1. Zinicola M, Lima F, Lima S, Machado V, Gomez M, Döpfer D, et al. Altered microbiomes in bovine digital dermatitis lesions, and the gut as a pathogen reservoir. PLoS One. 2015;10:e0120504.
2. Ariza JM, Döpfer D, Anklam K, Labrut S, Oberle K, Bareille N, et al. Do footbath disinfectants modify the dynamics of the skin microbiota in dairy cattle affected by digital dermatitis? bioRxiv. 2019;soumis:1–33.
3. Krull AC, Shearer JK, Gorden PJ, Cooper VL, Phillips GJ, Plummer PJ. Deep Sequencing Analysis Reveals the Temporal Microbiota Changes Associated with the Development of Bovine Digital Dermatitis. Infect Immun. 2014;82:3359–73.
4. Zinicola M, Higgins H, Lima S, Machado V, Guard C, Bicalho R. Shotgun Metagenomic Sequencing Reveals Functional Genes and Microbiome Associated with Bovine Digital Dermatitis. PLoS One. 2015;10:e0133674.
5. Srinivas G, Möller S, Wang J, Künzel S, Zillikens D, Baines JF, et al. Genome-wide mapping of gene-microbiota interactions in susceptibility to autoimmune skin blistering. Nat Commun. 2013;4:2462.
6. Belheouane M, Gupta Y, Künzel S, Ibrahim S, Baines JF. Improved detection of gene-microbe interactions in the mouse skin microbiota using high-resolution QTL mapping of 16S rRNA transcripts. Microbiome. Microbiome; 2017;5:59.
7. Griffiths BE, Mahen PJ, Hall R, Kakatsidis N, Britten N, Long K, et al. A Prospective Cohort Study on the Development of Claw Horn Disruption Lesions in Dairy Cattle; Furthering our Understanding of the Role of the Digital Cushion. Front Vet Sci. 2020;7:1–9.
8. Blowey RW, Sharp MW. Digital dermatitis in dairy cattle. Vet Rec. 1988;122:505–8.
9. Berry SL, Read DH, Famula TR, Mongini A, Döpfer D. Long-term observations on the dynamics of bovine digital dermatitis lesions on a California dairy after topical treatment with lincomycin HCl. Vet J. Elsevier Ltd; 2012;193:654–8.
10. Sánchez-Molano E, Bay V, Smith RF, Oikonomou G, Banos G. Quantitative Trait Loci Mapping for Lameness Associated Phenotypes in Holstein–Friesian Dairy Cattle. Front Genet. 2019;10:1–9.
11. Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, et al. A Novel Sparse Compositional Technique Reveals Microbial Perturbations. 2019;
12. Aitchison J, Greenacre M. Biplots of compositional data. J R Stat Soc Ser C Appl Stat. John Wiley & Sons, Ltd; 2002;51:375–92.
13. Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, et al. Establishing microbial composition measurement standards with reference frames. Nat Commun. Nature Publishing Group; 2019;10:1–11.
14. Faust K, Raes J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012. p. 538–50.
15. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and Compositionally Robust Inference of Microbial Ecological Networks. 2015;
16. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.
17. Carlin DE, Demchak B, Pratt D, Sage E, Ideker T. Network propagation in the cytoscape cyberinfrastructure. PLoS Comput Biol. Public Library of Science; 2017;13:e1005598.
18. Marcel Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011;EMBnet.17:5–7.
19. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. Nature Publishing Group; 2012;9:357–9.
20. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
21. Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. BioMed Central Ltd.; 2014;15:R46.
22. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
23. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15:962–8.
24. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2015;44:471–80.
25. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–4.
26. Amin N, van Duijn CM, Aulchenko YS. A genomic background based method for association analysis in related individuals. PLoS One. 2007;2:e1274.
27. Cebamanos L, Gray A, Stewart I, Tenesa A. Regional heritability advanced complex trait analysis for GPU and traditional parallel architectures. Bioinformatics. 2014;30:1177–9.
28. Nielsen MW, Strube ML, Isbrand A, Al-Medrasi WDHM, Boye M, Jensen TK, et al. Potential bacterial core species associated with digital dermatitis in cattle herds identified by molecular profiling of interdigital skin samples. Vet Microbiol [Internet]. Elsevier B.V.; 2016;186:139–49. Available from: http://dx.doi.org/10.1016/j.vetmic.2016.03.003
29. Maruyama Y, Oiki S, Takase R, Mikami B, Murata K, Hashimoto W. Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: Molecular identification and structure determination of streptococcal isomerase and dehydrogenase. J Biol Chem. American Society for Biochemistry and Molecular Biology Inc.; 2015;290:6281–92.
30. Calvo-Bado LA, Oakley BB, Dowd SE, Green LE, Medley GF, Ul-Hassan A, et al. Ovine pedomics: The first study of the ovine foot 16S rRNA-based microbiome. ISME J. Nature Publishing Group; 2011;5:1426–37.
31. Ganda EK, Bisinotto RS, Lima SF, Kronauer K, Decter DH, Oikonomou G, et al. Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary treatment using a third-generation cephalosporin. Sci Rep. 2016;6:1–13.
32. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;2:S1-63.
33. Maguire M, Maguire G. The role of microbiota, and probiotics and prebiotics in skin health. Arch Dermatol Res. Springer Verlag; 2017;309:411–21.
34. Ellis SR, Nguyen M, Vaughn AR, Notay M, Burney WA, Sandhu S, et al. The skin and gut microbiome and its role in common dermatologic conditions. Microorganisms. MDPI AG; 2019.
35. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. American Society for Microbiology; 2007. p. 1576–85.
36. Collighan RJ, Woodward MJ. Spirochaetes and other bacterial species associated with bovine digital dermatitis. FEMS Microbiol Lett. 1997;156:37–41.
37. Ulger-Toprak N, Liu C, Summanen PH, Finegold SM. Murdochiella asaccharolytica gen. nov., sp. nov., a Gram-stain-positive, anaerobic coccus isolated from human wound specimens. Int J Syst Evol Microbiol. Microbiology Society; 2010;60:1013–6.
38. Diop K, Raoult D, Bretelle F, Fenollar F. “Murdochiella vaginalis” sp. nov., a new bacterial species cultivated from the vaginal flora of a woman with bacterial vaginosis. Hum Microbiome J. Elsevier Ltd; 2016;2:15–6.
39. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the Human Microbiome. PLoS Comput Biol. 2012;8.
40. Xu S. Theoretical Basis of the Beavis Effect. Genetics. 2003;165:2259–68.
41. O’Gorman GM, Park SDE, Hill EW, Meade KG, Coussens PM, Agaba M, et al. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility. BMC Genomics. 2009;10:207.
42. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science (80- ). 2013;339:826–30.
43. Lemos MVA, Chiaia HLJ, Berton MP, Feitosa FLB, Aboujaoud C, Camargo GMF, et al. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics. BMC Genomics; 2016;17:213.
44. Lo Vasco VR, Leopizzi M, Chiappetta C, Puggioni C, Della Rocca C, Polonia P, et al. Lypopolysaccharide downregulates the expression of selected phospholipase C genes in cultured endothelial cells. Inflammation. 2013;36:862–8.
45. Heumann D, Roger T. Initial responses to endotoxins and Gram-negative bacteria. Clin. Chim. Acta. 2002. p. 59–72.
46. Nerstedt A, Nilsson EC, Ohlson K, Håkansson J, Svensson LT, Löwenadler B, et al. Administration of Lactobacillus evokes coordinated changes in the intestinal expression profile of genes regulating energy homeostasis and immune phenotype in mice. Br J Nutr. 2007;97:1117–27.
47. Fink LN, Metzdorff SB, Zeuthen LH, Nellemann C, Kristensen MB, Licht TR, et al. Establishment of tolerance to commensal bacteria requires a complex microbiota and is accompanied by decreased intestinal chemokine expression. AJP Gastrointest Liver Physiol. 2012;302:G55–65.
48. Wang J-W, Howson J, Haller E, Kerr WG. Identification of a Novel Lipopolysaccharide-Inducible Gene with Key Features of Both a Kinase Anchor Proteins and chs1/beige Proteins. J Immunol. 2001;166:4586–95.
49. Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A, et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol. 2012;130:481–8.
50. Revel-Vilk S, Fischer U, Keller B, Nabhani S, Gámez-Díaz L, Rensing-Ehl A, et al. Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clin Immunol. 2015;159:84–92.
51. Birnbaum RY, Zvulunov A, Hallel-Halevy D, Cagnano E, Finer G, Ofir R, et al. Seborrhea-like dermatitis with psoriasiform elements caused by a mutation in ZNF750, encoding a putative C2H2 zinc finger protein. Nat Genet. 2006;38:749–51.
52. Yang CF, Hwu WL, Yang LC, Chung WH, Chien YH, Hung CF, et al. A promoter sequence variant of ZNF750 is linked with familial psoriasis. J Invest Dermatol. Elsevier Masson SAS; 2008;128:1662–8.
53. Nocek JE, Johnson AB, Socha MT. Digital Characteristics in Commercial Dairy Herds Fed Metal-Specific Amino Acid Complexes. J Dairy Sci. 2000;83:1553–72.