1. Barrington, D.J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobcteria and other phytoplankton from waste water. Environ. Sci. Technol. 42, 8916-8921 (2008)
2. Lurling, M., Meng, D. & Fassen, E.L. Effects ot hydrogen peroxide and ultrasound on biomass reduction and toxin release in cyanobacterium, Microcytis aeruginosa. Toxins 6, 3260-3281 (2014)
3. Cooper, W.J., Zika, R., Petasne, R.G. & Plane, J.M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunPAR. Environ. Sci. Technol. 22, 1156-1160. doi:10.1021/es00175a004 (1988)
4. Cooper, W.J., Lean, D.R.S. & Carey, J.H. Spatial and temporal patterns of hydrogen peroxide in lake waters. Can. J. Fish. Aquat. Sci. 46, 1227-1231. doi: 101139/f89-158 (1989)
5. Cory, R.M. et at. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Frontiers in Marine Science, doi: 10.3389/fmars.2016.00054 (2016)
6. Caverzan, A., Passaia, G., Rosa, S.B., Ribeiro, C.W., Lazzarotto, F. & Margis-Pinheiro, M Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35, 1011-1019 (2012)
7. Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Botany. (2012)
8. Ugya, A.Y., Imam, T.S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. J. Chem. Ecol. 1-20 (2019)
9. Rastogi, R.P., Singh, S.P., Häder, D.-P. & Sinha, R.P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397, 603-607 (2010)
10. Foyer, C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134-142 (2018)
11. Gill, S.S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930 (2010)
12. Ma, Z. & Gao, K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ. Exp. Bot. 68, 208-213 (2010)
13. Welkie, D.G. et al. A hard day’s night: Cyanobacteria in Diel cycles. Trends Microbiol. 27, 231-242 (2019)
14. Latifi, A., Ruiz, M. & Zhang, C.C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33, 258-278 (2009)
15. Lea-Smith, D.J., Bombelli, P., Vasudevan, R. & Howe, C.J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1857, 247-255 (2016)
16. Raja, V., Majeed, U., Kang, H., Andrabi, K.I. & John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142-157 (2017)
17. Asada, S., Fukuda, K., Oh, M., Hamanishi, C. & Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 48, 399-403 (1999)
18. Nishiyama, Y. & Murata, N. Revised scheme for the mechanisms of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98, 8777-8796 (2014)
19. Mikula, P., Zezulka, S., Jancula, D. & Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa – new findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 47, 195-206 (2012)
20. Mittler, R. Abiotic stress, the field environment and stress combination. Trends in plant science, 11, 15-19. doi:10.1016/j.tplants.2005.11.002 (2006)
21. Saints, M., Diaz, P., Monza, J. & Borsani, O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiological Plantarum 140, 46-56. doi:10.111/j.1399-3054.2010.01383.x (2010)
22. Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytologist 203, 3-43. doi:10.1111/nph.12797 (2014)
23. Asaeda, T. & Barnuevo, A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. Forest Ecology and Management 432, 73-82 (2019)
24. Asaeda, T., Senavirathna, M.D.H.J., Vamsi Krishna, L. & Yoshida, N. Impact of regulated water levels on willows (Salix subfragilis) at a flood-control dam, and the use of hydrogen peroxide as an indicator of environmenal stress. Ecological Engineering, 127, 96-102 (2019)
25. Asaeda, T., Senavirathna, M.D,H.J. & Vamsi Krishna, L. Evaluation of habitat preferance of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Froniters in Plant Science 11.422, doi:10.3389/fpls.2020.00422 (2020)
26. Diaz, J. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: past and future directions. J. Plankton Res. 40, 655-666 (2018)
27. Abeynayaka, H.D.L., Asaeda, T. & Kaneko, Y. Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicle collapse. Env. Man. 60, 293-303 (2017)
28. Jana, S. & Choudhuri, M.A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany 12, 345–354 (1982)
29. Veljovic-Jovanovic S., Noctor G. & Foer C.H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiology and Biochemistry 28, 318-327 (2002)
30. Cheeseman, J.M. Hydrogen peroxide concentrations in leaves under natular conditions. J. Exp. Bot. 57, 2435-2444 (2006)
31. Queval, G., Hager J., Gakiere, B. & Noctor, G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J.Exp. Bot. 59, 135-146. doi:10.1093/jxb/em193 (2008)
32. Aebi, H. Catalase in vitro. Methods in Enzymology 105, 121-126 (1984)
33. Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867-880 (1981)
34. Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G. & Sharma, S. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Cri. Rev. in Biotech. 30, 161-175 (2010)
35. Drábková, M., Admiraal, W. & Maršálek, B. Combined exposure to hydrogen peroxide and PAR -- selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41, 309-314 (2007a)
36. Bouchard, J.N. & Purdie, D.A. Effect of elevated temperature, darkness and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol. 47, 1316-1325 (2011)
37. Leunert, F., Eckert, W., Paul, A., Gerhardt, V. & Grossart, H.P. Phytoplanktonic response to UV-generated hydrogen peroxide from natural organic matter. J. Plankton Res. 36, 185-197. doi:10.1093/plankt/fbt096 (2014)
38. Wang, B., Song, Q., Long, J., Song, G., Mi, W. & Bi, Y. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes. Chemosphere 228, 503-512 (2019)
39. Foo, S.C., Chapman, I.J., Hartnell, D.M., Turner, A.D. & Franklin D.J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Env. Sci. Poll. Res. 27, 38916-38927 (2020)
40. Barrington, D.J., Reichwaldt, E.S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Engin. 50, 86-94 (2013)
41. Drábková, M., Matthijs, H., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica. 45, 363-369 (2007b)
42. Cooper, W.J., Zika, R., Petasne, R.G. & Plane, J.M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunPAR. Environ. Sci. Technol. 22, 1156-1160. doi:10.1021/es00175a004 (1988)
43. Garcia, P.E., Queimalinos, C. & Dieguez , M.C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic sysyems: Influence of the dissolved organic matter pool. Chemosphere. 217, 550-557 (2019)
44. Herrmann, R., 1996. The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environm. Toxicol. & Chem. 15, 652-662.
45. Spoof, L. et al. Elimination of cyanobacteria and microcystins in irrigation water -- Effects of hydrogen peroxide treatment. Env. Sci. Poll. Res. 27, 8638-8652. doi.org/10.1007/s1 1356-019-07476-x (2020)
46. Lopez, C.V.G. et al. Protein measuremements of microalgae and cyanobacterial biomass. Bioresource Technol. 101, 7587-7591 (2010)
47. Vesterkvist, P.S.M., Misiorek, J.O., Spoof, L.E.M., Toivola, D.M. & Meriluoto, J.A.O. Comparative cellular toxicity of hydrophilic and hydrophobic Microcystins on Caco-2 Cells. Toxins 4, 1008 (2012)
48. Preece, E.P., Hardy, F.J., Moore, B.C. & Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 61, 31-45 (2017)
49. Pham, T.-L. & Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 213, 520-529 (2018)
50. Goldman, J.C., McCarthy, J.J., D.G. & Peavey, D.G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279, 210215 (1979)
51. Paerl, H.W., Fulton, R.S. 3rd, Moisander, P.H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Scient. World J. 12805693, PMC6083932 (2001)
52. Xie, L., Xie, P., Li, Sixin, Tang, H. & Liu, H. The low TN:TP ratio, a case or result of Microcystis blooms? Water Res. 37, 2070-2080 (2003)
53. Asaeda, T., Rashid, Md.H., & Schoelynck, J. Tissue Hydrogen Peroxide Concentration Can Explain 58. the Invasiveness of Aquatic Macrophytes: A Modeling Perspective. Front. Environ. Sci. 8, (2021)
54. Hesse, K., Dittman, E., Borner, T., 2001. FEMS microbiology ecology 37, 39-43.
55. Tilzer, M.M. Light dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshw. Res. 21, 401-412 (1987)
56. Iwase, S. & Abe,Y.. Identification and change in concentration of musty-odor compounds during growth in blue-green algae. J. Scool Mar. Sci. Tech. 8, 27-33 (2010)
57. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1-61 (1979)