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Abstract Glioblastoma Multiforme is a brain cancer that still show poor prognosis

for patients despite the active researches for new treatments. In this work the goal is

to model and simulate the evolution of tumour associated angiogenesis and the ther-

apeutic response of the Glioblastoma Multiforme. Multiple phenomena are modelled

in order to fit different biological pathways, such as, the cellular cycle, apoptosis,

hypoxia or angiogenesis. This results in a nonlinear system with 4 equations and 4

unknowns: the density of tumour cells, the O2 concentration, the density of endothe-

lial cells and the vascular endothelial growth factor concentration. This system is

solved numerically on a 2D-slice of Magnetic Resonance Imaging, using a nonlinear

control volume finite element scheme on a mesh fitting the geometry of the brain and

the tumour of a patient. We show that this implicit volume finite element numeri-

cal scheme is positive and we give energy estimates on the discrete solution to ensure

convergence. The numerical scheme is implicit in time. Numerical simulations of this

scheme have been done using the different standard treatments: surgery, chemother-
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apy and radiotherapy, in order to understand the behaviour of tumour in response to

treatments.

Keywords Glioblastoma Multiforme · Numerical simulations · Treatments model ·
MRI · Finite Volume

Mathematics Subject Classification (2010) 92-10 · 65M08 · 35Q92

1 Introduction

Glioblastoma Multiforme (GBM) is the deadliest and most frequent brain tumour.

Despite the research of new treatments, patients still show poor prognosis in the long

run: only 5% of patients survive 5 years post-prognosis.

Fig. 1: Endothelial cells carry blood vessels providing

nutrients and O2 in the brain. Due to tumour growth,

hypoxic tumour cells are induced by a lack of O2. Hy-

poxic cells produce proangiogenic factors, mainly Vas-

cular Endothelial Growth Factors, that enhance the for-

mation of new blood vessels.

Usually, patients undergo

emergency surgery (if

the surgery is possi-

ble), then the treatment

consists in radiotherapy

plus concomitant and ad-

juvant Temozolomide (TMZ)

therapy (Stupp et al,

2005). More efficient ther-

apies remain a major

preoccupation to cure

GBM, among them, im-

munotherapies is more

and more a subject of re-

search for gliomas (Lim

et al, 2018; Kamran et al,

2018) and could improve

the current prognosis of

GBM patients.

Mathematics have been

used for developing mod-

els matching the be-

haviour of gliomas tu-

mour cells in recent years.

Some models use a spher-

ical tumour growth ap-

proach using Partial Dif-

ferential Equations (PDEs)

(Papadogiorgaki et al,

2013; Stein et al, 2007; Kim et al, 2009), other models approach it using an elastic-

ity (Subramanian et al, 2019) or using evolutionary game theoretical model (Basanta

et al, 2011).



Simulating the behaviour of Glioblastoma Multiforme based on patient MRI during treatments 3

When a patient gets diagnosed with GBM, tumour cells have already achieved enough

tumour promotion mechanisms in order to evade the immune system and to prolif-

erate in the brain. In that sense, we chose to model the GBM growth based on the

process of tumour associated angiogenesis.

Angiogenesis is the ensemble of phenomenon that allow the formation of new blood

vessels from pre-existing blood vessels. Those physiological processes happen not

only for cancer patients, but tumours have the ability to use angiogenesis in their

favor as a tumour promoter (Kim and Lee, 2009). A simplification of the processes

used by tumour cells to induce angiogenesis is proposed in figure 1. Tumour cells

rely on nutrients and O2 for their growth, provided by blood vessels. During tumour

growth, the tumour core lacks O2 inducing hypoxia in the tumour core. Hypoxia

prevents most tumour cellular activities, acting like a tumour suppressor process.

To fight hypoxia, hypoxic tumour cells produce proangiogenic factors such as, Vas-

cular Endothelial Growth Factors (VEGF) are the main factors produced in GBM.

Proangiogenic factors promote angiogenesis meaning that more blood vessels are

produced, and so more nutrients and O2 are provided to the tumour cells. Angiogen-

esis mathematical models have already been developed: using PDEs (Vilanova et al,

2017; Mantzaris et al, 2004; Schugart et al, 2008), some adding stochastic parts in the

modeling (Travasso et al, 2011), or working at a mesoscopic scale (Spill et al, 2015).

However in this work, we consider more realistic situation to the tumour associ-

ated angiogenesis model by working on Magnetic Resonance Imaging (MRIs) data

based on a real patient and by modeling the behaviour of GBM growth through the

treatments usually administered to patients. Indeed MRIs are required to certify the

diagnosis of GBM (Villanueva-Meyer et al, 2017), and it is easier nowadays to get

information from MRI as some deep learning techniques can be used to extract med-

ical data (Lundervold and Lundervold, 2019). With tools like CaPTK (Bakas et al,

2017; Pati et al, 2020), it is possible to perform segmentation of GBM tumours based

on MRI. Recent studies show also that information on the tumour cells behaviour

can be acquired with immunohistochemistry data, for example by identifying GBM

subtypes (Orzan et al, 2020) but we will not consider those different subtypes in this

work. Working on MRI is numerically challenging because on real MRI we can not

have constrained mesh to solve our equations on. Finite volume scheme based on

TPFA (Two Point Flux Approximation) can not ensure the positivity of numerical

solutions. It is then needed to use more sophisticated numerical schemes in order to

ensure the positivity of the solutions. Our approach is based on a CVFE (Control Vol-

ume Finite Element) scheme in which nonlinear numerical Gudonov fluxes are used

to ensure the positivity.

Using real patient data, it is interesting in the long run to include the treatments in

the model to be able to match data and simulations. Currently patients with GBM

are treated using surgery, chemotherapy with TMZ and radiotherapy, we will only

consider those treatments in our model. Chemotherapy and surgery were first used in

PDEs model around gliomas in (Tracqui et al, 1995; Woodward et al, 1996) but more

robust models have been developed: on chemotherapy with hypoxic cells (Hinow

et al, 2009), on surgery and radiotherapy with an haptotaxis model (Enderling et al,

2010) and even on immunotherapy in gliomas (Banerjee et al, 2015). Choosing to

model those treatments will allow us to compare their impact on the GBM growth
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through the recovery of a patient, and so, analyse their advantages and drawbacks on

the tumour cells.

2 The anisotropic degenerate nonlinear angiogenesis model

Let Ω be an open bounded polygonal and connected subset of R
2 and Tf > 0 a fixed

finite time. We denote QTf
= Ω×]0,Tf [ and ΣTf

= ∂Ω×]0,Tf [. Ω represents the area

in the brain where the tumour is developing, here it is obtained from a slice of an pre-

surgery axial MRI of a patient. ∂Ω is then the border of the brain around the skull

and the ventricles if they are on the MRI (it depends on the location of the tumour).

We propose in this work a new model on angiogenesis inspired by works as in (En-

derling et al, 2010) and (Hinow et al, 2009), involving reaction-advection-diffusion

equations around tumour cells and nutrients. In order to exhibit angiogenesis, two

quantity are added into our model: endothelial cells that release O2 in the brain and

VEGF (Vascular Endothelial Growth Factor) that are produced by hypoxic tumour

cells as a help message that enhance the formation of new endothelial cells. The be-

haviour of tumour cells during their spread and treatments is chosen to be described

by the set of equations

∂tu−∇ · (Λ1(x)(a(u)∇u−χ1(u)∇c)) = ρ1h(c) fuT
(u)−β1u−Ttreat(t,u), (1a)

∂tc−∇ · (D2∇c) = α2ue −β2c− γ2uc, (1b)

∂tue −∇ · (Λ3(x)(a(ue)∇ue −χ3(ue)∇v)) = ρ3 fuT
(ue)−β3ue, (1c)

∂tv−∇ · (D4∇v) = α4g(c)u−β4v− γ4uev. (1d)

We associated with (1a)-(1d) homogeneous zero-flux boundary conditions

(Λ1(x)a(u)∇u−Λ1(x)χ1(u)∇c) ·~n = 0, (2a)

D2∇c ·~n = 0, (2b)

(Λ3(x)a(ue)∇ue −Λ3(x)χ3(ue)∇v) ·~n = 0, (2c)

D4∇v ·~n = 0. (2d)

These conditions model the no exchange between the brain and the rest of the body.

For each quantity, we associated an initial condition on Ω given by

w(x, t = 0) = w0(x),∀x ∈ Ω ,w = u,c,ue,v. (3)

In the model (1a)-(1d), u is the ratio between the number of tumour cells per cm2

and the maximum tissue capacity umax (u is normalized between 0 and 1), c is the

concentration in O2 in µmol ·cm−2, ue is the ratio between the number of endothelial

cells per cm2 and the maximum tissue capacity umax (ue is normalized between 0 and

1) and v is the concentration in Vascular Endothelial Growth Factor (VEGF) in µmol ·
cm−2. The sum of the two cellular populations is uT = u+ue. The functions a(·), χ·(·)
and fuT

(·) are the cell-density dependant coefficients for diffusion, chemotaxis and

growth rate respectively. g(·) is the O2-dependant VEGF production by tumour cells

function and h(·) is a O2-dependant threshold allowing mitosis for tumour cells under
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normoxic conditions. Λ1(x) and Λ3(x) are the medium-dependant diffusion tensor for

tumour cells and endothelial cells respectively. The diffusion of cells depends on the

white matter, the grey matter and the post-surgical area. D2 and D4 are the isotropic

diffusion tensors associated with O2 and VEGF respectively. ρ1 is the growth rate of

tumour cells, α2 is the production rate of O2 by endothelial cells, ρ3 is the growth

rate of endothelial cells and α4 is the production rate of VEGF by tumour cells. β1

and β3 are the apoptosis rates of tumour cells and endothelial cells respectively, β2

and β4 are the degradation rates of O2 and VEGF respectively. γ2 is the consumption

rate of O2 by tumour cells and γ4 is the consumption rate of VEGF by endothelial

cells. The map Ttreat(·, ·) represents the loss of tumour cells due to treatments.

We give the main assumptions of the model (1a)-(3):

(A1) The cell-density diffusion function a : R → R
+ is a continuous function such

that a(y)> 0,∀y ∈]0,1[ and a(y) = 0,∀y ∈ R\]0,1[.
(A2) The cell-density chemotaxis function χm : R → R

+,m = 1,3 is a continuous

function such that χm(y) > 0,∀y ∈]0,1[ and χm(y) = 0,∀y ∈ R\]0,1[. Further-

more, we assume there exists a function µm ∈ C (R,R+),m = 1,3, such that

µm(y) =
a(y)

χm(y)
,∀y ∈]0,1[ and µm(y) = 0,∀y ∈ R\]0,1[.

(A3) The diffusion tensor Λm(y),m = 1,3 is a bounded, uniformly positive definite

tensor on Ω , that is there exists Λ down
m ,Λ up

m > 0 with

0 < Λ down
m |y|2 ≤ (Λm(y)y|y)≤ Λ up

m |y|2,m = 1,3,∀y ∈ R
2\{0}.

(A4) All coefficients from (1a)-(1d) are positive

ρ1,β1,α2,β2,γ2,ρ3,β3,α4,β4,γ4 ≥ 0.

(A5) The function fuT
(y) ∈ C (R,R+) is

fuT
(y) = y(1−uT )

+
1[0,1](y), (4)

where x+ = x+|x|
2

.

(A6) The initial functions are in L2(Ω) and follow these inequalities

u0,c0,ue0
,v0 ≥ 0, a.e. in Ω and u0,ue0

≤ 1, a.e. in Ω .

(A7) g(·) is a piecewise function that allows the production of VEGF by tumour cells

only if the tumour cells are in an hypoxic environment and h(·) is the Heaviside

step function around the hypoxia threshold

g(y) = y1[cnecro,chypo](y), h(y) = Hchypo
(y) = 1[chypo,+∞[(y).

cnecro is the threshold under which cells start to necrose and chypo is the thresh-

old under which cells lack of O2 to be able to function normally.

(A8) The treatment map Ttreat : R
+ × R → R

+ is positive, piecewise in time and

in space. In this work the available treatments are surgery, chemotherapy and

radiotherapy. The map Ttreat(·, ·) models chemotherapy and radiotherapy and

can be reconstructed by Ttreat(t,y) = Tchemo(t,y)+Tradio(t,y). Moreover ∀t ∈
R
+,∀y ∈ R

− : Ttreat(t,y) = 0.
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2.1 Weak Solution

In order to ensure positivity of the solution in its discrete form we use the following

set of functions defined on R

η(v) = max(0,min(0,v)), p(v) =
∫ v

1

ds

η(s)
, (5)

η(v)p(v) = 0,∀v ≤ 0,

A (v) =
∫ v

0
a(s)ds, ξ (v) =

∫ v

0

√

a(s)ds, (6)

for the same ideas as in (Cancès and Guichard, 2016; Cancès et al, 2017; Foucher

et al, 2018).

Definition (Weak Solution): Under assumptions (A1)-(A8), we say that the set of

measurable functions (u,c,ue,v) is a weak solution of (1a)-(3) if

0 ≤ u(t,x),ue(t,x)≤ 1,c(t,x),v(t,x)≥ 0, for a.e. in QTf
,

ξ (u) ∈ L2([0,Tf ];H1(Ω)), and ∀ϕi ∈ D(Ω̄ × [0,Tf [), i = 1, ...,4)) one has

◦−
∫∫

QTf

u∂tϕ1dxdt −
∫

Ω
u0(x)ϕ

0
1 dx

+
∫∫

QTf

(
√

a(u)Λ1(x)∇ξ (u)−Λ1(x)χ1(u)∇c) ·∇ϕ1dxdt

=
∫∫

QTf

(ρ1h(c) fuT
(u)−β1u−Ttreat(t,u))ϕ1dxdt,

(7)

◦−
∫∫

QTf

c∂tϕ2dxdt −
∫

Ω
c0(x)ϕ

0
2 dx+

∫∫

QTf

D2∇c ·∇ϕ2dxdt

=
∫∫

QTf

(α2ue −β2c− γ2uc)ϕ2dxdt,
(8)

◦−
∫∫

QTf

ue∂tϕ3dxdt −
∫

Ω
ue0

(x)ϕ0
3 dx

+
∫∫

QTf

(
√

a(ue)Λ3(x)∇ξ (ue)−Λ3(x)χ3(ue)∇v) ·∇ϕ3dxdt

=
∫∫

QTf

(ρ3 fuT
(ue)−β3ue)ϕ3dxdt,

(9)

◦−
∫∫

QTf

v∂tϕ4dxdt −
∫

Ω
v0(x)ϕ

0
4 dx+

∫∫

QTf

D4∇v ·∇ϕ4dxdt

=
∫∫

QTf

(α4g(c)u−β4v− γ4uev)ϕ4dxdt.

(10)
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3 The nonlinear CVFE scheme for system

The discretization of (1a)-(1d) is chosen following the work of (Foucher et al, 2018),

it uses two types of approximations: a conforming FE approximation for diffusion

terms, namely second terms in system (1a)-(1d), and a decentered finite volume for

haptotaxis terms, namely the third terms in equation (1a) and (1c). The finite element

approximation is done over a primal triangular mesh and the finite volume approxi-

mation is done over a dual barycentric mesh.

Let T be a conforming triangulation of the domain Ω , we denote by ϑ the set of

vertices and E the set of edges in T . hT = max
J∈T

hJ is the size of the triangulation T ,

where hJ is the diameter of the triangle J and θT = max
I∈T

hJ
ρJ

is the regularity of the

mesh, where ρJ diameter of the incircle of the triangle J. For every vertex K ∈ ϑ , we

denote by xK its coordinates, EK the set of edges having the vertex K as an extremity

and TK the set of triangles that have K as a vertex. If two vertices K and L are joined

by an edge then we denote this edge by σKL.

For every vertex K ∈ ϑ , we associate its dual element ωK constructed by connecting

the barycenters of the triangles in TK with the barycenters of the edges in EK , the

2-dimensional Lebesgue measure of ωK is mK . We denote by M the dual-mesh and

HT the P1-finite element space on Ω defined by

HT = {φ ∈ C 0(Ω̄) : φ|J ∈ P1(R),∀J ∈ T }.

We associate HT with its canonical basis (ΦK)K∈ϑ . Furthermore, we consider the

discrete control volume space χM on Ω defined by

χM = {φ : Ω → R̄ measurable,φ|ωK
is constant ,∀K ∈ ϑ}.

In this paper, we choose a uniform time discretization with a time step δ t =
Tf

N+1
,

where N is a nonnegative integer and we set tn = nδ t, for all n ∈ J0,N +1K.

For a given (wn
K)K∈ϑ ,n∈J0,N+1K, there exists a unique finite element reconstruction

wT ,δ t and a unique constant piecewise reconstruction wM ,δ t such that

wT ,δ t(t,x) = wn
T := ∑

K∈ϑ

wn
KΦK(x), ∀x ∈ Ω ,∀t ∈ (tn−1, tn],

wM ,δ t(t,x) = wn
K , ∀x ∈ ωK ,∀t ∈ (tn−1, tn],

w = u,c,ue,v.

The nonlinear CVFE scheme for the discretization of system (1a)-(3) is given by the

following set of equations

w0
K =

1

mK

∫

ωK

w0(y)dy,∀K ∈ ϑ , with w = u,c,ue,v, (11)
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and ∀K ∈ ϑ ,∀n ∈ J0,NK

◦
mK

δ t
(un+1

K −un
K)+ ∑

σKL∈EK

Λ
(1)
KL an+1

KL (un+1
K −un+1

L )

− ∑
σKL∈EK

Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K − cn+1
L ) = mKρ1h(cn+1

K ) f
un+1

T,K
(un+1

K )

−mKβ1un+1
K −mKTtreat(tn+1,u

n+1
K ),

(12)

◦
mK

δ t
(cn+1

K − cn
K)+ ∑

σKL∈EK

D
(2)
KLηn+1

KL (p(cn+1
K )− p(cn+1

L ))

= mKα2un+1
e,K −mKβ2cn+1

K − γ2un+1
K cn+1

K ,

(13)

◦
mK

δ t
(un+1

e,K −un
e,K)+ ∑

σKL∈EK

Λ
(3)
KL ãn+1

KL (un+1
e,K −un+1

e,L )

− ∑
σKL∈EK

Λ
(3)
KL ãn+1

KL µ̃n+1
KL (vn+1

K − vn+1
L )

= mKρ3 f
un+1

T,K
(un+1

e,K )−mKβ3un+1
e,K ,

(14)

◦
mK

δ t
(vn+1

K − vn
K)+ ∑

σKL∈EK

D
(4)
KLη̄n+1

KL (p(vn+1
K )− p(vn+1

L ))

= mKα4g(cn+1
K )un+1

K −mKβ4vn+1
K − γ4un+1

e,K vn+1
K .

(15)

In the above system, we have used a Finite Element approximation for the diffusion

fluxes where the stiffness coefficients are given by

{

Λ
(m)
KL =−

∫

Ω Λm(x) ·∇ΦK(x) ·∇ΦL(x)dx m = 1,3,

D
(i)
KL =−

∫

Ω Di∇ΦK(x) ·∇ΦL(x)dx, i = 2,4.
(16)

We define the intervals

I n+1
KL = [min(un+1

K ,un+1
L ),max(un+1

K ,un+1
L )],

I
n+1
KL = [min(un+1

e,K ,un+1
e,L ),max(un+1

e,K ,un+1
e,L )],

J n+1
KL = [min(cn+1

K ,cn+1
L ),max(cn+1

K ,cn+1
L )],

J
n+1
KL = [min(vn+1

K ,vn+1
L ),max(vn+1

K ,vn+1
L )],

to build a Godunov approximation for an+1
KL , ãn+1

KL , ηn+1
KL and η̄n+1

KL

an+1
KL =











max
s∈I n+1

KL

a(s), if Λ
(1)
KL ≥ 0,

min
s∈I n+1

KL

a(s), if Λ
(1)
KL < 0,

, ãn+1
KL =











max
s∈I

n+1
KL

a(s), if Λ
(3)
KL ≥ 0,

min
s∈I

n+1
KL

a(s), if Λ
(3)
KL < 0,

(17)

ηn+1
KL =











max
s∈J n+1

KL

η(s), if D
(2)
KL ≥ 0,

min
s∈J n+1

KL

η(s), if D
(2)
KL < 0,

, η̄n+1
KL =











max
s∈J

n+1
KL

η(s), if D
(4)
KL ≥ 0,

min
s∈J

n+1
KL

η(s), if D
(4)
KL < 0.

(18)
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Those terms are useful to ensure the positivity of the quantities. The functions µ1 and

µ3 are approximated using an upwind scheme

µn+1
KL =

{

µ
(1)
↓ (un+1

K )+µ
(1)
↑ (un+1

L ), if Λ
(1)
KL (c

n+1
K − cn+1

L )≥ 0,

µ
(1)
↑ (un+1

K )+µ
(1)
↓ (un+1

L ), if Λ
(1)
KL (c

n+1
K − cn+1

L )< 0,
(19)

µ̃n+1
KL =

{

µ
(3)
↓ (un+1

e,K )+µ
(3)
↑ (un+1

e,L ), if Λ
(3)
KL (v

n+1
K − vn+1

L )≥ 0,

µ
(3)
↑ (un+1

e,K )+µ
(3)
↓ (un+1

e,L ), if Λ
(3)
KL (v

n+1
K − vn+1

L )< 0,
(20)

where the functions µ
(1)
↓ , µ

(1)
↑ , µ

(3)
↓ and µ

(3)
↑ are given by

µ
(m)
↑ (z) =

∫ z

0
(µ ′

m(y))
+dy µ

(m)
↓ (z) =−

∫ z

0
(µ ′

m(y))
−dy, m = 1,3,

∀x ∈ R, x = x+− x−, x+ = max(0,x) and x− = max(0,−x).

The description of all variables, coefficients, functions, spaces and mesh components

are sum up in the supplementary tables 5-9.

4 Discrete properties

4.1 Positivity and upper-boundedness of quantities

Proposition 1 (Positivity of tumour cells concentration) Let’s suppose that u0
K ≥ 0

(resp. u0
e,K ≥ 0) for all K ∈ ϑ , then for all n ∈ J1,N+1K the solution (un

K)K∈ϑ of (12)

(resp. (un
e,K)K∈ϑ of (14)) is positive.

Proof We will show the result only for un but the same steps are followed for showing

the positivity of un
e . This proof works by induction on n, let’s suppose that for a

n ∈ J0,NK we have un
K ≥ 0,∀K ∈ ϑ .

Let’s uK⋆ = un+1
K⋆

= min
M∈ϑ

un+1
M and ∀L ∈ ϑ ,uL = un+1

L . Then by multiplying the equa-

tion of (12) associated to K⋆ by −u−K⋆
, we get

mK

δ t
u−

2

K⋆
+

mK

δ t
un

Ku−K⋆
− ∑

σKL∈EK

Λ
(1)
KL an+1

KL (uK⋆ −uL)u
−
K⋆

+ ∑
σKL∈EK

Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K − cn+1
L )u−K⋆

=−mKρ1h(cn+1
K ) f

un+1
T,K

(uK⋆)u
−
K⋆

−mKβ1u−
2

K⋆
+mKTtreat(tn+1,uK⋆)u

−
K⋆
, (21)

but according to assumptions (A5) and (A8), the functions fuT
(·) and Ttreat(t, ·) are

extended by zero outside of [0,1], which implies that

f
un+1

T,K
(uK⋆)u

−
K⋆

= 0 and Ttreat(tn+1,uK⋆)u
−
K⋆

= 0.
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Then, if Λ
(1)
KL < 0 we have an+1

KL u−K⋆
= 0 due to the fact that a(·) is extended by zero

outside of [0,1], implying that

− ∑
σKL∈EK

Λ
(1)
KL an+1

KL (uK⋆ −uL)u
−
K⋆

=− ∑
σKL∈EK

Λ
(1)+

KL an+1
KL (uK⋆ −uL)u

−
K⋆
.

(uK⋆ −uL) ≥ 0 due to the definition of uK⋆ and Λ
(1)+

KL an+1
KL ≥ 0, so we have the posi-

tivity of the third term in (21)

− ∑
σKL∈EK

Λ
(1)
KL an+1

KL (uK⋆ −uL)u
−
K⋆

≥ 0. (22)

For the fourth term in (21) we have

µ
(1)
↓ (uK⋆)+µ

(1)
↑ (uL) = µ1(uK⋆)−µ1(0)+

∫ uL

uK⋆

(µ ′
1(s))

+ds,

µ
(1)
↑ (uK⋆)+µ

(1)
↓ (uL) = µ1(uK⋆)−µ1(0)−

∫ uL

uK⋆

(µ ′
1(s))

−ds,

so, since uK⋆ ≤ uL, we deduce that

(µ
(1)
↓ (uK⋆)+µ

(1)
↑ (uL))u

−
K⋆

=+u−K⋆

∫ uL

uK⋆

(µ ′
1(s))

+ds ≥ 0,

(µ
(1)
↑ (uK⋆)+µ

(1)
↓ (uL))u

−
K⋆

=−u−K⋆

∫ uL

uK⋆

(µ ′
1(s))

−ds ≤ 0.

According to the definitions an+1
KL in (17) and µn+1

KL in (19), we have Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K −

cn+1
L )u−K⋆

≥ 0 whenever the sign of Λ
(1)
KL (c

n+1
K − cn+1

L ), which gives the positivity of

the fourth term in (21)

+ ∑
σKL∈EK

Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K − cn+1
L )u−K⋆

≥ 0. (23)

With inequalities (22) and (23), we can then conclude that the left hand side of (21)

is positive. However

mK

δ t
u−

2

K⋆
+

mK

δ t
un

Ku−K⋆
− ∑

σKL∈EK

Λ
(1)
KL an+1

KL (uK⋆ −uL)u
−
K⋆

+ ∑
σKL∈EK

Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K − cn+1
L )u−K⋆

=−mKβ1u−
2

K⋆
≤ 0,

So all the terms on the left-side of the above inequality are null because they were

non-negative, implying that mK

δ t
u−

2

K⋆
= 0, giving the result from the proposition. ⊓⊔

Proposition 2 (Boundedness of tumour cells concentration) Let’s suppose that

0 ≤ u0
K ≤ 1 (resp. 0 ≤ u0

e,K ≤ 1) for all K ∈ ϑ , then for all n ∈ J1,N + 1K the so-

lution (un
K)K∈ϑ of (12) (resp. (un

e,K)K∈ϑ of (14)) is upper-bounded by 1.



Simulating the behaviour of Glioblastoma Multiforme based on patient MRI during treatments 11

Proof We will show the result only for un but the same steps are followed for showing

that un
e upper-bounded. This proof works by induction on n, let’s suppose that for a

n ∈ J0,NK we have un
K ≤ 1,∀K ∈ ϑ .

Let’s uK⋆ = un+1
K = max

H∈ϑ
un+1

H and ∀L ∈ ϑ ,uL = un+1
L . Then by multiplying the equa-

tion of (12) associated with K⋆ by (1−uK⋆)−, we get

mK

δ t
|(1−uK⋆)−|2 +

mK

δ t
(1−un

K)(1−uK⋆)−

+ ∑
σKL∈EK

Λ
(1)
KL an+1

KL (uK⋆ −uL)(1−uK⋆)−

− ∑
σKL∈EK

Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K − cn+1
L )(1−uK⋆)−

= mKρ1h(cn+1
K ) f

un+1
T,K

(uK⋆)(1−uK⋆)−

−mKβ1uK⋆(1−uK⋆)−−mKTtreat(tn+1,uK⋆)(1−uK⋆)−. (24)

Using proposition 1, we know that uK⋆ ≥ uL ≥ 0,∀L ∈ ϑ . If Λ
(1)
KL < 0, we have

an+1
KL (1−uK⋆)− = 0 due to the fact that a(·) is set to zero outside of [0,1]. So knowing

that an+1
KL ≥ 0, we have

Λ
(1)
KL an+1

KL (1−uK⋆)− ≥ 0,

then observing that (uK⋆ −uL)≥ 0, we conclude that the third term in (24) is positive

+ ∑
σKL∈EK

Λ
(1)
KL an+1

KL (uK⋆ −uL)(1−uK⋆)− ≥ 0. (25)

The function fuT
(·) is extended by zero outside of [0,1], implying that f

un+1
T,K

(uK⋆)(1−

uK⋆)− = 0. Since (uL ≤ uK⋆) and

µ
(1)
↓ (uK⋆)+µ

(1)
↑ (uL) = µ1(uK⋆)−µ1(0)−

∫ uK⋆

uL

(µ ′
1(s))

+ds,

µ
(1)
↑ (uK⋆)+µ

(1)
↓ (uL) = µ1(uK⋆)−µ1(0)+

∫ uK⋆

uL

(µ ′
1(s))

−ds,

we have

(µ
(1)
↓ (uK⋆)+µ

(1)
↑ (uL))(1−uK⋆)− =−(1−uK⋆)−

∫ uK⋆

uL

(µ ′
1(s))

+ds ≤ 0,

(µ
(1)
↑ (uK⋆)+µ

(1)
↓ (uL))(1−uK⋆)− =+(1−uK⋆)−

∫ uK⋆

uL

(µ ′
1(s))

−ds ≥ 0.

So whenever the sign of Λ
(1)
KL (c

n+1
K − cn+1

L )

Λ
(1)
KL (c

n+1
K − cn+1

L )µn+1
KL (1−uK⋆)− ≤ 0,
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and, having an+1
KL ≥ 0, we conclude that the fourth term in (24) is positive

− ∑
σKL∈EK

Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K − cn+1
L )(1−uK⋆)− ≥ 0. (26)

With (25), (26) and the positivity of Ttreat(·, ·), we conclude also that

mK

δ t
|(1−uK⋆)−|2+

mK

δ t
(1−un

K)(1−uK⋆)−+ ∑
σKL∈EK

Λ
(1)
KL an+1

KL (uK⋆−uL)(1−uK⋆)−

− ∑
σKL∈EK

Λ
(1)
KL an+1

KL µn+1
KL (cn+1

K − cn+1
L )(1−uK⋆)−

=−mKβ1uK⋆(1−uK⋆)−−mKTtreat(tn+1,uK⋆)(1−uK⋆)− ≤ 0.

So all terms on left side of (24) being non-negative, they are null, in particular:
mK

δ t
(1−uK⋆)−

2
= 0, then (1−uK⋆)− = 0, which gives the result of this proposition.

⊓⊔

Proposition 3 (Positivity of O2 and VEGF) Let’s suppose that c0
K ≥ 0 (resp. v0

K ≥ 0)

for all K ∈ ϑ , then for all n ∈ J0,N +1K the solution (cn
K)K∈ϑ of (13) (resp. (vn

K)K∈ϑ

of (15)) is positive.

Proof We will show the result only for cn but the same steps are followed for showing

the positivity of vn. This proof works by induction on n, let’s suppose that for a

n ∈ J0,NK we have cn
K ≥ 0,∀K ∈ ϑ .

Let’s cK⋆ = cn+1
K = min

H∈ϑ
cn+1

H and ∀L ∈ϑ ,cL = cn+1
L . Then by multiplying the equation

of (13) associated with K⋆ by −c−K⋆
, we get

mK

δ t
c−

2

K⋆
+

mK

δ t
c−K⋆

cn
K − ∑

σKL∈EK

D
(2)
KLηn+1

KL (p(cK⋆)− p(cL))c
−
K⋆

=−mKα2un+1
e c−K⋆

−mKβ2c−
2

K⋆
− γ2un+1

K c−
2

K⋆
. (27)

Using the results of proposition 1 and 2, we have un+1
e ,un+1

K ≥ 0, implying that

−mKα2un+1
e c−K⋆

≤ 0, −mKβ2c−
2

K⋆
≤ 0 and − γ2un+1

K c−
2

K⋆
≤ 0.

If D
(2)
KL < 0 then ηn+1

KL c−K⋆
= 0. Observing that µn+1

KL ≥ 0 and that the function p(·) is

non-decreasing on R, we have (p(cK⋆)− p(cL))≤ 0, meaning that

− ∑
σKL∈EK

D
(2)
KLηn+1

KL (p(cK⋆)− p(cL))c
−
K⋆

=− ∑
σKL∈EK

(D
(2)
KL)

+ηn+1
KL (p(cK⋆)− p(cL))c

−
K⋆

≥ 0. (28)

Then

mK

δ t
c−

2

K⋆
+

mK

δ t
c−K⋆

cn
K − ∑

σKL∈EK

D
(2)
KLηn+1

KL (p(cK⋆)− p(cL))c
−
K⋆

=−mKα2un+1
e c−K⋆

−mKβ2c−
2

K⋆
− γ2un+1

K c−
2

K⋆
≤ 0.
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The terms on the left-side of (27) being non-negative, we conclude that they are all

null. In particular c−
2

K⋆
= 0, which completes the proof of the proposition. ⊓⊔

Remark 1 Notice that we could consider a semi-implicit scheme by replacing cn+1

by cn in (12), un+1 by un in (13) and (15), vn+1 by vn in (14), un+1
e by un

e in (13) and

(15) and the propositions 1,2 and 3 would still hold.

4.2 Algorithm to get the discrete solution (12)-(15)

In this work, we propose an iterative algorithm in order to get the discrete solution

of the implicit numerical scheme (12)-(15). The main idea of this algorithm is to

solve the nonlinear system (12)-(15) with an iterative method that has a simplest

numerical complexity and that converges to the solution of the implicit numerical

scheme. Let’s suppose that ∇c0 and ∇v0 are in L2(Ω) and consider a given solution

Π n
T = (un

K ,c
n
K ,u

n
e,K ,v

n
K)K∈ϑ for a given n. We look for the solution Π n+1

T at tn+1 as

the limit of the following iterative process when m →+∞:

Initialisation: w
(0)
K = wn

K , ∀K ∈ ϑ , w = u,c,ue,v.

For m ≥ 0,

◦
mK

δ t
(um+1

K −u
(0)
K )+ ∑

σKL∈EK

Λ
(1)
KL am+1

KL (um+1
K −um+1

L )

− ∑
σKL∈EK

Λ
(1)
KL am+1

KL µm+1
KL (cm

K − cm
L )

= mKh(cm
K)ρ1 fum

T,K
(um+1

K )−mKβ1um+1
K −mKTtreat(tm+1,u

m+1
K ),

(29)

◦
mK

δ t
(cm+1

K − c
(0)
K )+ ∑

σKL∈EK

D
(2)
KLηm+1

KL (p(cm+1
K )− p(cm+1

L ))

= mKα2um
e,K −mKβ2cm+1

K − γ2um
Kcm+1

K ,

(30)

◦
mK

δ t
(um+1

e,K −u
(0)
e,K)+ ∑

σKL∈EK

Λ
(3)
KL ãm+1

KL (um+1
e,K −um+1

e,L )

− ∑
σKL∈EK

Λ
(3)
KL ãm+1

KL µ̃m+1
KL (vm

K − vm
L )

= mKρ3 fum
T,K

(um+1
e,K )−mKβ3um+1

e,K ,

(31)

◦
mK

δ t
(vm+1

K − v
(0)
K )+ ∑

σKL∈EK

D
(4)
KLη̄m+1

KL (p(vm+1
K )− p(vm+1

L ))

= mKα4g(cm
K)u

m
K −mKβ4vm+1

K − γ4um
e,Kvm+1

K .

(32)

Observe that at each iteration m, the system (29)-(32) is non-coupled, its resolution

consists of four independent equations which is easier to solve than (12)-(15).

Let τ(n) : X̃ = (ũ, c̃, ũe, ṽ) 7→ X = (u,c,ue,v) be the application that for the vector

X̃ = (ũ, c̃, ũe, ṽ)∈ (R#ϑ )4 associates the solution X = (u,c,ue,v) of (29)-(32). Replac-

ing (um,cm,um
e ,v

m) by X̃ and (um+1,cm+1,um+1
e ,vm+1) by X , the iterative method is
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equivalent to
{

Xm+1 = τ(n)(Xm),

X0 ∈ E = {(w,x,y,z) ∈ (R#ϑ )4 : 0 ≤ w,y ≤ 1 and 0 ≤ x,z}.
(33)

Note that if the sequence (Xm)m converges, then Xm →
m→∞

Π n+1
T .

Let’s remember that 0 ≤ un
K ,u

n
e,K ≤ 1 and cn

K ,v
n
K ≥ 0 for all K ∈ ϑ and n ≥ 0, so the

solutions of the iterative method follow 0 ≤ um,um
e ≤ 1 and cm,vm ≥ 0 for all m ≥ 0

due to Proposition 1-3 and Remark 1.

To prove the existence of the solution of (29)-(32) and that the application τ(n) is well

defined, we will use the following energy estimates on the iterative method.

Lemma 1 There exists C1(Λ1,θT ),C2(D2,θT )> 0 such that:

∑
σKL∈E

|Λ
(1)
KL |a

m+1
KL (um+1

K − um+1
L )2 ≤ C1 ∑

σKL∈E

Λ
(1)
KL am+1

KL (um+1
K − um+1

L )2, (34)

∑
σKL∈E

|D
(2)
KL|η

m+1
KL (p(cm+1

K )− p(cm+1
L ))2

≤C2 ∑
σKL∈E

D
(2)
KLηm+1

KL (p(cm+1
K )− p(cm+1

L ))2. (35)

Proof This comes from Lemma 3.1-3.3 in (Cancès and Guichard, 2016). (um+1
eK

)K

(resp. (vm+1
K )K) follows the same inequality as (um+1

K )K (resp. (cm+1
K )K) with a con-

stant C3(Λ3,θT ) (resp. C4(D4,θT )). ⊓⊔

Lemma 2 There exists C5(D2,θT ),C6(D4,θT ) such that

∑
σKL∈E

|D
(2)
KL|η

m+1
KL (p(cm+1

K )− p(cm+1
L ))(cm+1

K − cm+1
L )

≤C5 ∑
σKL∈E

D
(2)
KLηm+1

KL (p(cm+1
K )− p(cm+1

L ))(cm+1
K − cm+1

L ), (36)

∑
σKL∈E

|D
(4)
KL|η̄

m+1
KL (p(vm+1

K )− p(vm+1
L ))(vm+1

K − vm+1
L )

≤C6 ∑
σKL∈E

D
(4)
KLη̄m+1

KL (p(vm+1
K )− p(vm+1

L ))(vm+1
K − vm+1

L ). (37)

Proof The proof relies on the fact that

∑
σKL∈E

|D
(2)
KL|η

m+1
KL (p(cm+1

K )− p(cm+1
L ))(cm+1

K − cm+1
L )

= ∑
σKL∈E

p(cm+1
K )6=p(cm+1

L )

|D
(2)
KL|η

m+1
KL (p(cm+1

K )− p(cm+1
L ))2 (cm+1

K − cm+1
L )

(p(cm+1
K )− p(cm+1

L ))
,
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and that the quantity
(cm+1

K −cm+1
L )

(p(cm+1
K )−p(cm+1

L ))
is nonnegative because p(·) is non decreasing,

we can then use the same arguments than Lemma 3.1-3.3 in (Cancès and Guichard,

2016) to show that

∑
σKL∈E

p(cm+1
K ) 6=p(cm+1

L )

|D
(2)
KL|η

m+1
KL (p(cm+1

K )− p(cm+1
L ))2 (cm+1

K − cm+1
L )

(p(cm+1
K )− p(cm+1

L ))

≤C5 ∑
σKL∈E

p(cm+1
K )6=p(cm+1

L )

D
(2)
KLηm+1

KL (p(cm+1
K )− p(cm+1

L ))2 (cm+1
K − cm+1

L )

(p(cm+1
K )− p(cm+1

L ))
.

The same arguments are used for the inequality in v. ⊓⊔

Proposition 4 (Existence of a discrete solution) For n∈ J0,NK and ∀m≥ 0 there ex-

ists a solution (um+1,cm+1,um+1
e ,vm+1) from equations (29)-(32) with 0≤ um+1,um+1

e ≤
1 and cm+1,vm+1 ≥ 0

Proof This works by induction on m.

Let’s consider the application: W =(Wu,Wc,Wue ,Wv) : (R#ϑ )4 → (R#ϑ )4 where ∀K ∈
ϑ , for n ∈ J0,NK and ∀m ≥ 0

◦ (Wu(y))K = mK

yK −un
K

δ t
+ ∑

σKL∈εK

Λ
(1)
KL am+1

KL (yK − yL)

− ∑
σKL∈εK

Λ
(1)
KL am+1

KL µm+1
KL (cm

K − cm
L )−mKρ1h(cm

K) fum
T,K

(yK)

+mKβ1yK +mKTtreat(tm+1,yK),

(38)

◦ (Wc(y))K =
mK

δ t
(yK − cn

K)+ ∑
σKL∈EK

D
(2)
KLηm+1

KL (p(yK)− p(yL))

−mKα2um
e,K +mKβ2yK + γ2um

KyK ,

(39)

◦ (Wue(y))K =
mK

δ t
(yK −un

e,K)+ ∑
σKL∈EK

Λ
(3)
KL ãm+1

KL (yK − yL)

− ∑
σKL∈EK

Λ
(3)
KL ãm+1

KL µ̃m+1
KL (vm

K − vm
L )

−mKρ3 fum
T,K

(yK)+mKβ3yK ,

(40)

◦ (Wv(y))K =
mK

δ t
(yK − vn

K)+ ∑
σKL∈EK

D
(4)
KLη̄m+1

KL (p(yK)− p(yL))

−mKα4g(cm
K)u

m
K +mKβ4yK + γ4um

e,KyK .

(41)

Observe that if W (um+1,cm+1,um+1
e ,vm+1) = 0 then (um+1,cm+1,um+1

e ,vm+1) is a

solution of (29)-(32).

The aim in the first step is to prove that ∃k ≥ 0,∀‖y‖2 > k : (W (y),y) ≥ 0. So we

develop the expression of (W (y),y) = (Wu(yu),yu)+(Wc(yc),yc)+(Wue(yue),yue)+
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(Wv(yv),yv),y = (yu,yc,yue ,yv) to build inequalities. We have

◦ (Wu(y),y) = ∑
K∈ϑ

mK

δ t
y2

K − ∑
K∈ϑ

mK

δ t
un

KyK + ∑
σKL∈E

Λ
(1)
KL am+1

KL (yK − yL)
2

− ∑
σKL∈E

Λ
(1)
KL am+1

KL µm+1
KL (cm

K − cm
L )(yK − yL)− ∑

K∈ϑ

mKρ1h(cm
K) fum

T,K
(yK)yK

+ ∑
K∈ϑ

mKβ1y2
K + ∑

K∈ϑ

mKTtreat(tm+1,yK)yK ,

◦ (Wc(y),y) = ∑
K∈ϑ

mK

δ t
y2

K − ∑
K∈ϑ

mK

δ t
cn

KyK + ∑
σKL∈E

D
(2)
KLηm+1

KL (p(yK)− p(yL))(yK − yL)

− ∑
K∈ϑ

mKα2um
e,KyK + ∑

K∈ϑ

mKβ2y2
K + ∑

K∈ϑ

γ2um
Ky2

K ,

◦ (Wue(y),y) = ∑
K∈ϑ

mK

δ t
y2

K − ∑
K∈ϑ

mK

δ t
un

e,KyK + ∑
σKL∈E

Λ
(3)
KL ãm+1

KL (yK − yL)
2

− ∑
σKL∈E

Λ
(3)
KL ãm+1

KL µ̃n+1
KL (vm

K − vm
L )(yK − yL)

− ∑
K∈ϑ

mKρ3 fum
T,K

(yK)yK + ∑
K∈ϑ

mKβ3y2
K ,

◦ (Wv(y),y) = ∑
K∈ϑ

mK

δ t
y2

K − ∑
K∈ϑ

mK

δ t
vn

KyK + ∑
σKL∈E

D
(4)
KLη̄m+1

KL (p(yK)− p(yL))(yK − yL)

− ∑
K∈ϑ

mKα4g(cm
K)u

m
KyK + ∑

K∈ϑ

mKβ4y2
K + ∑

K∈ϑ

γ4um
e,Ky2

K .

With Lemma 1, we know that ∑σKL∈E Λ
(1)
KL am+1

KL (yK −yL)
2 ≥ 0, ∑σKL∈E Λ

(3)
KL ãm+1

KL (yK −

yL)
2 ≥ 0 and with Lemma 2 we have ∑σKL∈E D

(2)
KLηm+1

KL (p(yK)− p(yL))(yK −yL)≥ 0,

∑σKL∈E D
(4)
KLη̄m+1

KL (p(yK)− p(yL))(yK −yL)≥ 0 because p(·) is non decreasing on R.

Then we have ∀λ > 0

− ∑
σKL∈E

Λ
(1)
KL am+1

KL µm+1
KL (cm

K − cm
L )(yK − yL)

≥−
λ 2

2
∑

σKL∈E

(ΛKLam+1
KL µm+1

KL (cm
K − cm

L ))
2 −

1

2λ 2 ∑
σKL∈E

(yK − yL)
2

−
λ 2

2
∑

σKL∈E

(ΛKLaL∞(R)µL∞(R)(c
m
K − cm

L ))
2 −

2

λ 2
(#E )‖y‖2

2,

and

− ∑
σKL∈E

Λ
(3)
KL ãm+1

KL µ̃m+1
KL (vm

K − vm
L )(yK − yL)

≥−
λ 2

2
∑

σKL∈E

(Λ
(3)
KL ãm+1

KL µ̃m+1
KL (vm

K − vm
L ))

2 −
1

2λ 2 ∑
σKL∈E

(yK − yL)
2

≥−
λ 2

2
∑

σKL∈E

(Λ
(3)
KL ãL∞(R)µ̃L∞(R)(v

m
K − vm

L ))
2 −

2

λ 2
(#E )‖y‖2

2.
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So, we have those inequalities

(Wu(yu),yu)≥C
(u)
1 ‖yu‖

2
2 −C

(u)
2 ‖yu‖2 −C

(u)
3 , (42)

(Wc(yc),yc)≥C
(c)
1 ‖yc‖

2
2 −C

(c)
2 ‖yc‖2, (43)

(Wue(yue),yue)≥C
(ue)
1 ‖yue‖

2
2 −C

(ue)
2 ‖yue‖2 −C

(ue)
3 , (44)

(Wv(yv),yv)≥C
(v)
1 ‖yv‖

2
2 −C

(v)
2 ‖yv‖2, (45)

with the following expression for the constants, choosing λ such that λ 2 > 2(#E )δ t

mdown
M

and denoting mdown
M = min

K∈ϑ
mK ≤ mK ≤ max

K∈ϑ
mK = m

up

M

C
(u)
1 =

mdown
M

δ t
−

2(#E )

λ 2
> 0, C

(u)
2 =

m
up

M

δt

(#ϑ)+m
up

M ρ1 fL∞(R)(#ϑ)> 0,

C
(u)
3 =

λ 2

2
∑

σKL∈E

(Λ
(1)
KL aL∞(R)µL∞(R)(c

m
K − cm

L ))
2 > 0,

C
(c)
1 =

mdown
M

δ t
> 0, C

(c)
2 = m

up

M (#ϑ)(
max
K∈ϑ

(cm
K)

δ t
+α2)> 0,

C
(ue)
1 =

mdown
M

δ t
−

2(#E )

λ 2
> 0, C

(ue)
2 =

m
up

M

δt

(#ϑ)+m
up

M ρ3 fL∞(R)(#ϑ)> 0,

C
(ue)
3 =

λ 2

2
∑

σKL∈E

(Λ
(3)
KL ãL∞(R)µ̃L∞(R)(v

m
K − vm

L ))
2 > 0,

C
(v)
1 =

mdown
M

δ t
> 0, C

(v)
2 = m

up

M (#ϑ)(
max
K∈ϑ

(vm
K)

δ t
+α4)> 0.

It induces that

(W (y),y)≥ min(C
(u)
1 ,C

(c)
1 ,C

(ue)
1 ,C

(v)
1 )‖y‖2

2

−max(C
(u)
2 ,C

(c)
2 ,C

(ue)
2 ,C

(v)
2 )‖y‖2 −C

(u)
3 −C

(ue)
3 .

So there exists k > 0 from which ∀‖y‖2
2 ≥ k : (W (y),y)> 0.

Suppose that there is no z ∈ R
4×#ϑ : W (z) = 0, in that case we can define the applica-

tion S : y∈B(0,k) 7→−k
W (y)
‖W (y)‖ ∈B(0,k). S is continuous due to W , so according

to the Brouwer fixed point theorem there exists a fixed point ỹ of S on B(0,k):

ỹ =−k
W (ỹ)

‖W (ỹ)‖
(46)

Taking the norm of ỹ from (46), we get ‖ỹ‖ = k > 0 but taking the inner product of

(46) with ỹ we get : ‖ỹ‖2 = −k
(W (ỹ),ỹ)
‖W (ỹ)‖ ≤ 0. Thus there exists z with W (z) = 0. So

there exists a solution (um+1,cm+1,um+1
e ,vm+1) to (29)-(32). ⊓⊔
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5 Modeling Treatments

Surgery, chemotherapy and radiotherapy are the treatments commonly used against

GBM, all of them can be modeled in (1a)-(1d). Surgery is performed in emergency

as soon as GBM is diagnosed. However some patients can not undergo surgery due

to the non-accessibility of the tumour, in that case only a biopsy is done. If surgery is

performed, the tumour core is removed but resection goes the largest possible without

damaging healthy tissues.

In our model, we suppose that surgery is performed at a time-step tsurg that can be

either the initial time t0 or a random time-step tn,n ∈ J1,N + 1K. If tsurg = tn,n ∈
J1,N + 1K then ∀m ∈ J1,n− 1K, um is calculated according to (12)-(15) and ∀K ∈
ϑ ,w = u,c,ue,v

w(tsurg,xK) =

{

wn−1
K , if xK /∈ surgical area,

0, if xK ∈ surgical area .

Finally ∀m ∈ Jn+ 1,N + 1K, um is calculated according to (12)-(15) with the new

initial conditions w0 = w(tsur f , ·),w = u,c,ue,v.

If tsurg = t0 then we solve (12)-(15) with the new initial conditions w
surg
0 , w= u,c,ue,v

w
surg
0 =

{

w0, if xK /∈ surgical area,

0, if xK ∈ surgical area .

Chemotherapy is the use of a drug designed against a tumour cell population. The

drug commonly used in GBM is TMZ at a daily dose of 75 mg/m2 (Stupp et al,

2005). The chemotherapy part of treatments is modeled by

Tchemo(t,u) = kc(t)Dcheu, (47)

where kc(t) = 1 if and only if the chemotherapy is effective at the time t and Dche is

the dose administered by the drug.

The problem of chemotherapy is the possible existence of tumour-resistant cells that

are not affected by the drug. Those cells can still proliferate in the tumour site causing

relapses for the patient. For this work, we do not consider these sub-type of cancer

cells and suppose that all tumour cells are affected by the drug. However, we know

that the use of chemotherapy enhances the performances of radiotherapy because the

drug makes the tumour cells more sensitive to radiations (Stupp et al, 2005).

Radiotherapy occurs for almost all cancer treatments because the use of radiotherapy

depends mainly on the location of the tumour and its spatial spread and not on the

cancer type. Indeed radiotherapy works by sending a dose of radiations at a local

position (the tumour location), those radiations cause micro-breaks into the DNA of

irradiated cells, normal cells can repair those DNA breaks but tumour cells often

can not causing their death. Radiotherapies can cause side effects if normal cells are

altered by the radiations, explaining why each cancer type has a specific guideline to

dose the quantity of radiations allowed.

With GBM, radiotherapy is done by administering the dose of radiations in small

fractions. The number of fractions and the cumulative dose depend on the patient
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health, for example its age or its WHO performance status (ANOCEF, 2018). The

efficiency of radiotherapy depends on a lot of parameters: the number of fractions per

day N f rac, the dose administered Drad , the duration of irradiation τ , the time between

irradiation ∆τ , the DNA damaged rate µ and sensitivity parameters α,β . In France, it

is recommended to perform radiotherapy 5 days a week for 6 weeks with 30 fractions

of 2Gγ per day(ANOCEF, 2018).

Because, multiple small fractions are delivered with GBM, we model radiotherapy

based on (Nilsson et al, 1990)

Tradio(t,u) = kchemo(t)kr(t)Re f f u1{x∈ irradiated area}(x), (48)

where kr(t) = 1 if and only if the radiotherapy is effective at the time t and

Re f f = αN f racDrad +βN f racD2
rad(grad(µτ)+2(

cosh(µτ)−1

(µτ)2
)hN f rac

(ϕ)),

grad(µτ) = 2(
µτ −1+ exp(−µτ)

(µτ)2
),

ϕ = exp(−µ(τ +∆τ)),

hm(ϕ) = 2(
mϕ −mϕ2 −ϕ +ϕm+1

m(1−ϕ)2
).

We use the term kchemo(t) to model the enhance efficiency of radiotherapy if chemother-

apy is applied concomitant with radiotherapy. So if chemotherapy is not administered

at the time t, we set kchemo(t) to 1 and if radiotherapy and chemotherapy are concomi-

tant then kchemo(t)=ϒ > 1,ϒ is the efficiency rate improvement of using radiotherapy

with chemotherapy.

6 Methods

We use MRIs from the patient C3L 16 in the CPTAC-GBM database (TCIA, 2018).

This patient is a 60 year-old male (BMI of 28.81 and BSA of 2.07m2) diagnosed with

a Glioblastoma of 4.3 cm in his parietal lobe who died of Glioblastoma 77 days after

diagnosis.

There are different types of MRI that can be used to extract information like shown

in figure 2: a T1 highlights the white matter in white while grey matter is not high-

lighted, a T1-Gado separates well the tumour core and edema from the brain, T2 and

FLAIR show the enhancing tumour area.

From those MRI, we build the triangular mesh T on which our model takes place.

We use the software AutoCAD (version O.161.0.0 AutoCAD 2018.1.2 Update) to

place, manually, vertex on the outside of the brain, of the tumour core, of the edema

and of the enhancing tumour. We attribute edges to those vertex and use the software

Triangle (version 1.6) (J.R., 1996; Shewchuk, 2002) to get the triangulation T . The

primal and dual mesh obtained are represented in the figure 3a. Parameters of the

primal mesh T are given in table 1. With the information readable in the MRIs of the

figure 2, we can extract manually data in the brain: the white/grey matter locations
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Fig. 2: Extract of four axial MRIs from the patient C3L 16 in (TCIA, 2018). Those

MRIs are the four basis MRI sequences required for Glioblastoma diagnosis. Those

sequences are a T2 on the top left, a T1 weighted (or T1 with gadolinium) on the top

right, a T1 on the bottom left and a T2 weighted (or FLAIR) on the bottom right.

and the tumour segmentation. The segmentation of the brain is represented in the

figure 3b in which we have in different shades of blue, the locations of grey matter

(in dark blue) and the white matter (in light blue) and the whole tumour which is

divided into three parts: the tumour core with hypoxic cells in green, the edema in

yellow and the enhancing tumour in red. We suppose before surgery that the diffusion

in the whole tumour behaves like the white matter.

To solve the numerical scheme (12)-(15) we follow the same guidelines than the

discrete properties. From each time step tn,n≥ 0 we use the number sequence Xm+1 =
τ(n)(Xm) with the semi-implicit numerical scheme (29)-(32).

We consider that Xm+1 = (un+1,cn+1,un+1
e ,vn+1) when the relative error follows

‖wm+1 −wm‖2

‖wm‖2
< tolImplicit, with w = u,c,ue,v (49)

with tolImplicit = 10−3 being a numerical threshold. To find Xm+1 from Xm we solve

(29)-(32) using Newton’s method with 10−11 as the error of convergence. Observe

that choosing to solve the semi-implicit scheme (29)-(32) instead of the coupled sys-

tem (12)-(15) allows to solve four smaller systems rather than one system four times

wider.

Finally we use a conjugate gradient method ending with a numerical threshold tolGradient

of 10−13 to solve each step of the Newton method.
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(a) primal and dual mesh (b) segmentation of the brain

Fig. 3: (a) Primal mesh T (in black) and dual mesh M (in red) corresponding to

the MRIs in figure2. (b) Segmentation of the brain on the primal mesh T according

to figure 2: the grey matter in dark blue, the white matter in light blue, the tumour

core in green, the edema in yellow and the enhancing tumour in red. P1, P2 and P3

are three points used for investigating the tumor cell concentration in the area of the

tumour.

Table 1: Parameters from the primal and dual meshes including the number of vertex,

triangles, edges, interior vertex, the minimum and the maximum area on M .

vertex triangles edges interior vertex min
K∈ϑ

mK max
K∈ϑ

mK

1083 1963 3022 423 6.47×10−6 1.91×10−4

7 Numerical simulations

We choose to model the diffusion and chemotaxis with the following functions ac-

cording to assumptions (A1) and (A2)

a(y) = y(1− y)1[0,1](y),

χ1(y) = λ1(y(1− y))2
1[0,1](y),λ1 = 1.0 cm2 ·day−1 ·µmol−1(Anderson, 2005),

χ3(y) = λ3(y(1− y))2
1[0,1](y), λ3 = 2.25×104cm2 ·day−1 ·µmol−1.

Even though a more detailed anisotropic expression has been developed for the diffu-

sion in the white matter (K.J.Paintera and T.Hillen, 2013), we choose here an easier
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Table 2: Values of the coefficients used in (1a)-(1d) common in all numerical simula-

tions

Coefficients Values Units Descriptions References

ρ1 2.7×10−1 day−1 tumour cell growth rate (Curtin et al, 2020)

β1 1.7×10−1 day−1 tumour cell apoptosis rate (Lai and Friedman,

2020)

α2 100 µmol ·day−1 O2 production rate by en-

dothelial cells

this work

β2 3.75×10−2 day−1 O2 degradation rate (Anderson, 2005)

γ2 6 day−1 O2 consumption rate by

tumour cells

this work

ρ3 4.9×10−3 day−1 endothelial cell growth

rate

this work

β3 3.1×10−3 day−1 endothelial cell apoptosis

rate

this work

α4 340 µmol ·day−1 VEGF production rate by

tumour cells

this work

β4 15.6 day−1 VEGF degradation rate (Curtin et al, 2020)

γ4 1.4 day−1 VEGF consumption by

endothelial cells

(Curtin et al, 2020)

umax 2.39×108 cells ·cm−2 maximum tissue capacity (Curtin et al, 2020)

dgm 2.7×10−4 cm2 ·day−1 diffusion rate of cells in

grey matter

(Curtin et al, 2020)

dwm 5dgm cm2 ·day−1 diffusion rate of cells in

white matter

(Jbabdi et al, 2005)

dps 50dgm cm2 ·day−1 diffusion rate of cells in

the post-surgical area

this work

d2 8.6 cm2 ·day−1 diffusion rate of O2 this work

d4 8.6×10−1 cm2 ·day−1 diffusion rate of VEGF this work

chypo 75 µmol · cm−2 threshold under which

cells are in hypoxia

this work

cnecro 50 µmol · cm−2 threshold under which

cells necrose

this work

expression in order to don’t use Diffusion Tensor Imaging (DTI) data. The diffusion

in the white matter is then set to be 5 times faster than in the grey matter, and in the

post-surgical area, we set the diffusion to be 50 times faster than in the grey matter:

Λ1(x) = d1(x)

[

1 0

0 1

]

, with d1(x)











dwm if x is in the white matter,

dgm if x is in the grey matter,

dps if x is in the post-surgical area,

D2 = d2

[

1 0

0 1

]

,

Λ3(x) = 1.8×10−2 ×Λ1(x) as proposed in (Curtinet al, 2020),
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D4 = d4

[

1 0

0 1

]

.

The different coefficients in (1a)-(1d) following the assumption (A4) are given in

table 2.

Following the timeline of a patient with GBM (ANOCEF, 2018), we set the treat-

ments as followed:

– Surgery is performed on the first day of simulation, that surgery removes every

cells and proteins in the necrotic, enhancing and whole tumour area as segmented

in the figure 3b.

– Radiotherapy and chemotherapy start both on the 14th day and last for a period of

6 weeks.

– Chemotherapy is administered everyday of the treatment schedule, so kc(t) =
1[14,56](t) and kchemo(t) =ϒ ·1[14,56](t).

– Radiotherapy is administered periodically 5 days in a row with 2 days off, so

kr(t) = 1[14,19]
⋃

[21,26]
⋃

[28,33]
⋃

[35,40]
⋃

[42,47]
⋃

[49,54](t).
– Radiotherapy is administered locally where the surgery was performed and also

in the 3cm area bordering the whole tumour area. This bordering area is computed

manually.

Experiments in (Stupp et al, 2005) found a 33% increase in median survival com-

paring radiotherapy only and radiotherapy with TMZ but there is no study using

chemotherapy only on patients. ϒ is chosen to be 4
3

even though the value is overes-

timated.

The value of all parameters related to treatments are summarized in table 3. Most of

them come from the work of (Powathil et al, 2007) with the current state of treatments

in (ANOCEF, 2018).

Six simulations have been done to solve (1a)-(3), depending on the treatments admin-

istered to the patient: with or without surgery, chemotherapy and radiotherapy only

(experiments 1 to 4) and then the concomitant use of chemotherapy and radiotherapy

with or without surgery (experiments 5 and 6). The simulations’ settings are given in

table 4 using the coefficients from table 2 and table 3.

For the initial conditions, we set the values of u0 and ue0
from the MRIs of the patient

given in figure 2. According to the location on the MRIs of the tumour core and

edema, we set u0 to 12× 104 cells ·cm−2 in the tumour core and to 5.5× 107 cells

·cm−2 in the edema. In the enhancing tumour area, we set the tumour cells population

with u0(x) = 1.4×108 exp(− 4
45
|x−xc|) cells ·cm−2, where xc represents the position

of the tumour’s center, and outside of those areas we set u0 to 0. According to the

location of the grey and white matter, we set ue0
to be 7.17× 107 cells ·cm−2 in

the grey matter and to 2.39× 105 cells ·cm−2 in the white matter. The initial spatial

distribution of tumour and endothelial cells are shown in the figure 4.

As O2 and VEGF concentrations cannot be seen on MRIs required for Glioblastoma

diagnosis, such as those presented in the figure 2, we have attributed their initial

concentrations by solving 13 and 15 using the previous expressions of u0 and ue0

but without the partial temporal term. The computed initial concentration in O2 and

VEGF are shown in the figure 5, they are not perfectly fitted with their expected
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Table 3: Parameters around the treatments

Parameters Values Units Descriptions References

α 2.7
30

×10−2 G−1
γ sensitivity parameter (Powathil et al, 2007;

ANOCEF, 2018)

β 2.7
30

×10−3 G−2
γ sensitivity parameter (Powathil et al, 2007;

ANOCEF, 2018)

N f rac 30 number of fractions per

day

(ANOCEF, 2018)

τ 5.8×10−5 day−1 duration of irradiation this work

∆τ 2.9×10−4 day−1 time between irradiations this work

µ 11.04 day−1 DNA damage rate (Powathil et al, 2007)

ϒ 4
3

efficiency rate of radio-

therapy with TMZ

(Stupp et al, 2005)

Dche 1.96×10−2 day−1 death rate of tumour cells

due to chemotherapy

(Powathil et al, 2007)

Drad 2 Gγ dose administered per ra-

diation

(ANOCEF, 2018)

Table 4: Recap on the treatments used in the simulations

Simulations Surgery Chemotherapy (TMZ) Radiotherapy

1 no no no

2 yes no no

3 no yes no

4 no no yes

5 no yes yes

6 yes yes yes

(a) tumour cells (b) endothelial cells

Fig. 4: (a) The initial number of tumour cells per cm2 (u0). (b) The initial number of

endothelial cells per cm2 (ue0
) on the right.
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(a) O2 concentration (b) VEGF concentration

Fig. 5: (a) The initial concentration of O2 in µmol.cm−2 (c0). The initial concentra-

tion of V EGF in µmol.cm−2 (v0) on the right.

spatial distributions, which would be smoother around the tumour area, but their be-

haviour is welly done during the first steps of the simulation.

Indeed, during the simulations, the O2 concentration oscillates asymptotically be-

tween 74 and 104 µmol · cm−2 and VEGF is produced punctually by the hypoxic

tumour cells. Without any treatment the tumour keeps growing inside the brain, in-

ducing the growth of the hypoxic tumour core, the edema and the enhancing tumour

area. Moreover without treatment new endothelial cells are produced to supply the

growing hypoxic tumour core, who is lacking of O2 to keep proliferating. In order to

follow up the impact of treatments on the tumour behaviour, we have displayed in fig-

ure 6 the total number of tumour cells through time. We also display in figures 7,8 and

9 the number of tumour cells per cm2 at three points in the brain, namely at P1, P2 and

P3. P1 is located in the tumour core, P2 in the edema and P3 in the enhancing tumour

area as shown in the figure 3b. You can find a video of the 6 simulations related in

table 4 following this link https://www.youtube.com/watch?v=vJkMJ5bNoWA.

Depending on the treatments, the tumour growth exhibits different behaviour. Indeed

using surgery (simulation 2 and 6) on day 1 allows to decrease intensely the number

of tumour cells in the brain, it remains only tumour cells in areas where no evidence

of existence were detectable on the different MRIs. However removing the majority

of tumour cells does not stop the growth of the tumour because of the cells that have

not been affected by the surgery, and no induced angiogenesis is required by them to

keep growing because the brain does not lack of O2 anymore. This is why in figure

6 the trajectory of the surgery only curve starts with a big drop on day 1 but comes

back to the no treatment curve later on. Surgery is not enough to stop the spread of

the tumour growth but it stops locally the spread as there is no tumour cell remaining

at P1 and P2 after the surgery, which is why in the figure 7 and 8 the curves where

surgery was used are not displayed. P3 is in the surgical area too but also on the

boundary of the enhancing tumour area, so some tumour cells near P3 remain after
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Fig. 6: Number of the total tumour cells in the brain through time for different treat-

ment schedules. If performed, surgery is done on the first day, chemotherapy (TMZ)

is administered from day 14 to day 56 and radiotherapy is administered 5 days out of

7 from day 14 to day 54. The curves ”No treatment” and ”TMZ” are really close and

difficult to distinguish at this scale.

the surgery which explains why in the figure 9, there are still tumour cells located at

P3 after the surgery.

The use of chemotherapy only with TMZ does not affect the global behaviour of the

tumour growth due to the low death rate of tumour cell induced by chemotherapy. In

the figure 6, the trajectory of the chemotherapy only curve is almost perfectly identi-

cal to the one with no treatment. Locally the use of TMZ only decreases the number

of tumour cells, but that decrease shrinks the hypoxic tumour core area, which means

that more tumour cells can replicate themselves than before. Depending on their loca-

tion, tumour cells can either be in a slightly higher number than without any treatment

as at P2 or in a slightly fewer number as at P1 and P3. Those observations explain

why no treatment on patients with Glioblastoma rely only on chemotherapy, as this

treatment is not sufficient to cure Glioblastoma.

However radiotherapy affects a lot the behaviour of the tumour growth, its use de-

creases drastically the number of tumour cells in the irradiated area as shown in the

figure 6-9. The death rate of tumour cells due to radiotherapy are also enhanced when

combined with the chemotherapy as it was exhibited in (Stupp et al, 2005). The effi-

ciency of radiotherapy explains why it is always used, to treat Glioblastoma. In our

model, we can see in the figure 6 that the use of radiotherapy and chemotherapy gives

better results around the 50th day than the use of surgery, radiotherapy and chemother-

apy. This observation can be explained due to the fact that in our model, the use of

surgery enhances the proliferation of the remaining tumour cell, because there are no

more hypoxic tumour cells, and migrate further into the brain escaping the irradiated

area. Yet you can observe that on the long run that there are less tumour cells in the
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Fig. 7: Number of the tumour cells per cm2 at P1 through time for different treatment

schedules. The location of P1 (the tumour core) is shown in the figure 3b. If per-

formed, surgery is done on the first day, chemotherapy (TMZ) is administered from

day 14 to day 56 and radiotherapy is administered 5 days out of 7 from day 14 to day

54. Treatments using surgery are not displayed because no tumour cell remain after

surgery at P1.

brain when using surgery, TMZ and radiotherapy than TMZ and radiotherapy which

implies a longer survival time when using all treatments.

8 Discussion

In all the simulations after the delivery of all the treatments, the tumour starts pro-

liferating again until being slowed by the hypoxic tumour core. However the main

criteria related to a patient death due to Glioblastoma is the total area occupied by

tumour cells, so if tumour cells remain in the brain after the use of treatments then

their proliferation induce the relapse of the patient and usually its death.

It must be remembered that all results presented in this work rely on the behaviour

of our model, and so, cannot take every effects that would change impact the tu-

mour growth. Indeed, in our model, if we wanted to enhance the death rate of tumour

cells due to radiotherapy, we would increase the irradiation dose. However a higher

dosage would impact the healthy cells in the brain that would not be able to repair

their DNA-breaks as before. Also surgery in our model seems to amplify the spread

of the remaining tumour cells. It would then be better to only use radiotherapy with

chemotherapy as evidenced in the figure 6 but if surgery is not performed then there

is a necrotic tumour core in the brain that could have negative impacts on the sur-

rounding healthy tissues. For example the O2 delivery would decrease for the healthy

tissues in favor of supplying the hypoxic tumour cells. Also we decided in this work to
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Fig. 8: Number of the tumour cells per cm2 at P2 through time for different treatment

schedules. The location of P2 (the edema) is shown in the figure 3b. If performed,

surgery is done on the first day, chemotherapy (TMZ) is administered from day 14 to

day 56 and radiotherapy is administered 5 days out of 7 from day 14 to day 54. Treat-

ments using surgery are not displayed because no tumour cell remain after surgery at

P2.

consider only one population of tumour cells that react the same way to treatments.

However some tumour cells can have random mutations that protect them against

Temozolomide and radiotherapy. Those cells are not impacted by the treatments, ex-

cept surgery, and are free to proliferate in the brain. It would then be necessary to

consider two sub-populations of tumour cells according to the presence or not of the

mutation that would not follow the exact same equation as (1a).

In this work we have shown that our model (1a)-(3) can perform simulations based

on patient’s MRIs and so, try to fit the growth of the Glioblastoma for that patient.

Modifying the value of the different coefficients in (1a)-(1d) is the only way in our

model to exhibit different growth behaviour like having a higher tumour prolifera-

tion, having a faster VEGF production or having a higher tumour diffusion rate. This

approach works when the coefficients in (1a)-(1d) are known and well identified on

a patient. Nowadays, a lot of information can be retrieved from the patient diagno-

sis: using immunohistochemistry-based algorithm (Orzan et al, 2020), analysing the

extracellular vesicles situated in the glioblastoma micro-environment (Simon et al,

2020) or by determining the glioblastoma subtypes based on the OMS description

(Louis et al, 2016). However those information are not linked explicitly to the differ-

ent coefficients, and so, the coefficients have to be extrapolated from the information

and then adapted to fit the growth of the patient tumour.

A solution to find the coefficients of a patient could be to set some coefficients as

unknowns and write the system (1a)-(3) as an optimization problem based on the
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Fig. 9: Number of the tumour cells per cm2 at P3 through time for different treatment

schedules. The location of P3 (the enhancing tumour body) is shown in the figure 3b.

If performed, surgery is done on the first day, chemotherapy (TMZ) is administered

from day 14 to day 56 and radiotherapy is administered 5 days out of 7 from day 14

to day 54.

knowledge of the solution at different time steps. However this method shows weak-

nesses as there are more unknowns than equations which implies the need of more

data that are not available from the diagnosis so we can not do simulations or pre-

dictions after the diagnosis. To solve this problem, we could not set the coefficients

as unknowns but as temporal functions and use Kalman filter as in (Rochoux et al,

2018) to fit the model to the patient through time. This method allows to have a unique

model that will adapt to each patient during the simulations.
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Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade

gliomas using diffusion tensor imaging. Magnetic Resonance in Medecine 53:616–

624, DOI https://doi.org/10.1002/mrm.20625

JR S (1996) Triangle: Engineering a 2d quality mesh generator and delaunay trian-

gulator. Lecture Notes in Computer Science 1148, DOI https://doi.org/10.1007/

BFb0014497

Kamran N, Alghamri MS, Nunez FJ, Shah D, Asad AS, Candolfi M, Altshuler

D, Lowenstein PR, Castro MG (2018) Current state and future prospects of

immunotherapy for glioma. Immunotherapy 10(4), DOI https://doi.org/10.2217/

imt-2017-0122

Kim WY, Lee HY (2009) Brain angiogenesis in developmental and pathological pro-

cesses: mechanism and therapeutic intervention in brain tumors. FEBS journal

276:4653–4664, DOI 10.1111/j.1742-4658.2009.07177.x

Kim Y, Lawler S, ONowicki M, Chiocca EA, Friedman A (2009) A mathemati-

cal model for pattern formation of glioma cells outside the tumor spheroid core.

Journal of Theoretical Biology 260(3):359–371, DOI https://doi.org/10.1016/j.jtbi.

2009.06.025

KJPaintera, THillen (2013) Mathematical modelling of glioma growth: The use of

diffusion tensor imaging (dti) data to predict the anisotropic pathways of cancer

invasion. Journal of Theoretical Biology 323:25–39, DOI https://doi.org/10.1016/

j.jtbi.2013.01.014



Simulating the behaviour of Glioblastoma Multiforme based on patient MRI during treatments 31

Lai X, Friedman A (2020) Mathematical modeling of cancer treatment with radia-

tion and pd-l1 inhibitor. Sci China Math 63:465–484, DOI https://doi.org/10.1007/

s11425-019-1648-6

Lim M, Xia Y, Bettegowda C, Weller M (2018) Current state of immunotherapy

for glioblastoma. Nat Rev Clin Oncol 15:422–442, DOI https://doi.org/10.1038/

s41571-018-0003-5

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cave-

nee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016

world health organization classification of tumors of the central nervous sys-

tem: a summary. Acta Neuropathol 131:803–820, DOI https://doi.org/10.1007/

s00401-016-1545-1

Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imag-

ing focusing on mri. Zeitschrift für Medizinische Physik 29(2):102–127, DOI

https://doi.org/10.1016/j.zemedi.2018.11.002

Mantzaris NV, Webb S, Othmer HG (2004) Mathematical modeling of tumor-

induced angiogenesis. J Math Biol 49:11–187, DOI https://doi.org/10.1007/

s00285-003-0262-2

Nilsson P, Thames HD, Joiner MC (1990) A generalized formulation of the

’incomplete-repair’ model for cell survival and tissue response to fraction-

ated low dose-rate irradiation. Int J Radiat Biol 57:127–142, DOI 10.1080/

09553009014550401

Orzan F, Pagani F, Cominelli M, Triggiani L, Calza S, Bacco FD, Medicina D,

Balzarini P, Panciani PP, Liserre R, Buglione M, Fontanella MM, Medico E,

Galli R, Isella C, Boccaccio C, Poliani PL (2020) A simplified integrated molec-

ular and immunohistochemistry-based algorithm allows high accuracy predic-

tion of glioblastoma transcriptional subtypes. Lab Invest 100:1330–1344, DOI

https://doi.org/10.1038/s41374-020-0437-0

Papadogiorgaki M, Koliou P, Kotsiakis X, Zervakis ME (2013) Mathematical mod-

elling of spatio-temporal glioma evolution. Theor Biol Med Model 10(47), DOI

https://doi.org/10.1186/1742-4682-10-47

Pati S, Singh A, Rathore S, Gastounioti A, Bergman M, Ngo P, Ha SM, Bounias

D, Minock J, Murphy G, Li H, Bhattarai A, Wolf A, Sridaran P, Kalarot R,

Akbari H, Sotiras A, Thakur SP, Verma R, Shinohara RT, Yushkevich P, Kon-

tos YFD, Davatzikos C, Bakas S (2020) The cancer imaging phenomics toolkit

(captk): Technical overview. Lecture Notes in Computer Science 11993, DOI

https://doi.org/10.1007/978-3-030-46643-5 38

Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M (2007) Mathemati-

cal modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med

Biol 52(11):3291–3306, DOI 10.1088/0031-9155/52/11/023
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Table 5: Description of all variables used in this paper

variables descriptions

u concentration in tumour cells divided by the maximum cell concentration allowed in

tissues

c concentration in O2 in µmol · cm−2

ue concentration in endothelial cells divided by the maximum cell concentration allowed

in tissues

v concentration in Vascular Endothelial Growth Factor in µmol · cm−2

uT total concentration of cell populations divided by the maximum cell concentration

allowed in tissues, it is the sum of u and ue

un
K numerical approximation of u at the vertex xK and the time tn

cn
K numerical approximation of c at the vertex xK and the time tn

un
e,K numerical approximation of ue at the vertex xK and the time tn

vn
K numerical approximation of v at the vertex xK and the time tn

un
T,K numerical approximation of uT at the vertex xK and the time tn

Λ
(1)
KL numerical approximation of the diffusion flux Λ1(x)~n on the edge σKL

Λ
(3)
KL numerical approximation of the diffusion flux Λ3(x)~n on the edge σKL

D
(2)
KL numerical approximation of the diffusion flux D2~n on the edge σKL

D
(4)
KL numerical approximation of the diffusion flux D4~n on the edge σKL

an
KL numerical approximation of the cell-dependant diffusion a(u) on the edge σKL

µn
KL numerical approximation of the cell-dependant chemotaxis µ1(u) on the edge σKL

ηn
KL numerical approximation of η(c) on the edge σKL

ãn
KL numerical approximation of the cell-dependant diffusion a(ue) on the edge σKL

µ̃n
KL numerical approximation of the cell-dependant chemotaxis µ3(ue) on the edge σKL

η̄n
KL numerical approximation of η(v) on the edge σKL
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Table 6: Description of all coefficients used in this paper

Coefficients Descriptions Units

Tf final time used in simulations day

ρ1 growth rate of tumour cells day−1

β1 apoptosis rate of tumour cells day−1

α2 production rate of O2 by endothelial cells µ mol· day−1

β2 degradation rate of O2 day−1

γ2 consumption rate of O2 by tumour cells day−1

ρ3 growth rate of endothelial cells day−1

β3 apoptosis rate of endothelial cells day−1

α4 production rate of VEGF by endothelial cells µ mol· day−1

β4 degradation rate of VEGF day−1

γ4 consumption rate of VEGF by endothelial cells day−1

D2 isotropic diffusion matrix of O2 in the brain (cm2· day−1)2×2

D4 isotropic diffusion matrix of VEGF in the brain (cm2· day−1)2×2

chypo threshold under which cells are hypoxic µmol · cm−2

cnecro threshold under which cells necrose µmol · cm−2

umax maximum tissue capacity cells ·cm−2

hT size of the triangulation T cm2

θT regularity of the triangulation T

δ t time step used in simulations day

tn nth discrete time step value day

Dche death rate of tumour cells induced by chemotherapy day−1

Re f f death rate of tumour cells induced by radiotherapy day−1

N f rac number of radiotherapy fractions administered in a day

Drad dosage per fraction Gγ

τ irradiation time for a fraction min

∆τ time between consecutive irradiations min

µ DNA damaged rate min−1

α sensitivity parameter day−1 ·G−1
γ

β sensitivity parameter day−1 ·G−2
γ

ϕ

dwm diffusion rate of cells in white matter cm2· day−1

dgm diffusion rate of cells in grey matter cm2· day−1

dps diffusion rate of cells in the post surgical area cm2· day−1

dp diffusion rate of O2 and VEGF in the brain cm2· day−1

tolImplicit threshold to stop the computation using τ(n)(·)

tolNewton threshold to stop the Newton algorithm

tolGradient threshold to stop the conjugate gradient algorithm

ϒ efficiency rate between radiotherapy only and radiotherapy with

chemotherapy

λ1 chemotaxis coefficients of tumour cells cm2 ·µmol−1· day−1

λ3 chemotaxis coefficients of endothelial cells cm2 ·µmol−1· day−1



Simulating the behaviour of Glioblastoma Multiforme based on patient MRI during treatments 35

Table 7: Description of all functions used in this paper

functions descriptions

Λ1(·) medium-dependent diffusion matrix of tumour cells

Λ3(·) medium-dependent diffusion matrix of endothelial cells

a(·) cell-dependant diffusion function of cells

χ1(·) cell-dependent chemotaxis function of tumour cells

χ3(·) cell-dependent chemotaxis function of endothelial cells

µ1(·) ratio function between χ1(·) and a(·)

µ3(·) ratio function between χ3(·) and a(·)

f·(·) cells-dependent reproduction functions of tumour and endothelial cells

Ttreat(·, ·) time and cell-dependent treatment map

Tchemo(·, ·) time and cell-dependent treatment map modeling chemotherapy

Tradio(·, ·) time and cell-dependent treatment map modeling radiotherapy

g(·) O2-dependent function used for VEGF production under hypoxia

h(·) O2-dependent function used for tumour cells mitosis

~n unit normal vector on a boundary

u0 initial tumour cells concentration in the brain

c0 initial O2 concentration in the brain

ue0
initial endothelial cells concentration in the brain

v0 initial VEGF concentration in the brain

η(·) function used to ensure positivity of O2 and VEGF concentration

p(·) function used to ensure positivity of O2 and VEGF concentration

A (·) primitive function of a(·)

ξ (·) primitive function of
√

a(·)

(Φ)I canonical basis of HT

µ↑ primitive function of (µ ′(·))+

µ↓ primitive function of −(µ ′(·))−

W (·) functional where the kernel gives the solution of the main system

τ(n)(·) sequence of functions used to find a solution of an implicit scheme from a semi-

implicit scheme

kc(·) time-dependent function equal to 1 when chemotherapy is administered

kr(·) time-dependent function equal to 1 when radiotherapy is performed

kchemo(·) time-dependent function equal to ϒ when chemotherapy and radiotherapy are both

used

grad(·) function used for modeling radiotherapy

hn(·) function used for modeling radiotherapy
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Table 8: Description of all spaces used in this paper

Spaces descriptions

Ω working space based on a 2D-slice of brain delimited by the skull

∂Ω border of Ω

T conforming triangulation on Ω

E set of edges from T

υ set of vertices from T

EK subset of E of K as a vertex

TK set of triangles having K as a vertex

M dual mesh constructed from T

HT the P1(R) finite element space

χM the discrete control volumes space

I n+1
KL interval of values between un+1

K and un+1
L

I
n+1
KL interval of values between cn+1

K and cn+1
L

J n+1
KL interval of values between un+1

e,K and un+1
e,L

J
n+1
KL interval of values between vn+1

K and vn+1
L

E set of vectors used for proof

Table 9: Description of all mesh components used in this paper

Mesh components descriptions

ht the diameter of the triangle t

ρt the diameter of the incircle of the triangle t

xK the coordinates of the vertex K

σKL the edge joining the vertex K and L

ωK the dual element constructed around the vertex K

mK the 2-dimensional Lebesgue measure of ωK


