Bakker BM, Overkamp KM, van Maris AJ, Kötter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):15-37. https://doi.org/10.1111/j.1574-6976.2001.tb00570.x
Carlson GH (1943) Preparation of beta-alanine. US Patents 2,336,067, 7 Dec. 1943.
Carnicer M, Canelas AB, Ten Pierick A, Zeng Z, van Dam J, Albiol J, Ferrer P, Heijnen JJ, van Gulik W (2012) Development of quantitative metabolomics for Pichia pastoris. Metabolomics 8(2):284-298. https://doi.org/10.1007/s11306-011-0308-1
Feng Z, Zhang J, Chen G, Ge Y, Zhang X, Zhu H (2019) Extracellular Expression of L-aspartate-alpha-decarboxylase from Bacillus tequilensis and its application in the biosynthesis of beta-alanine. Appl Biochem Biotechnol 189(1):273-283. https://doi.org/10.1007/s12010-019-03013-1
Ford JH (1945) The alkaline hydrolysis of β-aminopropionitrile. Journal of the American Chemical Society 67(5):876-877. https://doi.org/10.1021/ja01221a503
Gao J, Jiang L, Lian J (2021) Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth Syst Biotechnol 6(2):110-119. https://doi.org/10.1016/j.synbio.2021.04.005
Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, Dong W, Xin F, Zhang W, Jiang M (2021) Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng 118(1):357-371. https://doi.org/10.1002/bit.27575
Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30(3):279-89. https://doi.org/10.1007/s00726-006-0299-9
Hu G, Zhou J, Chen X, Qian Y, Gao C, Guo L, Xu P, Chen W, Chen J, Li Y, Liu L (2018) Engineering synergetic CO2-fixing pathways for malate production. Metab Eng 47:496-504. https://doi.org/10.1016/j.ymben.2018.05.007
Jin X, Zhang W, Wang Y, Sheng J, Xu R, Li J, Du G, Kang Z (2021) Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris. Green Chemistry. https://doi.org/10.1039/d1gc00260k
Li H, Lu X, Chen K, Yang J, Zhang A, Wang X, Ouyang P (2018) β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Molecular Catalysis 449:93-98. https://doi.org/10.1016/j.mcat.2018.02.008
Li H, Zhu T, Miao L, Zhang D, Li Y, Li Q, Li Y (2017a) Discovery of novel highly active and stable aspartate dehydrogenases. Sci Rep 7(1):7881. https://doi.org/10.1038/s41598-017-05522-7
Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X (2017b) Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol 245(Pt B):1588-1602. https://doi.org/10.1016/j.biortech.2017.05.145
Liu Y, Cruz-Morales P, Zargar A, Belcher MS, Pang B, Englund E, Dan Q, Yin K, Keasling JD (2021) Biofuels for a sustainable future. Cell 184(6):1636-1647. https://doi.org/10.1016/j.cell.2021.01.052
Liu Z, Zheng W, Ye W, Wang C, Gao Y, Cui W, Zhou Z (2019) Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of beta-alanine. Appl Microbiol Biotechnol 103(23-24):9443-9453. https://doi.org/10.1007/s00253-019-10139-z
Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, Marten K, Greim H (2011) Acrylic Acid and Derivatives Ullmann's Encyclopedia of Industrial Chemistry.
Park JH, Lee SY (2010) Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol J 5(6):560-77. https://doi.org/10.1002/biot.201000032
Pei W, Zhang J, Deng S, Tigu F, Li Y, Li Q, Cai Z, Li Y (2017) Molecular engineering of L-aspartate-alpha-decarboxylase for improved activity and catalytic stability. Appl Microbiol Biotechnol 101(15):6015-6021. https://doi.org/10.1007/s00253-017-8337-y
Piao X, Wang L, Lin B, Chen H, Liu W, Tao Y (2019) Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative beta-alanine with high stoichiometric yield. Metab Eng 54:244-254. https://doi.org/10.1016/j.ymben.2019.04.012
Qian Y, Liu J, Song W, Chen X, Luo Q, Liu L (2018) Production of β‐alanine from fumaric acid using a dual‐enzyme cascade. ChemCatChem 10(21):4984-4991. https://doi.org/10.1002/cctc.201801050
Sale C, Saunders B, Harris RC (2010) Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39(2):321-33. https://doi.org/10.1007/s00726-009-0443-4
Shen Y, Zhao L, Li Y, Zhang L, Shi G (2014) Synthesis of β-alanine from l-aspartate using l-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnology Letters 36(8):1681-1686. https://doi.org/10.1007/s10529-014-1527-0
Siripong W, Angela C, Tanapongpipat S, Runguphan W (2020) Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-butanol). Enzyme and Microbial Technology 138:109557. https://doi.org/10.1016/j.enzmictec.2020.109557
Siripong W, Wolf P, Kusumoputri TP, Downes JJ, Kocharin K, Tanapongpipat S, Runguphan W (2018) Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. Biotechnology for Biofuels 11(1). https://doi.org/10.1186/s13068-017-1003-x
Song CW, Lee J, Ko YS, Lee SY (2015) Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30:121-129. https://doi.org/10.1016/j.ymben.2015.05.005
Steunenberg P, Könst PM, Scott EL, Franssen MCR, Zuilhof H, Sanders JPM (2013) Polymerisation of β-alanine through catalytic ester–amide exchange. European Polymer Journal 49(7):1773-1781. https://doi.org/10.1016/j.eurpolymj.2013.03.032
Tan Z, Zhu X, Chen J, Li Q, Zhang X (2013) Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Appl Environ Microbiol 79(16):4838-44. https://doi.org/10.1128/AEM.00826-13
Tigu F, Zhang J, Liu G, Cai Z, Li Y (2018) A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of D-pantothenic acid with high productivity. Appl Microbiol Biotechnol 102(14):6039-6046. https://doi.org/10.1007/s00253-018-9017-2
Tomita H, Yokooji Y, Ishibashi T, Imanaka T, Atomi H (2014) An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis. J Bacteriol 196(6):1222-30. https://doi.org/10.1128/jb.01327-13
Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y (2018) Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng 49:220-231. https://doi.org/10.1016/j.ymben.2018.07.011
Wang L, Piao X, Cui S, Hu M, Tao Y (2020) Enhanced production of beta-alanine through co-expressing two different subtypes of L-aspartate-alpha-decarboxylase. J Ind Microbiol Biotechnol 47(6-7):465-474. https://doi.org/10.1007/s10295-020-02285-5
Weninger A, Fischer JE, Raschmanova H, Kniely C, Vogl T, Glieder A (2018) Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J Cell Biochem 119(4):3183-3198. https://doi.org/10.1002/jcb.26474
Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA, Papoutsakis ET (2017) Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 39:49-59. https://doi.org/10.1016/j.ymben.2016.10.015
Wu C, Zhang J, Du G, Chen J (2013) Aspartate protects Lactobacillus casei against acid stress. Appl Microbiol Biotechnol 97(9):4083-93. https://doi.org/10.1007/s00253-012-4647-2
Yamada R, Ogura K, Kimoto Y, Ogino H (2019) Toward the construction of a technology platform for chemicals production from methanol: d-lactic acid production from methanol by an engineered yeast Pichia pastoris. World Journal of Microbiology and Biotechnology 35(2). https://doi.org/10.1007/s11274-019-2610-4
Yu S, Miao L, Huang H, Li Y, Zhu T (2020a) High-level production of glucose oxidase in Pichia pastoris: Effects of Hac1p overexpression on cell physiology and enzyme expression. Enzyme Microb Technol 141:109671. https://doi.org/10.1016/j.enzmictec.2020.109671
Yu XJ, Huang CY, Xu XD, Chen H, Liang MJ, Xu ZX, Xu HX, Wang Z (2020b) Protein engineering of a pyridoxal-5'-phosphate-dependent l-aspartate-alpha-decarboxylase from Tribolium castaneum for beta-alanine production. Molecules 25(6). https://doi.org/10.3390/molecules25061280
Zhu T, Sun H, Wang M, Li Y (2019) Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: Current status and future perspectives. Biotechnol J 14(6):e1800694. https://doi.org/10.1002/biot.201800694
Zhu T, Zhao T, Bankefa OE, Li Y (2020) Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: Challenges and opportunities. Biotechnol Adv 39:107467. https://doi.org/10.1016/j.biotechadv.2019.107467
Zhu WL, Cui JY, Cui LY, Liang WF, Yang S, Zhang C, Xing XH (2016) Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway. Appl Microbiol Biotechnol 100(5):2171-82. https://doi.org/10.1007/s00253-015-7078-z
Zou X, Guo L, Huang L, Li M, Zhang S, Yang A, Zhang Y, Zhu L, Zhang H, Zhang J, Feng Z (2020) Pathway construction and metabolic engineering for fermentative production of beta-alanine in Escherichia coli. Appl Microbiol Biotechnol 104(6):2545-2559. https://doi.org/10.1007/s00253-020-10359-8