
m6A RNA methylation and immune response in PAH development.

Methods

We constructed a monocrotaline (MCT) induced PAH rat model and performed Methylated RNA
immunoprecipitation sequencing (MeRIP-Seq). The 18 idiopathic PAH (IPAH) microarray data obtained
from the GEO database was used to construct co-expression networks by weighted gene co-expression
network analysis (WGCNA). CIBERSORT was used to investigate the effect of m6A methylation on
immune cell infiltration during PAH.

Results

A differential pattern of m6A abundance, mainly up-methylation, was observed in the lung tissues of rats
with MCT induced PAH. By WGCNA, multi-list pathway enrichment analysis and protein-protein
interaction (PPI) analysis, we found that m6A methylation modification may play important roles in
mediating immune response during PAH. CYBERSORT algorithm indicated that the m6A methylation can
drive monocyte to form M1 macrophage, which may be mediated by CCR5 and CXCL9.

Conclusion

Collectively, m6A landscape is altered in PAH. We summarize newly discovered m6A in controlling
immune response, which caused activation of M1 macrophage during PAH. It’s provided a novel insight
into the therapeutic mechanisms of PAH.

1. Background
Pulmonary arterial hypertension (PAH) is a condition characterized by increased pulmonary arterial
pressure and vascular remodeling of the small pulmonary arteries. PAH develops either as an idiopathic
condition or in association with various underlying diseases such as collagen vascular disease, portal
hypertension, or HIV infection(1, 2). The incidence of PAH ranges from 2.0 to 7.6 cases per million adults
per year, and its prevalence varies from 11 to 26 cases per million adults. The incidence of PAH is
fourfold higher in women than in men, but survival is paradoxically worse in men with PAH(3, 4). Despite
striking progress in the development of diagnosis and therapeutics in the last three decades, PAH remains
relatively incurable and the limited efficacy of current treatment options possibly results from an
incomplete understanding of the pathophysiology of this cardiopulmonary disorder(5).
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Epigenetic modifications,such as DNA methylation, histone modifications, and noncoding RNAs, may
play important roles in regulating the pathogenesis of PAH(1). As a bridge to pass the genetic information
from DNA to proteins RNA, RNA is an important part of the central dogma, and its various chemical
modifications are involved in the regulation of various biological processes(6). N6-methyladenosine
(m6A) of RNA transcripts is the most prevalent modification found in many classes of RNA(7, 8). The
abundance of m6A on RNA is determined by the dynamic interplay between its methyltransferases
(“writers”, such as METTL3-METTL14 complex(9)), and demethylases (“erasers”, including FTO(10) and
ALKBH5(11)). The binding proteins (“readers”, such as YTH domain–containing proteins(12, 13)) then
mediate the effect of m6A modifications on RNA processing or metabolisms, including alternative
splicing(14, 15), export(16, 17), stability(18, 19), and translation(20, 21).

Recent studies have suggested the involvement of the immune response during PAH. Inflammatory cell
infiltrations can be observed around the pulmonary artery, such as macrophages dendritic cells, mast
cells, T lymphocytes, and B lymphocytes(22). These immune cells play an important role in the vascular
remodeling characteristic of PAH and might be important targets for PAH therapy. Nevertheless, how the
immune system is activated and regulated remains poorly understood. m6A RNA modifications might be
a novel immunoregulatory factor(23).

Weighted gene co-expression network analysis (WGCNA) is a system biology algorithm for describing the
correlation patterns among genes across samples(24). WGCNA can identify and cluster highly correlated
genes into the same module. Furthermore, this method can also be used for relating modules to external
clinical traits. By far, WGCNA has been validated as a valuable method to identify underlying
mechanisms, potential biomarkers, or therapeutic targets in different types of diseases.

In our study, we first constructed a PAH rat model and conducted the m6A methylation sequencing
analysis. We then analyzed 18 idiopathic PAH (IPAH) patients microarray data from the GEO database to
identify m6A methylation correlated modules by using the method of WGCNA. Afterward, we applied the
CIBERSORT algorithm to investigate the effect of m6A methylation on immune cell infiltration during PAH.
Findings from our study may contribute to novel regulators and therapeutic targets in PAH from an
epigenomic perspective.

2. Material And Methods
2.1.1 Establishment and verification of rat model of PAH induced by MCT
The study was approved by the Institutional Animal Care and Use Committee of the Second Xiangya
Hospital of Central South University and complied with the standards in the Guide for the Care and Use of
Laboratory Animals. Sprague-Dawley rats (specific pathogen-free (SPF), male, 180–200 g, 6 weeks old, n 
= 5) were obtained from Changsha Tianqin Biotechnology Company (China). The rats were randomized
to the control (n = 2) and PAH groups (n = 3). The rats in the PAH group were intraperitoneally injected
with monocrotaline (MCT) (60 mg·kg− 1, Sigma, C2401), while the rats in the control group were injected
intraperitoneally with the same volume of saline. All rats were housed on a 12 h light/dark cycle with free
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access to food and water. After 4 weeks of feeding, rats were anesthetized with 1% sodium pentobarbital
(130 mg·kg− 1) for echocardiography and right heart catheterization. Echocardiography was used to
record the tricuspid regurgitation velocity, tricuspid annulus contraction rate, tricuspid annular plane
systolic excursion (TAPSE) and pulmonary artery blood flow acceleration time (PAAT). After
echocardiographic examination, We performed a right heart catheter to measure pulmonary artery
pressure.

Rats were sacrificed by cervical dislocation after deep anesthesia. Then, heart tissues were removed and
segregated. The ratio of right ventricle to left ventricle plus ventricular septum [RV/ (LV + S)] was used as
an index of right ventricular hypertrophy. Lung tissues were excised and immediately frozen at liquid
nitrogen or fixed in 4% buffered paraformaldehyde solution.
2.1.2 Histological analysis
The lung tissues obtained in each group were placed in 4% buffered paraformaldehyde solution
overnight, and then dehydrated and embedded in paraffin. Then, all lung tissues were sliced into 5 µm-
thick sections, fixed on a glass slide and baked dry. The staining procedures were performed according to
the instructions. Briefly, the sections were soaked in xylene, ethanol in gradient concentration and
hematoxylin, respectively, and sealed with resin. After dryness, pulmonary vascular morphology was
observed and photographed under optical microscope. Last, the ratio of pulmonary small artery wall
thickness and muscularization was calculated.
2.1.3 RNA preparation
For each group, four biological replicates were selected, of which every two were combined into one.
Then, total RNA of tissue was extracted using TRIzol reagent (Invitrogen Corporation, CA, USA) following
the manufacturer’s instructions. The Ribo-Zero rRNA Removal Kit (Illumina, Inc., CA, USA) was used to
reduce the ribosomal RNA content of total RNAs. Then, the RNA was chemically fragmented into
fragments of about 100 nucleotides in length using fragmentation buffer (Illumina, Inc.).
2.1.4 Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and library construction
MeRIP-Seq was performed following a previously reported procedure with slight modifications. Briefly,
m6A RNA immunoprecipitation was performed with the GenSeqTM m6A RNA IP Kit (GenSeq Inc., China)
by following the manufacturer’s instructions. Both the input sample without immunoprecipitation and the
m6A IP samples were used for RNA-seq library generation with NEBNext® Ultra II Directional RNA Library
Prep Kit (New England Biolabs, Inc., USA). The library quality was evaluated with BioAnalyzer 2100
system (Agilent Technologies, Inc., USA). Library sequencing was performed on an illumina Hiseq
instrument with 150 bp paired-end reads.

2.2 Microarray data collection and processing
Materials of GSE15197 were downloaded from the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) database. The dataset contains lung tissue transcriptomic profiles
from 18 IPAH patients. The median expression values among all multiple probe IDs were selected to
represent the corresponding gene symbol, leading to the identification of 18612 unique genes across 18
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samples. Human gene annotation file (GRCh38 release 99 gene transfer format, ensembl.org/index.html)
was applied to annotate genes and the 15934 protein-coding genes were selected for further analysis.

2.3 Estimation of m6A methylation score and
implementation of weight correlation network analysis
(WGCNA)
We constructed gene signatures of m6A writer (METTL3, METTL14, METTL16, WTAP, KIAA1429, ZC3H13,
RBM15/RBM15B), and m6A eraser (ALKBH5, FTO) as suggested by Yang et.al (25). We then computed
the Gene Set Variation Analysis (GSVA) enrichment score of m6A writer and m6A eraser across the 18
samples using the ‘GSVA’ package(26) in R software. The estimated m6A methylation score was
calculated by substrating m6A eraser score from m6A writer score. WGCNA was accomplished with the R
package ‘WGCNA’(24). According to the standard variation value of gene, we ranked them from largest to
smallest and only selected the top 2000 as input for WGCNA. A power of β value was introduced so that it
could transform the similarity matrix into an adjacency matrix. In this study, β = 5 was used as a soft
threshold parameter to ensure a scale-free network. The Dynamic Tree Cut method was applied to
generate modules with the following major parameters to avoid the generation of too many modules:
deepSplit of 2, minModuleSize of 30, and the height cut-off was set as 0.25 (modules were merged if their
similarity was > 0.75). Module eigengenes (MEs) referred to the first principal component of all gene
expression levels in the module, and therefore, it was reasonable to consider that MEs represented all
genes within a specific module. According to Pearson's correlation tests, we further identified the
association between MEs and m6A methylation score. Within the most relavant module, those positively
correlative with m6A methylation score were made subjected to further analysis.

2.4 Pathway enrichment analysis
Metascape (https://Metascape.org/) is a web-based portal designed to provide a comprehensive gene list
annotation and analysis resource for biologists(27). To gain insights into biological roles of m6A
methylation correlated genes identified from WGCNA and upmethylated genes identified from m6A-seq,
we conducted pathway enrichment analysis in Metascape tools using Gene Ontology biological process
(GO BP), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome(27). By inputting the lists of
m6A methylation correlated genes and upmethylated genes simultaneously, Metascape can identify
commonly-enriched and selectively-enriched pathways from two levels, which enable a comprehensive
assessment of the molecular features of the biological process. For Multi-list Enrichment Analysis,
Metascape first applies enrichment analysis to each gene list individually and identifies terms that are
statistically enriched. All gene lists are then combined into one new list, and enrichment analysis is
conducted on this combined list. Distinguishing it from many existing portals, Metascape automatically
clusters enriched terms into non-redundant groups. Briefly, pairwise similarities between any two enriched
terms are computed based on a Kappa-test score. The similarity matrix is then hierarchically clustered
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and a 0.3 similarity threshold is applied to trim the resultant tree into separate clusters. We selected the
top 20 clusters and chose the most significant (lowest P-value) term within each of them to represent it.

2.5 Protein-protein interaction (PPI) network construction of
m6A methylation correlated genes
To find out the functional associations among the m6A methylation correlated genes, we used the online
Search Tool for the Retrieval of Interacting Genes (STRING database; http://string-db.org/) to construct a
PPI network based on uniquely comprehensive coverage and predictive function of genome-wide
data(28). A stringent threshold of a combined score of > 0.7 was used to construct the PPI network and
Cytoscape software was used to visualize and analyze the biological networks. Plugin Molecular
Complex Detection (MCODE) was applied to identify significant clusters with strong protein-protein
linkages with default parameters.

2.6 Estimation of immunocyte infiltration
The CIBERSORT algorithm (https://cibersort.stanford.edu/) was applied to estimate the abundance of
infiltrated immune cell subtypes in the lung tissues of 18 samples, based on a deconvolution algorithm in
the R software(29). The perm parameter was set as 1000. The 18 samples were grouped to ‘High m6A
methylation’ and ‘Low m6A methylation’ by the median value of their m6A methylation score.
Comparisons between two groups were tested by the Wilcox rank test. P-value < 0.05 was considered
significant.

2.7 Statistical analysis
Briefly, Paired-end reads were harvested from Illumina HiSeq 4000 sequencer, and were quality controlled
by Q30. After 3’ adaptor-trimming and low quality reads removing by cutadapt software (v1.9.3). First,
clean reads of all libraries were aligned to the reference genome (UCSC RN5) by Hisat2 software (v2.0.4).
Methylated sites on RNAs (peaks) were identified by MACS software. Differentially methylated sites with
a fold change cutoff of ≥ 2 and false discovery rate cutoff of ≤ 0.0001 were identified with the diffReps
differential analysis package. These peaks identified by both softwares overlapping with exons of mRNA
were figured out and choosed by home-made scripts.

3. Results

3.1 Construction of rats PAH model
The pulmonary artery velocity diagram appeared as a dagger in PAH group, and PAAT consumedly
shortened compared to control group (20.33 ± 2.62 vs 29.50 ± 0.50 ms, p < 0.0001). Then we observed
ventricular septum significantly shift to the left, simultaneously, right atrium and right ventricle enlarged
compared to control group (4.97 ± 0.30 vs 3.42 ± 0.09 mm, p < 0.0001). The range of TAPSE was greatly
reduced in PAH (1.33 ± 0.05 vs 1.58 ± 0.04 mm, p < 0.0001) (Fig. 1.A). Four weeks after the MCT injection,
the right ventricular systolic pressure (RVSP) of the PAH group was elevated to 49.87 ± 1.17 mmHg
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compared with 24.84 ± 0.34 mmHg in the control (p < 0.001), and at the same time, we found that RV/
(LV + S) increased in PAH group (0.51 ± 0.03 vs 0.25 ± 0.04 g, p < 0.0001) (Fig. 1.B). The results of HE
staining showed that the pulmonary artery smooth muscle was significantly thickened in PAH group
compared with control group (71.13 ± 4.02% vs. 17.95 ± 1.35%, p < 0.001) (Fig. 1.C). These results indicate
that the rat model of PAH has been successfully established.

[Insert Fig. 1]

3.2 Methylations profile of rat lung tissue
MeRIP-Seq analysis identified 922 non-overlapping m6A sites in control group and 9059 non-overlapping
m6A sites in PAH group, while 18655 m6A sites were overlapped in two groups (Fig. 2.A). Next,
differentially methylated m6A sites (DMMSs) were identified by diffReps with the following default
screening criteria: p-value ≤ 0.0001 and fold change ≥ 2 between the groups. We selected 3298 DMMSs
in the two groups. A total of 777 m6A sites exhibited up-methylation, and 2521 exhibited down-
methylation. (Fig. 2.B). These results demonstrated an increased m6A modification process during PAH
and the 2521 up-methylated m6A sites representing 1261 unique genes were selected for further analysis.

[Insert Fig. 2]

3.3 Construction of weighted gene co-expression network
and identification of key modules
The top 2000 genes in 18 samples of PAH lung tissue were used to construct the co‑expression network.
β values of 5 were confirmed to obtain the approximate scale‑free topology with a scale‑free topology fit
index > 0.85 and the lowest power (Fig. 3.A). Next, the method of dynamic tree cutting was employed to
produce co-expression modules, which led to the identification of 11 modules (Fig. 3.B). We then
calculated and plotted the relation of each module with the m6A methylation score. Among these
modules, the yellow module depicting the highest correlation (module-trait weighted correlation = 0.46, p 
= 0.055) with m6A methylation score (Figrue 4). Within the yellow module, a total of 87 genes were
positively correlative with m6A methylation score and were made subjected to further analysis.

[Insert Fig. 3 and Fig. 4]

3.4 Multi-list pathway enrichment analysis and visualization
We conducted a multi-list pathway enrichment analysis in Metascape by inputting the list of 87 m6A
methylation correlated genes identified from WGCNA and 1261 m6A upmethylated genes identified from
MeRIP-SEq. As Fig. 5 shown, both m6A correlated genes and upmethylated genes are involved in immune
response-related pathways such as ‘cytokine-mediated signaling pathway’, ‘leukocyte migration’, and
‘activation of immune response’. Besides, the upmethylated genes also participate in some biological
processes already known to be associate with PAH such as ‘ECM organization’ and ‘supermolecular fiber
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organization’. In sum, the results demonstrated that m6A methylation may play an important role in PAH
pathogenesis, especially in mediating immune response during PAH.

[Insert Fig. 5]

3.5 Identification of hub genes in the yellow module through
PPI analysis
To identifiy hub genes, we submitted the gene list of 87 m6A correlated genes in the yellow module to
STRING for protein-protein interaction analysis, and the cut-off confidence interval was set to 0.7. After
MCODE algorithm, the most significant cluster containing 10 hub genes was identified and enrichment
analysis shows that genes in this cluster were mainly involved in ‘Chemokine receptors bind chemokines’
pathway (Fig. 6). By comparing the results of MeRIP-Seq, CCR5 and CXCL9 were found to be significantly
upmethylated with a fold change of 2.55 and 6.93, respectively.

[Insert Fig. 6]

3.6 Correlation analysis between m6A methylation and
immunocyte proportion
We have concluded that m6A methylation can mediate immune response during PAH process. We then
aimed to investigate how it regulates immune cell infiltration. After the Wilcox rank test, monocyte and
M1 macrophage were detected differentially infiltrated between the high methylation group and low
methylation group (p = 0.03, and p = 0.001, respectively) (Fig. 7). Figure 8 displayed the scale histogram
of immune cell fraction among 18 samples. These results indicated that during PAH, the m6A methylation
can drive monocyte to form M1 macrophage, which plays vital roles in the immune response.

[Insert Fig. 7 and Fig. 8]

4. Discussion
m6A is the most prevalent modification in the mRNA of many eukaryotic species. There is growing
evidence that m6A dysregulation has a profound impact on the pathogenesis of various human
diseases(30–33). Su et al. firstly identified the transcriptome-wide map of m6A circRNAs in hypoxic PAH
rat model and confirmed that m6A methylation can affect the circRNA-miRNA-mRNA network(34).
However, the mechanism of mRNA m6A methylation modification to regulate IPAH has not been reported.
In this study, we took advantage of MeRIP-seq to map the transcriptomic landscape of PAH rat lung
tissue and thus quantitatively compared transcriptome-wide changes between PAH and control groups.
The results found that the m6A level was significantly up-regulated in MCT induced PAH lung tissue,
which highlighted the role of m6A methylation in the pathogenesis of PAH.
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WGCNA is a method for constructing gene co-expression networks based on gene expression data. We
applied this method to identified key modules associated with the estimated m6A methylation score.
Through multi-list enrichment analysis, the 87 m6A methylation correlated genes identified from WGCNA
and 1261 m6A up-methylated genes identified from MeRIP-seq analysis are both significantly involved in
immune response-related pathways such as ‘cytokine-mediated signaling pathway’, ‘leukocyte migration’,
and ‘activation of immune response’. These results highly suggested the immunoregulatory role of m6A
methylation during PAH.

Through PPI analysis of the 87 m6A methylation correlated genes, a cluster containing 10 hub genes
were identified, including CXCL9, CXCL10, CXCR3, PMCH, CXCL11, CXCR6, CCR7, CCL5, CCR5, and
HCAR3. Among them, CCR5 and CXCL9 were significantly up-methylated. CCR5 is activated on
stimulation by the CCR5 ligands CCL3 (macrophage inflammatory protein-1α), CCL4 (macrophage
inflammatory protein-1β), and CCL5 (RANTES) and is strongly expressed on the principal cell types
implicated in PAH progression, including endothelial cells, SMCs, T cells, and macrophages(35–38).
Amsellem et al. studied the effect of CCR5 receptor antagonists on PASMC and inflammatory response in
PAH mouse model and found that the activation of the CCL5-CCR5 axis directly leads to PASMC
proliferation and macrophage recruitment(39). CXCL9, a chemokine, is a T-cell chemoattractant that is
induced by IFN-γ. CXCL9 is closely related to two other CXC chemokines called CXCL10 and CXCL11,
whose genes are located near the gene for CXCL9 on human chromosome 4(40, 41). CXCL9, CXCL10,
and CXCL11 are commonly produced by local cells in inflammatory lesions and can attract Th1 cells(42).
A high level of CXCL9 in peripheral liquids can be considered as a marker of host immune response,
especially of that involving Th1 cells(43, 44).

By applying the CYBERSORT algorithm, we found that the m6A methylation can drive monocyte to form
M1 macrophage. Circulating monocytes migrate into the majority of tissues in the body, where they
differentiate into functionally distinct mature macrophages(45, 46). Macrophages undergo classical M1
activation induced by IFN-γ, which mediates Th1 cell-type activation of macrophages(47). The activated
macrophage then causes vasoconstriction, increases vascular permeability, and induce PASMCs
proliferation(48). Our research sheld light on the regulatory role of m6A methylation in macrophage
activation during PAH. As we discussed above, The hub 10 m6A methylation correlated genes,especially
CCR5 and CXCL9༌may mediate m6A methylation caused M1 macrophage activation.

5. Conclusions
In conclusion, our research revealed that m6A methylation modification may play important roles in
mediating immune response during PAH. It also caused activation of M1macrophage, which may be
mediated by CCR5 and CXCL9. These results will help us to better understand the mechanisms of PAH,
and provide candidate therapeutic targets.

6. Abbreviations
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DMMSs
differentially methylated m6A sites
m6A
N6-methyladenosine
MCT
monocrotaline
MeRIP-Seq
Methylated RNA immunoprecipitation sequencing
PAH
pulmonary arterial hypertension
PAAT
pulmonary artery blood flow acceleration time
PPI
protein-protein interaction
RV/ (LV + S)
right ventricle to left ventricle plus ventricular septum
RVSP
right ventricular systolic pressure
TAPSE
tricuspid annular plane systolic excursion
WGCNA
weighted gene co-expression network analysis
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Figure 1

Construction of rats PAH model. (A) Echocardiography data, (B) Hemodynamic data, (C) Pulmonary
artery HE staining images of the control group and PAH group were obtained under microscopy. *
represents statistical significance.
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Figure 2

Methylations profile of rat lung tissue. (A) The differential m6A methylation and the expression of mRNA
methylation statistical volcano map. Green represents m6A modification and the expression of mRNA
methylation is decreased, red is the opposite. (B) Differential m6A enrichment peaks and related genes
statistical graph.
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Figure 3

Methylations profile of rat lung tissue. (A) The differential m6A methylation and the expression of mRNA
methylation statistical volcano map. Green represents m6A modification and the expression of mRNA
methylation is decreased, red is the opposite. (B) Differential m6A enrichment peaks and related genes
statistical graph.
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Figure 4

Heatmap of the correlation between m6A methylation score and module eigengenes. Each row
corresponds to a module eigengene, and each column corresponds to a trait. Each cell contains the
corresponding correlation (first line) and p-value (second line). The table is color-coded by correlation
according to the color legend.
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Figure 5

Multi-list enrichment pathway analysis of m6A methylation correlated genes and upmethylated genes.
The diagram depicts the top 20 clusters with the smallest p-value.
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Figure 6

Key cluster of 87 methylation correlated genes identified from PPI analysis. Yellow represents
upmethylated genes.
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Figure 7

Immune cells composition between high methylation and low methylation group. * represents statistical
significance. Black dots represent outliers.
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Figure 8

Scale histogram of immune cell fraction among 18 IPAH samples.
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