Abarca ML, Bragulat MR, Castellá G, Cabañes FJ (2019) Impact of some environmental factors on growth and ochratoxin A production by Aspergillus niger and Aspergillus welwitschiae. Int J Food Microbiol 291:10–16. https://doi.org/10.1016/j.ijfoodmicro.2018.11.001
Adamiak J, Bonifay V, Otlewska A, et al (2017) Untargeted metabolomics approach in halophiles: Understanding the biodeterioration process of building materials. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.02448
Akhtar MK, Dandapani H, Thiel K, Jones PR (2015) Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties. Metab Eng Commun 2:1–5. https://doi.org/10.1016/j.meteno.2014.11.001
Alves Z, Melo A, Figueiredo AR, et al (2015) Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains. PLoS One 10:e0143641. https://doi.org/10.1371/journal.pone.0143641
Aquino S, de Lima JEA, do Nascimento APB, Reis FC (2018) Analysis of fungal contamination in vehicle air filters and their impact as a bioaccumulator on indoor air quality. Air Qual Atmos Heal 1–11. https://doi.org/10.1088/0953-2048/20/11/S23
Baptista I, Santos M, Rudnitskaya A, et al (2019) A comprehensive look into the volatile exometabolome of enteroxic and non-enterotoxic Staphylococcus aureus strains. Int J Biochem Cell Biol 108:40–50. https://doi.org/10.1016/j.biocel.2019.01.007
Bazioli JM, Belinato JR, Costa JH, et al (2019) Biological Control of Citrus Postharvest Phytopathogens. 11:1–22. https://doi.org/10.3390/toxins11080460
Caldeira M, Barros AS, Bilelo MJ, et al (2011) Profiling allergic asthma volatile metabolic patterns using a headspace-solid phase microextraction/gas chromatography based methodology. J Chromatogr A 1218:3771–3780. https://doi.org/10.1016/j.chroma.2011.04.026
Cano A, Cháfer M, Chiralt A, González-Martínez C (2015) Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents. Foods 5:3. https://doi.org/10.3390/foods5010003
Cardoso P, Santos M, Freitas R, et al (2017) Response of Rhizobium to Cd exposure: A volatile perspective. Environ Pollut 231:802–811. https://doi.org/10.1016/j.envpol.2017.08.067
Carriço ÍR, Marques J, Trujillo-Rodriguez MJ, et al (2020) Sorbent coatings for solid-phase microextraction targeted towards the analysis of death-related polar analytes coupled to comprehensive two-dimensional gas chromatography: Comparison of zwitterionic polymeric ionic liquids versus commercial coatings. Microchem J 158:105243. https://doi.org/10.1016/j.microc.2020.105243
Costa CP, Gonçalves Silva D, Rudnitskaya A, et al (2016) Shedding light on Aspergillus Niger volatile exometabolome. Sci Rep 6:1–13. https://doi.org/10.1038/srep27441
Cubero-Leon E, Peñalver R, Maquet A (2014) Review on metabolomics for food authentication. Food Res Int 60:95–107. https://doi.org/10.1016/j.foodres.2013.11.041
Cumeras R, Aksenov AA, Pasamontes A, et al (2016) Identification of fungal metabolites from inside Gallus gallus domesticus eggshells by non-invasively detecting volatile organic compounds (VOCs). Anal Bioanal Chem 408:6649–6658. https://doi.org/10.1007/s00216-016-9778-3
Dachery B, Hernandes KC, Veras FF, et al (2019) Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res Int 126:108687. https://doi.org/10.1016/j.foodres.2019.108687
de Souza JRB, Dias FFG, Caliman JD, et al (2018a) Opportunities for green microextractions in comprehensive two-dimensional gas chromatography / mass spectrometry-based metabolomics – A review. Anal Chim Acta 1040:1–18. https://doi.org/10.1016/j.aca.2018.08.034
de Souza JRB, Kupper KC, Augusto F (2018b) In vivo investigation of the volatile metabolome of antiphytopathogenic yeast strains active against Penicillium digitatum using comprehensive two-dimensional gas chromatography and multivariate data analysis. Microchem J 141:204–209. https://doi.org/10.1016/j.microc.2018.05.036
de Souza JRB, Kupper KC, Augusto F (2018c) In vivo investigation of the volatile metabolome of antiphytopathogenic yeast strains active against Penicillium digitatum using comprehensive two-dimensional gas chromatography and multivariate data analysis. Microchem J 141:362–368. https://doi.org/10.1016/j.microc.2018.05.047
Erban A, Fehrle I, Martinez-Seidel F, et al (2019) Discovery of food identity markers by metabolomics and machine learning technology. Sci Rep 9:1–19. https://doi.org/10.1038/s41598-019-46113-y
Fan S, Shahid M, Jin P, et al (2020) Identification of Metabolic Alterations in Breast Cancer Using Mass Spectrometry-Based Metabolomic Analysis. Metabolites 10:170. https://doi.org/10.3390/metabo10040170
Fang S, Liu S, Song J, et al (2021) Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel SPME/GC × GC-QTOFMS approach. Food Res Int 142:110213. https://doi.org/10.1016/j.foodres.2021.110213
Fialho MB, Toffano L, Pedroso MP, et al (2010) Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J Microbiol Biotechnol 26:925–932. https://doi.org/10.1007/s11274-009-0255-4
Finger JAFF, Baroni WSGV, Maffei DF, et al (2019) Overview of foodborne disease outbreaks in Brazil from 2000 to 2018. Foods 8:1–10. https://doi.org/10.3390/foods8100434
Fonseca AMA, Dias C, Amaro AL, et al (2020) The impact of plant-based coatings in “ROCHA” pear preservation during cold storage: A metabolomic approach. Foods 9:. https://doi.org/10.3390/foods9091299
Freire L, Braga PAC, Furtado MM, et al (2020) From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 113:. https://doi.org/10.1016/j.foodcont.2020.107167
Freire L, Guerreiro TM, Pia AKR, et al (2018a) A quantitative study on growth variability and production of ochratoxin A and its derivatives by A. carbonarius and A. niger in grape-based medium. Sci Rep 8:14573. https://doi.org/10.1038/s41598-018-32907-z
Freire L, Guerreiro TM, Pia AKR, et al (2018b) A quantitative study on growth variability and production of ochratoxin A and its derivatives by A. carbonarius and A. niger in grape-based medium. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-32907-z
Gajera HP, Katakpara ZA, Patel S V., Golakiya BA (2016) Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.). Microb Pathog 91:26–34. https://doi.org/10.1016/j.micpath.2015.11.010
Gil-Serna J, García-Díaz M, Vázquez C, et al (2019) Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiol 82:240–248. https://doi.org/10.1016/j.fm.2019.02.013
Gómez J V., Tarazona A, Mateo F, et al (2019) Potential impact of engineered silver nanoparticles in the control of aflatoxins, ochratoxin A and the main aflatoxigenic and ochratoxigenic species affecting foods. Food Control 101:58–68. https://doi.org/10.1016/j.foodcont.2019.02.019
Hazelwood LA, Daran JM, Van Maris AJA, et al (2008) The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. https://doi.org/10.1128/AEM.02625-07
Ho J, Prosser R, Hasani M, et al (2020) Degradation of chlorpyrifos and inactivation of Escherichia coli O157:H7 and Aspergillus niger on apples using an advanced oxidation process. Food Control 109:. https://doi.org/10.1016/j.foodcont.2019.106920
Järvinen AK, Laakso S, Piiparinen P, et al (2009) Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiol 9:. https://doi.org/10.1186/1471-2180-9-161
Jedidi I, Cruz A, González-Jaén MT, Said S (2017) Aflatoxins and ochratoxin A and their Aspergillus causal species in Tunisian cereals. Food Addit Contam Part B Surveill 10:51–58. https://doi.org/10.1080/19393210.2016.1247917
Kumar P, Mishra S, Kumar A, et al (2017) In vivo and in vitro control activity of plant essential oils against three strains of Aspergillus niger. Environ Sci Pollut Res 24:21948–21959. https://doi.org/10.1007/s11356-017-9730-x
LI F xiang, LI F hua, YANG Y xuan, et al (2019) Comparison of phenolic profiles and antioxidant activities in skins and pulps of eleven grape cultivars (Vitis vinifera L.). J Integr Agric 18:1148–1158. https://doi.org/10.1016/S2095-3119(18)62138-0
Li Q, Li C, Li P, et al (2017) The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved. Biol Control 113:18–25. https://doi.org/10.1016/j.biocontrol.2017.06.009
Li S, Hu Y, Liu W, et al (2020) Untargeted volatile metabolomics using comprehensive two-dimensional gas chromatography-mass spectrometry – A solution for orange juice authentication. Talanta 217:121038. https://doi.org/10.1016/j.talanta.2020.121038
Liu Y, Xu XL, Zhou GH (2007) Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques. Int J Food Sci Technol 42:543–550. https://doi.org/10.1111/j.1365-2621.2006.01264.x
Loureiro CC, Duarte IF, Gomes J, et al (2014) Urinary metabolomic changes as a predictive biomarker of asthma exacerbation. J Allergy Clin Immunol 133:. https://doi.org/10.1016/j.jaci.2013.11.004
Martins C, Brandão T, Almeida A, Rocha SM (2017) Metabolomics strategy for the mapping of volatile exometabolome from Saccharomyces spp. widely used in the food industry based on comprehensive two-dimensional gas chromatography. J Sep Sci 40:2228–2237. https://doi.org/10.1002/jssc.201601296
Martins C, Brandão T, Almeida A, Rocha SM (2020) Enlarging knowledge on lager beer volatile metabolites using multidimensional gas chromatography. Foods 9:1–22. https://doi.org/10.3390/foods9091276
Masuo S, Osada L, Zhou S, et al (2015) Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol. Fungal Genet Biol 77:22–30. https://doi.org/10.1016/j.fgb.2015.03.002
Matos D, Sá C, Cardoso P, et al (2019) The role of volatiles in Rhizobium tolerance to cadmium: Effects of aldehydes and alcohols on growth and biochemical endpoints. Ecotoxicol Environ Saf 186:109759. https://doi.org/10.1016/j.ecoenv.2019.109759
Mousavi F, Bojko B, Bessonneau V, Pawliszyn J (2016) Cinnamaldehyde Characterization as an Antibacterial Agent toward E. coli Metabolic Profile Using 96-Blade Solid-Phase Microextraction Coupled to Liquid Chromatography-Mass Spectrometry. J Proteome Res 15:963–975. https://doi.org/10.1021/acs.jproteome.5b00992
Oliveira DR, Leitão GG, Santos SS, et al (2006) Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. J Ethnopharmacol 108:103–108. https://doi.org/10.1016/j.jep.2006.04.018
Pan X, Liu H, Liu J, et al (2016) Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose. Bioresour Technol 222:24–32. https://doi.org/10.1016/j.biortech.2016.09.101
Pantoja LDM, do Nascimento RF, de Araujo Nunes AB (2016) Investigation of fungal volatile organic compounds in hospital air. Atmos Pollut Res 7:659–663. https://doi.org/10.1016/j.apr.2016.02.011
Parastar H, Garreta-Lara E, Campos B, et al (2018) Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity. J Sep Sci 41:2368–2379. https://doi.org/10.1002/jssc.201701336
Poole P (2017) Shining a light on the dark world of plant root–microbe interactions. Proc Natl Acad Sci 114:4281–4283. https://doi.org/10.1073/pnas.1703800114
Rees CA, Burklund A, Stefanuto PH, et al (2018) Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups. J Breath Res 12:. https://doi.org/10.1088/1752-7163/aa8f7f
Rees CA, Franchina FA, Nordick K V., et al (2017) Expanding the Klebsiella pneumoniae volatile metabolome using advanced analytical instrumentation for the detection of novel metabolites. J Appl Microbiol 122:785–795. https://doi.org/10.1111/jam.13372
Risticevic S, Souza-Silva EA, Gionfriddo E, et al (2020) Application of in vivo solid phase microextraction (SPME) in capturing metabolome of apple (Malus ×domestica Borkh.) fruit. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-63817-8
Rocha SM, Caldeira M, Carrola J, et al (2012) Exploring the human urine metabolomic potentialities by comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. J Chromatogr A 1252:155–163. https://doi.org/10.1016/j.chroma.2012.06.067
Rocha SM, Freitas R, Cardoso P, et al (2013) Exploring the potentialities of comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry to distinguish bivalve species: Comparison of two clam species (Venerupis decussata and Venerupis philippinarum). J Chromatogr A 1315:152–161. https://doi.org/10.1016/j.chroma.2013.09.049
Salvador ÂC, Baptista I, Barros AS, et al (2013) Can Volatile Organic Metabolites Be Used to Simultaneously Assess Microbial and Mite Contamination Level in Cereal Grains and Coffee Beans? PLoS One 8:e59338. https://doi.org/10.1371/journal.pone.0059338
Santos-Ciscon BA dos, van Diepeningen A, Machado J da C, et al (2019) Aspergillus species from Brazilian dry beans and their toxigenic potential. Int J Food Microbiol 292:91–100. https://doi.org/10.1016/j.ijfoodmicro.2018.12.006
Sarrocco S, Vannacci G (2018) Preharvest application of beneficial fungi as a strategy to prevent postharvest mycotoxin contamination: A review. Crop Prot 110:160–170. https://doi.org/10.1016/j.cropro.2017.11.013
Schloter M, Abmus B, Hartmann A (1995) The Use of Immunological Methods To Detect and Identify Bacteria in the Environment. Biotech Adv 13:75–90
Schueuermann C, Steel CC, Blackman JW, et al (2019) A GC–MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chem 270:375–384. https://doi.org/10.1016/j.foodchem.2018.07.057
Silva I, Rocha SM, Coimbra MA, Marriott PJ (2010) Headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry for the determination of volatile compounds from marine salt. J Chromatogr A 1217:5511–5521. https://doi.org/10.1016/j.chroma.2010.06.050
Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, et al (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. TrAC - Trends Anal Chem 71:249–264. https://doi.org/10.1016/j.trac.2015.04.017
Sumner LW, Amberg A, Barrett D, et al (2007) Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2
Sun Q, Li J, Sun Y, et al (2020) The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chem 317:126405. https://doi.org/10.1016/j.foodchem.2020.126405
Tong H, Wang Y, Li Y, et al (2017) Volatile organic metabolites identify patients with gastric carcinoma, gastric ulcer, or gastritis and control patients. Cancer Cell Int 17:1–9. https://doi.org/10.1186/s12935-017-0475-x
Triba MN, Le Moyec L, Amathieu R, et al (2015) PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol Biosyst 11:13–19. https://doi.org/10.1039/c4mb00414k
van Den Dool H, Dec. Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X
Wang L, Meeus I, Rombouts C, et al (2019) Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-47896-w
Weldegergis BT, Crouch AM, Górecki T, de Villiers A (2011) Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines. Anal Chim Acta 701:98–111. https://doi.org/10.1016/j.aca.2011.06.006
Xanthopoulou A, Ganopoulos I, Tryfinopoulou P, et al (2019) Rapid and accurate identification of black aspergilli from grapes using high-resolution melting (HRM) analysis. J Sci Food Agric 99:309–314. https://doi.org/10.1002/jsfa.9189
Xanthopoulou A, Ganopoulos I, Tryfinopoulou P, et al (2018) Rapid and accurate identification of black aspergilli from grapes using high-resolution melting (HRM) analysis. J Sci Food Agric. https://doi.org/10.1002/jsfa.9189
Xu X, Van Stee LLP, Williams J, et al (2003) Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere. Atmos Chem Phys 3:665–682. https://doi.org/10.5194/acp-3-665-2003
Zhang QH, Zhou L Di, Chen H, et al (2016) Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. TrAC - Trends Anal Chem 80:57–65. https://doi.org/10.1016/j.trac.2016.02.017
Zhang XW, Li QH, Xu Z Di, Dou JJ (2020) Mass spectrometry-based metabolomics in health and medical science: A systematic review. RSC Adv 10:3092–3104. https://doi.org/10.1039/c9ra08985c
Zhao C, Li X, Liang Y, et al (2006) Comparative analysis of chemical components of essential oils from different samples of Rhododendron with the help of chemometrics methods. Chemom Intell Lab Syst 82:218–228. https://doi.org/10.1016/j.chemolab.2005.08.008
Zhao G, Yin G, Inamdar AA, et al (2017) Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay. Indoor Air 27:518–528. https://doi.org/10.1111/ina.12350