1. Goldhirsch, A., et al., Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Annals of oncology : official journal of the European Society for Medical Oncology, 2013. 24(9): p. 2206-2223.
2. Kurozumi, S., et al., Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. Journal of human genetics, 2017. 62(1): p. 15-24.
3. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-8.
4. Izumiya, M., et al., Systematic exploration of cancer-associated microRNA through functional screening assays. Cancer Science, 2011. 102(9): p. 1615-1621.
5. Adi Harel, S., et al., Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ, 2015. 22(8): p. 1328-40.
6. Jiang, H., et al., MicroRNA‑34a inhibits esophageal squamous cell carcinoma progression by targeting E2F5. J BUON, 2019. 24(6): p. 2514-2522.
7. Lima, C.R., C.C. Gomes, and M.F. Santos, Role of microRNAs in endocrine cancer metastasis. Molecular and Cellular Endocrinology, 2017. 456(C): p. 62-75.
8. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16): p. 7065-70.
9. Ohzawa, H., et al., Usefulness of miRNA profiles for predicting pathological responses to neoadjuvant chemotherapy in patients with human epidermal growth factor receptor 2-positive breast cancer. Oncology letters, 2017. 13(3): p. 1731-1740.
10. Blenkiron, C., et al., MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol, 2007. 8(10): p. R214.
11. Campos-Parra, A.D., et al., Micro-RNAs as Potential Predictors of Response to Breast Cancer Systemic Therapy: Future Clinical Implications. Int J Mol Sci, 2017. 18(6).
12. Takahashi, R.U., H. Miyazaki, and T. Ochiya, The Roles of MicroRNAs in Breast Cancer. Cancers (Basel), 2015. 7(2): p. 598-616.
13. Kolacinska, A., et al., Association of microRNAs and pathologic response to preoperative chemotherapy in triple negative breast cancer: preliminary report. Molecular biology reports, 2014. 41(5): p. 2851-2857.
14. Negrini, M., M.S. Nicoloso, and G.A. Calin, MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol, 2009. 21(3): p. 470-9.
15. Kim, N.H., et al., A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol, 2011. 195(3): p. 417-33.
16. Zhang, H., et al., The prognostic value of miR-34a expression in completely resected gastric cancer: tumor recurrence and overall survival. International Journal of Clinical and Experimental Medicine, 2015. 8(2): p. 2635-2641.
17. Kastl, L., I. Brown, and A.C. Schofield, miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat, 2012. 131(2): p. 445-54.
18. Peurala, H., et al., MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer. PLoS One, 2011. 6(11): p. e26122.
19. Eichelser, C., et al., Deregulated Serum Concentrations of Circulating Cell-Free MicroRNAs miR-17, miR-34a, miR-155, and miR-373 in Human Breast Cancer Development and Progression. Clinical Chemistry, 2013. 59(10): p. 1489-1496.
20. Zhou, Z., et al. Role of MicroRNA-124 as a Prognostic Factor in Multiple Neoplasms: A Meta-Analysis. Disease markers, 2019. 2019, 1654780 DOI: 10.1155/2019/1654780.
21. Chen, Z., et al., miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget, 2015. 6(35): p. 38139-38150.
22. Huang, T.T., et al., SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene, 2018. 37(9): p. 1159-1174.
23. Yang, Q.H., et al., Inhibition of LHX2 by miR-124 suppresses cellular migration and invasion in non-small cell lung cancer. Oncology Letters, 2017. 14(3): p. 3429-3436.
24. Zhang, S., et al., CircRNA_0000502 promotes hepatocellular carcinoma metastasis and inhibits apoptosis through targeting microRNA-124. J BUON, 2019. 24(6): p. 2402-2410.
25. Zhao, Y., et al., MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget, 2017. 8(15): p. 25005-25020.
26. Yuan, L., et al., MiR-124 inhibits invasion and induces apoptosis of ovarian cancer cells by targeting programmed cell death 6. Oncol Lett, 2017. 14(6): p. 7311-7317.
27. Dong, L.L., et al., Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagn Pathol, 2015. 10: p. 45.
28. Zhang, L., et al., MicroRNA-124-3p directly targets PDCD6 to inhibit metastasis in breast cancer. Oncol Lett, 2018. 15(1): p. 984-990.
29. Han, Z.B., et al., MicroRNA-124 Suppresses Breast Cancer Cell Growth and Motility by Targeting CD151. Cellular Physiology and Biochemistry, 2013. 31(6): p. 823-832.
30. Zhang, H., et al., MicroRNA-137 is negatively associated with clinical outcome and regulates tumor development through EZH2 in cervical cancer. J Cell Biochem, 2018. 119(1): p. 938-947.
31. Gu, Q., et al., Clinical Significance of MiR-137 Expression in Patients with Gastric Cancer After Radical Gastrectomy. Plos One, 2015. 10(11).
32. Zhang, H. and H. Li, miR-137 inhibits renal cell carcinoma growth in vitro and in vivo. Oncology Letters, 2016. 12(1): p. 715-720.
33. Wang, M., et al., MiR-137 suppresses tumor growth and metastasis in clear cell renal cell carcinoma. Pharmacological reports : PR, 2018. 70(5): p. 963-971.
34. Li, N., Low Expression of Mir-137 Predicts Poor Prognosis in Cutaneous Melanoma Patients. Medical Science Monitor, 2016. 22: p. 140-144.
35. Peres, J., et al., The tumour suppressor, miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor. Cancer Lett, 2017. 405: p. 111-119.
36. Chen, Q., et al., miR-137 Is Frequently Down-Regulated in Gastric Cancer and Is a Negative Regulator of Cdc42. Digestive Diseases and Sciences, 2011. 56(7): p. 2009-2016.
37. Cheng, Y., et al., miR-137 effects on gastric carcinogenesis are mediated by targeting Cox-2-activated PI3K/AKT signaling pathway. Febs Letters, 2014. 588(17): p. 3274-3281.
38. Jin, W., et al., Epigenetic silencing of miR137 in gastric cancer. International Journal of Clinical and Experimental Medicine, 2016. 9(9): p. 17926-17932.
39. Steponaitiene, R., et al., Epigenetic Silencing of miR-137 is a Frequent Event in Gastric Carcinogenesis. Molecular Carcinogenesis, 2016. 55(4): p. 376-386.
40. Balaguer, F., et al., Epigenetic Silencing of miR-137 Is an Early Event in Colorectal Carcinogenesis. Cancer Research, 2010. 70(16): p. 6609-6618.
41. Bi, W.-P., M. Xia, and X.-J. Wang, miR-137 suppresses proliferation, migration and invasion of colon cancer cell lines by targeting TCF4. Oncology Letters, 2018. 15(6): p. 8744-8748.
42. Chen, T., et al., MicroRNA-137 suppresses the proliferation, migration and invasion of cholangiocarcinoma cells by targeting WNT2B. International Journal of Molecular Medicine, 2020. 45(3): p. 886-896.
43. Zhang, L., et al., MicroRNA-137 suppresses tumor growth in epithelial ovarian cancer in vitro and in vivo. Molecular Medicine Reports, 2015. 12(2): p. 3107-3114.
44. Zhang, W., et al., miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation. Laboratory Investigation, 2018. 98(11): p. 1397-1407.
45. Zhang, B., et al., microRNA-137 functions as a tumor suppressor in human non-small cell lung cancer by targeting SLC22A18. International Journal of Biological Macromolecules, 2015. 74: p. 111-118.
46. Min, L., et al., Aberrant microRNA-137 promoter methylation is associated with lymph node metastasis and poor clinical outcomes in non-small cell lung cancer. Oncology Letters, 2018. 15(5): p. 7744-7750.
47. Chang, X., et al., miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A. Biochemical and Biophysical Research Communications, 2016. 475(3): p. 251-256.
48. Qi, J., et al., Mechanism of miR-137 regulating migration and invasion of melanoma cells by targeting PIK3R3 gene. Journal of Cellular Biochemistry, 2019. 120(5): p. 8393-8400.
49. Chae, Y.S., et al., Abstract P6-05-10: MicroRNA-137 inhibits cancer progression by targeting DEL-1 in triple negative breast cancer cells, MDA-MB-231. Cancer Research, 2019. 79(4 Supplement): p. P6-05-10.
50. Chen, F., et al., MiR-137 Suppresses Triple-Negative Breast Cancer Stemness and Tumorigenesis by Perturbing BCL11A-DNMT1 Interaction. Cellular Physiology and Biochemistry, 2018. 47(5): p. 2147-2158.
51. Chang, T.H., et al., Upregulation of microRNA-137 expression by Slug promotes tumor invasion and metastasis of non-small cell lung cancer cells through suppression of TFAP2C. Cancer Lett, 2017. 402: p. 190-202.
52. Xiu, Y., et al., MicroRNA-137 Upregulation Increases Bladder Cancer Cell Proliferation and Invasion by Targeting PAQR3. Plos One, 2014. 9(10).
53. Ying, X., Y. Sun, and P. He, MicroRNA-137 inhibits BMP7 to enhance the epithelial-mesenchymal transition of breast cancer cells. Oncotarget, 2017. 8(11): p. 18348-18358.
54. Li, S., et al., microRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Molecular Medicine Reports, 2012. 5(4): p. 949-954.
55. Shi, S.S., et al., Exosomal miR-155-5p promotes proliferation and migration of gastric cancer cells by inhibiting TP53INP1 expression. Pathology Research and Practice, 2020. 216(6): p. 8.
56. Farsinejad, S., et al., Expression of the circulating and the tissue microRNAs after surgery, chemotherapy, and radiotherapy in mice mammary tumor. Tumour Biol, 2016. 37(10): p. 14225-14234.
57. Hou, Y., et al., Appraising MicroRNA-155 as a Noninvasive Diagnostic Biomarker for Cancer Detection: A Meta-Analysis. Medicine (Baltimore), 2016. 95(2): p. e2450.
58. Hafez, M.M., et al., MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev, 2012. 13(2): p. 591-8.
59. Kong, W., et al., Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2014. 33(6): p. 679-89.
60. Gasparini, P., et al., Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A, 2014. 111(12): p. 4536-41.
61. Voorhoeve, P.M., et al., A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006. 124(6): p. 1169-81.
62. Huang, Q., et al., The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 2008. 10(2): p. 202-10.
63. Tu, H.F., et al., Upregulation of miR-372 and -373 associates with lymph node metastasis and poor prognosis of oral carcinomas. Laryngoscope, 2015. 125(11): p. E365-70.
64. Jing, S.Y., et al., Down-expression of miR-373 predicts poor prognosis of glioma and could be a potential therapeutic target. Eur Rev Med Pharmacol Sci, 2017. 21(10): p. 2421-2425.
65. Nakata, K., et al., Micro RNA-373 is down-regulated in pancreatic cancer and inhibits cancer cell invasion. Ann Surg Oncol, 2014. 21 Suppl 4: p. S564-74.
66. Qu, Y.H., et al., [Effects of microRNA-373 on the proliferation and invasiveness of breast carcinoma and its mechanisms]. Zhonghua Yi Xue Za Zhi, 2017. 97(8): p. 603-607.
67. Ryspayeva, D., et al., Predictive factors of pathological response to neoadjuvant chemotherapy in patients with breast cancer. J BUON, 2020. 25(1): p. 168-175.
68. Landskroner-Eiger, S., I. Moneke, and W.C. Sessa, miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med, 2013. 3(2): p. a006643.
69. Feng, T., et al., Evaluation of the Role of hsa-mir-124 in Predicting Clinical Outcome in Breast Invasive Carcinoma Based on Bioinformatics Analysis. Biomed Research International, 2020. 2020.
70. Zhao, Y., et al., MiR-137 Targets Estrogen-Related Receptor Alpha and Impairs the Proliferative and Migratory Capacity of Breast Cancer Cells. PLOS ONE, 2012. 7(6): p. e39102.
71. Cheng, C., et al., mRNA expression profiles show differential regulatory effects of microRNAs between estrogen receptor-positive and estrogen receptor-negative breast cancer. Genome Biol, 2009. 10(9): p. R90.
72. Loginov, V.I., et al., Novel miRNA genes hypermethylated in breast cancer. Molecular Biology, 2016. 50(5): p. 705-709.
73. Jansson, M.D. and A.H. Lund, MicroRNA and cancer. Molecular Oncology, 2012. 6(6): p. 590-610.
74. Mattiske, S., et al., The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev, 2012. 21(8): p. 1236-43.
75. Sochor, M., et al., Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer, 2014. 14: p. 448.
76. Chen, J., et al., Predicting distant metastasis and chemoresistance using plasma miRNAs. Medical Oncology, 2014. 31(1).
77. Wang, L.Q., et al., miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Molecular Oncology, 2018. 12(11): p. 1949-1964.
78. Wang, L., et al., MicroRNA-373 Inhibits Cell Proliferation and Invasion via Targeting BRF2 in Human Non-small Cell Lung Cancer A549 Cell Line. Cancer Res Treat, 2017.
79. Wei, F., et al., Diverse functions of miR-373 in cancer. J Transl Med, 2015. 13: p. 162.
80. Swellam, M., et al., Potential diagnostic role of circulating MiRNAs in breast cancer: Implications on clinicopathological characters. Clinical Biochemistry, 2018. 56: p. 47-54.
81. Müller, V., et al., Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Res Treat, 2014. 147(1): p. 61-8.
82. Keklikoglou, I., et al., MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene, 2012. 31(37): p. 4150-4163.
83. Guo, Y.H., et al., Down-regulation of miR-373 increases the radiosensitivity of lung cancer cells by targeting TIMP2. International Journal of Biochemistry & Cell Biology, 2018. 99: p. 203-210.