1. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C et al. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact. 2011;24(11):1276-88.
2. Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature. 2001;411(6840):948-50.
3. Bournaud C, de Faria SM, Dos Santos JMF, Tisseyre P, Silva M, Chaintreuil C et al. Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae). PLoS One. 2013; 8:e63478.
4. Melkonian R, Moulin L, Béna G, Tisseyre P, Chaintreuil C, Heulin K et al. The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype. Environ Microbiol. 2014;16:2099-111.
5. Elliott GN, Chou J-H, Chen W-M, Bloemberg GV, Bontemps C, Martínez-Romero E et al. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol. 2009;11(4):762-78.
6. Mishra RP, Tisseyre P, Melkonian R, Chaintreuil C, Miché L, Klonowska A et al. Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. FEMS Microbiol Ecol. 2012;79(2):487-503.
7. Bontemps C, Elliott GN, Simon MF, Dos Reis Júnior FB, Gross E, Lawton RC et al. Burkholderia species are ancient symbionts of legumes. Mol Ecol. 2010;19(1):44-52.
8. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D et al. Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 2008;18(9):1472-83.
9. Barrett CF, Parker MA. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol. 2006; 72:1198-206.
10. Chen WM, James EK, Chou JH, Sheu SY, Yang SZ, Sprent JI. Beta-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol. 2005;168(3):661-75.
11. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol. 2001;51(Pt 5):1729-35.
12. Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol. 2003;185:7266-672.
13. Klonowska A, Chaintreuil C, Tisseyre P, Miché L, Melkonian R, Ducousso M et al. Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. FEMS Microbiol Ecol. 2012;81:618-35.
14. Liu X, Wei S, Wang F, James EK, Guo X, Zagar C et al. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in southern China. FEMS Microbiol Ecol. 2012;80:417-26.
15. Liu XY, Wu W, Wang ET, Zhang B, Macdermott J, Chen WX. Phylogenetic relationships and diversity of beta-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int J Syst Evol Microbiol. 2011;61(Pt 2):334-42.
16. Verma SC, Chowdhury SP, Tripathi AK. Phylogeny based on 16S rDNA and nifH sequences of Ralstonia taiwanensis strains isolated from nitrogen-fixing nodules of Mimosa pudica, in India. Can J Microbiol. 2004;50(5):313-22.
17. Taulé C, Zabaleta M, Mareque C, Platero R, Sanjurjo L, Sicardi M et al. New Betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl Environ Microbiol. 2012;78(6):1692-700.
18. Platero R, James EK, Rios C, Iriarte A, Sandes L, Zabaleta M et al. Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl Environ Microbiol. 2016;82(11):3150-64.
19. Andam CP, Mondo SJ, Parker MA. Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl Environ Microbiol. 2007;73(14):4686-90.
20. Gehlot HS, Tak N, Kaushik M, Mitra S, Chen WM, Poweleit N et al. An invasive Mimosa in India does not adopt the symbionts of its native relatives. Ann Bot. 2013;112(1):179-96.
21. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol. 1985;162(1):328-34.
22. Sato Y, Nishihara H, Yoshida M, Watanabe M, Rondal JD, Concepcion RN et al. Cupriavidus pinatubonensis sp nov and Cupriavidus laharis sp nov., novel hydrogen-oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines. Int J Syst Evol Microbiol. 2006;56:973-8.
23. Schlegel HG, Gottschalk G, Von Bartha R. Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature. 1961;191:463-5.
24. Vandamme P, Coenye T. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol. 2004;54:2285-9.
25. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R et al. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nature Biotechnol. 2006;24(10):1257-62.
26. Simon MF, Grether R, de Queiroz LP, Särkinen TE, Dutra VF, Hughes CE. The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. Am J Bot. 2011;98:1201–21.
29. Chen WM, Wu CH, James EK, Chang JS. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater. 2008;151(2-3):364-71.
30. Reeve W, Ardley J, Tian R, Eshragi L, Yoon JW, Ngamwisetkun P et al. A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. Stand Genom Sci. 2015;10:14.
31. Seshadri R, Reeve WG, Ardley JK, Tennessen K, Woyke T, Kyrpides NC et al. Discovery of novel plant interaction determinants from the genomes of 163 Root Nodule Bacteria. Scientific Reports. 2015;5:16825.
32. De Meyer SE, Fabiano E, Tian R, Van Berkum P, Seshadri R, Reddy TBK et al. High-quality permanent draft genome sequence of the Parapiptadenia rigida nodulating Cupriavidus sp strain UYPR2.512. Stand Genom Sci. 2015;10:80.
33. De Meyer SE, Parker M, Van Berkum P, Tian R, Seshadri R, Reddy TBK et al. High-quality permanent draft genome sequence of the Mimosa asperata nodulating Cupriavidus sp strain AMP6. Stand Genom Sci. 2015;10:80.
34. Estrada-de los Santos P, Martínez-Aguilar L, López-Lara IM, Caballero-Mellado J. Cupriavidus alkaliphilus sp nov., a new species associated with agricultural plants that grow in alkaline soils. Syst Appl Microbiol. 2012;35(5):310-4.
35. Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One. 2010;5(5).
36. Poehlein A, Kusian B, Friedrich B, Daniel R, Bowien B. Complete genome sequence of the type strain Cupriavidus necator N-1. J Bacteriol. 2011;193(18):5017-.
37. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M et al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature. 2002;415(6871):497-502.
38. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D et al. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol. 2007;189(20):7417-25.
39. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P et al. Towards a richer description of our complete collection of genomes and metagenomes "Minimum Information about a Genome Sequence " (MIGS) specification. Nature Biotechnol. 2008;26:541-7.
40. Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM et al. The Genomic Standards Consortium. PLoS Biol. 2011;9(6):e1001088.
41. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009;106:19126-31.
42. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43(14):6761-71.
43. Goris J, Konstantinidis KT, Klappenbach J, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81-91.
44. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5:e11147.
45. Harrison PW, Lower RPJ, Kim NKD, Young JPW. Introducing the bacterial “chromid”: not a chromosome, not a plasmid. Trends Microbiol. 2010;18:141-8.
46. Parker MA. A single sym plasmid type predominates across diverse chromosomal lineages of Cupriavidus nodule symbionts. Syst Appl Microbiol. 2015;38(6):417-23.
47. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A et al. MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 2013;41(D1):E636-E47.
48. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Rev Microbiol. 2007;5(8):619-33.
49. Ren QH, Chen KX, Paulsen IT. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 2007;35:D274-D9.
50. Saier MH, Tran CV, Barabote RD. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006;34:D181-D6.
51. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44(D1):D372-D9.
52. Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003; 27:313-39.
53. Saier MH. Genome archeology leading to the characterization and classification of transport proteins. Curr Opin Microbiol. 1999;2(5):555-61.
54. Munkelt D, Grass G, Nies DH. The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol. 2004;186(23):8036-43.
55. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH et al. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol. 2005;183(1):9-18.
56. Wei YN, Fu D. Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). J Biol Chem. 2005;280(40):33716-24.
57. De Angelis F, Lee JK, O'Connell JD, Miercke LJW, Verschueren KH, Srinivasan V et al. Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems. Proc Natl Acad Sci U S A. 2010;107(24):11038-43.
58. Goldberg M, Pribyl T, Juhnke S, Nies DH. Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem. 1999;274(37):26065-70.
59. Nies DH. Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp CH34. Extremophiles. 2000;4(2):77-82.
60. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol. 1999;1(1):107-25.
61. Pak JE, Ekende EN, Kifle EG, O'Connell JD, De Angelis F, Tessema MB et al. Structures of intermediate transport states of ZneA, a Zn(II)/proton antiporter. Proc Natl Acad Sci U S A. 2013;110(46):18484-9.
62. Diels L, Dong Q, van der Lelie D, Baeyens W, Mergeay M. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Ind Microbiol. 1995;14(2):142-53.
63. Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I et al. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals. 2011;24(6):1133-51.
64. Van Houdt R, Monchy S, Leys N, Mergeay M. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Anton Leeuw Int J G. 2009;96(2):205-26.
65. Audic S, Robert C, Campagna B, Parinello H, Claverie JM, Raoult D et al. Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PloS Genet. 2007;3(8):1454-63.
66. Van Houdt R, Mergeay M. Genomic context of metal response genes in Cupriavidus metallidurans with a focus on strain CH34. In: Mergeay M, Van Houdt R, editors. Metal Response in Cupriavidus metallidurans: Volume I: From Habitats to Genes and Proteins. Cham: Springer International Publishing; 2015. p. 21-44.
67. Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol. 2003;185(13):3804-12.
68. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P et al. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev. 2003;27(2-3):385-410.
69. García-Domínguez M, López-Maury L, Florencio FJ, Reyes JC. A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol. 2000;182(6):1507-14.
70. López-Maury L, García-Domínguez M, Florencio FJ, Reyes JC. A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp PCC 6803. Mol Microbiol. 2002;43(1):247-56.
71. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A et al. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 2001;8(5):205-13; 27-53.
72. Sun X, Yu G, Xu Q, Li N, Xiao C, Yin X et al. Putative cobalt- and nickel-binding proteins and motifs in Streptococcus pneumoniae. Metallomics. 2013;5(7):928-35.
73. Diaz-Perez C, Cervantes C, Campos-Garcia J, Julian-Sanchez A, Riveros-Rosas H. Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. Febs J. 2007;274(23):6215-27.
74. Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH. New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol. 2002;179(1):15-25.
75. Henne KL, Nakatsu CH, Thompson DK, Konopka AE. High-level chromate resistance in Arthrobacter sp strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol. 2009;9:199.
76. Nies A, Nies DH, Silver S. Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem. 1990;265(10):5648-53.
77. Zhang YB, Monchy S, Greenberg B, Mergeay M, Gang O, Taghavi S et al. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34. Anton Leeuw Int J G. 2009;96(2):161-70.
78. Alvarez AF, Rodriguez C, Georgellis D. Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. J Bacteriol. 2013;195(13):3054-61.
79. Sharma P, Stagge S, Bekker M, Bettenbrock K, Hellingwerf KJ. Kinase activity of ArcB from Escherichia coli is subject to regulation by both ubiquinone and demethylmenaquinone. PLoS One. 2013;8(10).
80. Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B et al. Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiol. 2006;152:1765-76.
81. Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev. 2003;27(2-3):197-213.
82. Cha JS, Cooksey DA. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer-membrane proteins. Proc Natl Acad Sci U S A. 1991;88(20):8915-9.
83. Trenor C, Lin W, Andrews NC. Novel bacterial P-type ATPases with histidine-rich heavy-metal-associated sequences. Biochem Biophys Res Commun. 1994;205(3):1644-50.
84. Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR. ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol. 2002;43(4):981-91.
85. Vandecraen J, Monsieurs P, Mergeay M, Leys N, Aertsen A, Van Houdt R. Zinc-induced transposition of Insertion Sequence elements contributes to increased adaptability of Cupriavidus metallidurans. Front Microbiol. 2016;7(359).
86. Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017;43(6):709-30.
87. Howieson JG, Dilworth MJ. Working with rhizobia. Australia: Australian Centre for International Agricultural Research (ACIAR); 2016.
88. Bennett S. Solexa Ltd. Pharmacogenomics. 2004;5(4):433-8.
89. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Current Protocols in Bioinformatics. 2010;Chapter 11:Unit 11 5.
90. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108(4):1513-8.
91. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
92. Markowitz VM, Chen IA, Palaniappan K, Chu K, Szeto E, Pillay M et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res. 2014;42(D1):D560-D7.
93. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009;25(17):2271-8.
94. Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955-64.
95. Pruesse E, Quast C, Knittel K, Fuchs BdM, Ludwig W, Peplies J et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188-96.
96. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876-82.
97. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9.
98. Nicholas KB, Nicholas HB, Deerfield DW. GeneDoc: analysis and visualization of genetic variation. EMBnetNews. 1997;4:14.
99. Saitou N, Nei M. Reconstructing phylogenic trees. Mol Biol Evol. 1987:406-25.
100. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39(4):783-91.