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Abstract
The past decade of functional neuroimaging research has seen the application of increasingly
sophisticated advanced methods to characterize intrinsic functional brain organization. Accompanying
these techniques are a patchwork of empirical �ndings highlighting novel properties of intrinsic
functional brain organization. To date, there has been little attempt to understand whether there is an
underlying unity across this patchwork of empirical �ndings. Our study conducted a systematic survey of
popular analytic techniques and their output on a large sample of resting-state fMRI data. We found that
the apparent complexity of intrinsic functional brain organization can be seamlessly reduced to three
fundamental low-frequency spatiotemporal patterns. Our study demonstrates that a long list of
previously observed phenomena, including functional connectivity gradients, the task-positive/task-
negative pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the
network structure of the functional connectome are simply manifestations of these three spatiotemporal
patterns. An in-depth characterization of these three spatiotemporal patterns using a novel time-varying
complex pattern analysis revealed that these three patterns may arise from a single hemodynamic
mechanism.

Introduction
Many of us have heard the Indian parable of the blind men and the elephant. This anecdote teaches the
perils of missing the ‘bigger picture’ due to our own limited observations. A group of blind men encounter
an elephant for the �rst time and try to acquire an overall description of the elephant by discussing which
part of the elephant each blind man is touching (trunk, tusk, foot, etc.). Each blind man knew a piece of
the truth, but failed to grasp how their individual observations came together in a uni�ed whole. This
parable may be a suitable metaphor for the current state of our theoretical understanding of intrinsic
functional brain organization.

Since the discovery of intrinsic low-frequency blood-oxygenation-level dependent (BOLD) �uctuations in
the late 1990s, increasingly complex analytic techniques have been applied to understand the spatial and
temporal structure of these signals. These applications have generated a patchwork of novel empirical
�ndings into intrinsic functional brain organization. However, there has been little attempt to assess any
underlying unity across this patchwork of �ndings. Further, the �eld is lacking a unifying conceptual
framework for translating empirical �ndings across analytic techniques. Our present study conducted a
systematic survey of a host of popular analytic techniques and their output on a large-sample of resting-
state fMRI data. Surprisingly, we found that all analytic approaches we surveyed are largely consistent in
their results, converging on a set of three, low-frequency spatiotemporal patterns. Furthermore, with these
three spatiotemporal patterns, we can account for a wide variety of previously observed properties of
intrinsic functional brain organization.

We operationalize ‘intrinsic functional brain organization’ as the spatial correlation structure between
cortical BOLD signals in the low-frequency range (~0.01 - 0.1 Hz). Spatial dependence is by far the most
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studied property of low-frequency intrinsic BOLD signals. Importantly, the pattern of dependencies
between neural activity across the brain are thought to re�ect functional systems for cognition,
perception and action (Biswal et al., 1995; Damoiseaux et al., 2006; Fox et al., 2005; Smith et al., 2009).
For the purpose of the present study, we distinguish between three different descriptions of intrinsic
functional brain organization: 1) low-dimensional (latent) representations of zero-lag synchrony between
brain regions – ‘functional connectivity topographies’, 2) low-dimensional representations of time-lagged
synchrony between brain regions – ‘spatiotemporal patterns’, and 3) the network structure of zero-lag
synchrony between brain regions over the entire brain – the ‘functional connectome’. 

Zero-lag synchrony is de�ned as in-phase or anti-phase statistical dependence between intrinsic BOLD
signals - e.g., the correlation between two intrinsic BOLD signals with no time-lag. Following the standard
terminology of the functional magnetic resonance imaging (fMRI) literature, we refer to zero-lag
synchrony among intrinsic BOLD �uctuations as ‘functional connectivity’ (FC) (Reid et al., 2019). The
pattern of zero-lag synchrony between brain regions across the brain is often summarized using low-
dimensional latent representations, what we refer to as ‘FC topographies’. A myriad of empirical �ndings
have been generated from studies of FC topographies, including the task-positive/task-negative pattern
(Fox et al., 2005), the primary or principal FC gradient (Margulies et al., 2016) and global signal
topography (Li et al., 2019). 

Zero-lag synchrony can also be studied from a network-centric or graph-based approach, where the unit
of analysis is pairwise relationships between brain regions (Bassett et al., 2011; van den Heuvel and
Hulshoff Pol, 2010). Rather than reducing pairwise relationships to low-dimensional representations, the
network-centric approach analyzes the structures of these relationships in terms of a graph with brain
regions as nodes and edges to represent their pair-wise relationships. We refer to the pattern of pair-wise
relationships between brain regions across the entire brain as the ‘functional connectome’. Study of the
functional connectome has revealed important �ndings regarding patterns of inter-communication
between brain regions (Power et al., 2011), ‘hub’ regions of the human brain (van den Heuvel and Sporns,
2013), and the community structure of the connectome (Meunier et al., 2010). 

More recently, relationships between BOLD time courses at temporal lags (time-lag synchrony) have been
investigated. Recent research has observed replicable patterns of time-lagged relationships between brain
regions, including wave-like propagation patterns (Mitra et al., 2014, 2015) and large-scale pseudo-
periodic patterns of activity (Gu et al., 2020; Majeed et al., 2011). We refer to low-dimensional latent
representations of time-lag synchrony between brain regions as ‘spatiotemporal patterns’. Studies of
spatiotemporal patterns have revealed 1) prominent wave-like, propagation patterns in cortical neural
activity at short-time scales (~ 0 - 2s) (Mitra et al., 2014, 2015), and 2) recurring spatiotemporal patterns
of BOLD activity changes at larger time scales (~ 20s) (Majeed et al., 2011). At short time scales, Mitra
and colleagues (2014) have observed replicable, time-lagged propagation of intrinsic BOLD activity that
are uncoupled from hemodynamic delays. At longer time scales, Majeed et al. (2011) has described a
pseudo-periodic spatiotemporal pattern involving an alteration in BOLD amplitudes between the
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frontoparietal (FPN) and default mode networks (DMN), known as the ‘quasi-periodic pattern’ (QPP).          
 

To date, investigations of these three properties of intrinsic functional brain organization have been
largely independent efforts. Further, there has been little attempt to reconcile empirical �ndings across
different analytic techniques. For example, what are the interrelationships between different approaches
for constructing FC topographies, such as principal component analysis, non-linear manifold learning
(Margulies et al., 2016), temporal independent component analysis (ICA) (Smith et al., 2012), spatial ICA
(Calhoun et al., 2001), hidden markov models (Vidaurre et al., 2017), seed-based correlation analysis (Fox
et al., 2005), and discrete co-activation patterns (Liu and Duyn, 2013b)? 

Our study conducted a systematic survey of these three properties of intrinsic functional brain
organization using a host of popular analytic techniques applied to a cohort of participants with resting-
state fMRI recordings from the Human Connectome Project (HCP, n = 50). Our primary goal was to reduce
the complex diversity of empirical �ndings on intrinsic functional brain organization to a simpler set of
fundamental or canonical patterns. What we found was surprising: all three properties of intrinsic
functional brain organization – large-scale FC patterns (‘FC topographies’), time-lagged propagation and
pseudo-periodic patterns (‘spatiotemporal patterns’), and the network structure of pairwise FC
relationships (‘functional connectome’) – can be accounted for by three fundamental or canonical
spatiotemporal patterns. More speci�cally, we found that all zero-lag FC analyses we surveyed
consistently produced one of three spatially overlapping FC topographies. These three FC topographies
account for several previously observed properties of functional brain organization, such as the global
signal topography, the task-positive/task-negative pattern and primary FC gradient. Using a novel
application of a time-varying PCA algorithm, we �nd that these three FC topographies correspond to
‘static’ or time-invariant representations of three fundamental spatiotemporal patterns. We further show
that these three spatiotemporal patterns account for two other spatiotemporal phenomena of functional
brain organization: cortical lag projections (Mitra et al., 2014) and the QPP (Majeed et al., 2011). Finally,
we show that the network structure of the functional connectome can be explained by the shared
dynamics of these three spatiotemporal patterns. 

Results
1. Three Dominant Functional Connectivity Topographies in Intrinsic BOLD Fluctuations

We conducted a quantitative survey of widely-used zero-lag functional connectivity (FC) analyses with
the primary aim of comparing the spatial overlap between the FC topographies produced by each
analysis. These analyses were applied to a random sample (n=50) of human subject resting-state scans
(~15min each; n = 1200 time points) from the Human Connectome Project (HCP). For input to all
quantitative analyses, subject resting-state scans were temporally concatenated and reshaped into a 2D
matrix of time points (rows) by cortical vertices (columns). All analyses in our investigation successfully
replicated in an independent sample (n=50) of HCP subjects. 
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Our survey included several latent dimension-reduction methods, as well as seed-based correlation and
co-activation methods. Latent dimension-reduction methods included principal component analysis
(PCA), PCA with simple structure rotation (varimax) (Andersen et al., 1999; Thomas et al., 2002),
 Laplacian Eigenmaps (LE) (Vos de Wael et al., 2020), the commonly used spatial independent
component analysis (SICA) (Calhoun et al., 2001), and the more recent temporal independent component
analysis (TICA) (Smith et al., 2012). Hidden Markov models (HMM) are a commonly used latent state
space model for estimating brain states (Vidaurre et al., 2017), and were also included in our study. Seed-
based analysis methods included the traditional seed-based correlation/regression analysis (Fox et al.,
2005) and co-activation pattern (CAP) analysis (Liu and Duyn, 2013b) with k-means clustering of
suprathreshold time points into two clusters. Seed-based methods were run for three key seed locations
corresponding to major hubs in the somatomotor network, default mode, and frontoparietal network - the
somatosensory cortex, precuneus, and dorsolateral prefrontal cortex (Yeo et al., 2011). Results were
found to be identical for alternatively placed seed regions within these three networks (Supplementary
Results B).

To determine a useful number of dimensions in our latent dimension-reduction analyses (PCA, varimax
PCA, LE, SICA, TICA and HMM) (Bzdok et al., 2016; Eickhoff et al., 2015), we examined the explained
variance of the principal component solution at a range of dimension numbers (see ‘Methods and
Materials’). As we were interested in large-scale cortical FC topographies, our survey focuses on the lower
end for the number of estimated latent dimensions. To estimate the number of dimensions, we examined
the drop-off in explained variance (i.e. eigenvalues) associated with each successive principal
component, a procedure known as Catell’s scree plot test (Carlson et al., 2011; Cattell, 1966; Ecker et al.,
2007; Stetter et al., 2000). This widely used component number selection criterion indicated a clear drop-
off in explained variance after three principal components (Figure 1C). Based on these assessments, we
committed to a granularity of three latent neural activity dimensions for the dimension-reduction
algorithms for comparability of subsequent analysis steps.

Each zero-lag analysis produced one or more FC topographies with weights for each cortical vertex,
representing the degree to which that topography is expressed at that vertex. To compare the spatial
similarity between two FC topographies, we used the spatial correlation (Pearson’s correlation) between
the cortical vertex weight values of each topography. To summarize the similarities among the FC
topographies, we compared each topography to the �rst three principal component maps computed from
PCA. The �rst three principal components represent the top three dimensions of variability across cortical
BOLD time series. The �rst principal component represents the most dominant/leading axis of variance
across cortical BOLD time series. The �rst principal component explains over 20% (R2  = 20.4%) of the
variance in BOLD time series, greater than three times the variance explained by the second (R2  = 6.8%)
or third principal component (R2  = 6.1%). As can be observed from Figure 1A, each FC topography
exhibits strong similarities with one or more of the �rst three principal components (r > 0.6). In other
words, all FC topographies in our survey resembled one of the top three dimensions of variability in
cortical BOLD time series. 
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The three principal components can be differentiated most clearly with reference to three cortical brain
networks: the default mode network (DMN), the frontoparietal or ‘executive control’ network (FPN) and the
sensorimotor and medial/lateral visual cortices (SMLV) (Figure 1C). Note that the spatial extent of these
three networks changes between principal components, and the reference to these networks is for
descriptive simplicity. The �rst principal component is distinguished by its globally positive topography,
with positive values (or negative, due to the sign ambiguity of PCA) in the SMLV and less positive values
in the DMN. The second principal component is distinguished by negative values in the DMN and positive
values in the FPN. The third principal component is distinguished by positive values in the SMLV and
DMN, and negative values in the FPN. Detailed description of the output of dimension reduction analyses,
as well as seed-based regression and CAP analyses are provided in Supplementary Results A and
Supplementary Results B, respectively.

2. Three Dominant Spatiotemporal Patterns in Intrinsic BOLD Fluctuations

All FC topographies in our survey were found to resemble the �rst three principal components of cortical
BOLD time series. FC topographies are produced from measures of zero-lag synchrony between BOLD
time series (e.g. Pearson’s correlation coe�cient). Thus, FC topographies are unable to represent
correlations between cortical BOLD time series at any time-lag. Time-lag relationships may re�ect cortical
propagation patterns or rapidly-changing sequences of cortical activity patterns. We refer to these time-
lag structures as ‘spatiotemporal patterns.’ Examples of such spatiotemporal patterns include short time-
scale lag projections (Mitra et al., 2014, 2015) and the quasi-periodic pattern (QPP) (Majeed et al., 2011).
In the following section, we demonstrate that the three dominant FC topographies discovered from our
survey of zero-lag FC analyses correspond to ‘static’ or zero-lag descriptions of three spatiotemporal
patterns. We utilized a simple modi�cation of PCA for detection of time-lag relationships between cortical
BOLD time series. Speci�cally, we apply PCA to complex BOLD signals obtained by the Hilbert transform
of the original BOLD signals (see ‘Methods and Materials’). We refer to this analysis as complex PCA
(cPCA). 

We applied cPCA to the same resting state fMRI dataset. The scree plot criterion again motivated the
choice of three complex principal components (Supplementary Figure C). The relative explained variance
between the �rst three complex principal components from cPCA was similar to that observed between
the �rst three principal components from PCA: component 1 (R2  = 21.4%), component 2 (R2  = 6.8%) and
component 3 (R2  = 5.7%). Associated with each complex principal component is a time-lag delay map,
re�ecting the time-delay (in seconds) between cortical vertices (see ‘Methods and Materials’ for
construction of the time-lag delay maps). To examine the temporal progression of each complex principal
component, we sampled the reconstructed BOLD time courses from each complex principal component
at multiple, equally-spaced phases of its cycle (n=30; see ‘Methods and Materials’). Movies of the
reconstructed BOLD time courses are displayed in Movie 1.

The time-lag delay maps and reconstructed time courses of each complex principal component are
displayed in Figure 2. The �rst complex principal component describes a spatiotemporal pattern that
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begins with negative BOLD amplitudes in the SMLV complex (Figure 2A). This is followed by a
propagation of negative BOLD amplitudes towards cortical regions overlapping primarily with the FPN,
but also with the DMN and primary visual cortex. This is followed by a mirrored propagation of positive
BOLD amplitudes with the same dynamics. Given this pattern of propagation, we refer to the �rst
complex principal component as the ‘SMLV-to-FPN’ spatiotemporal pattern. Because the explained
variance of the �rst complex principal component is three times greater than the subsequent complex
principal components (Supplementary Figure C), we also refer to the SMLV-to-FPN as the ‘dominant
spatiotemporal pattern’ in intrinsic BOLD �uctuations. The second principal component describes a
spatiotemporal pattern that begins with positive BOLD amplitudes in the DMN and primary visual cortex,
and negative BOLD amplitudes in the FPN. This is followed by the onset of positive BOLD amplitudes in
the SMLV that quickly propagates towards the FPN, with a simultaneous propagation of negative BOLD
amplitudes from the FPN to the DMN. We refer to the second complex principal component as the ‘FPN-
to-DMN’ spatiotemporal pattern. The third principal component describes a spatiotemporal pattern that
begins with positive BOLD amplitudes in regions of the FPN and negative BOLD amplitudes in regions of
the DMN and SMLV. This is followed by a fast propagation of positive BOLD amplitudes from the FPN to
the SMLV, with a simultaneous propagation of negative amplitudes from the DMN to the FPN. Note,
activation of the SMLV complex occurs slightly before the regions of the DMN. We refer to the third
complex principal component as the ‘FPN-to-SMLV’ spatiotemporal pattern.

 Examination of the reconstructed time courses reveals that the pattern of spatial weights in the three
dominant FC topographies (i.e. principal component maps. Figure 1B) resembles the pattern of BOLD
activity at individual time points of the three spatiotemporal patterns. The pattern of weights of the �rst
principal component (PC1) occurs within the �rst spatiotemporal pattern  (r = 0.998, t = 11.9s), PC2
occurs within the second spatiotemporal pattern (r = 0.986, t = 12.6s), and PC3 occurs within the third
spatiotemporal pattern (r = 0.972, t = 3.7s). Further, the time courses of the three spatiotemporal patterns
components closely tracks the time courses of the �rst three principal component time courses,
respectively: PC1 (r = 0.98), PC2 (r = 0.95), and PC3 (r = -0.83, at a temporal lag of ~3 TRs). This �nding
suggests that the three dominant FC topographies are ‘static’ or ‘stationary’ representations of three
temporally-extended, dynamic patterns of BOLD activity.

3. Steady States and Propagation Events in Spatiotemporal Patterns

To visualize the temporal dynamics of the three spatiotemporal patterns, we projected the reconstructed
time points (see above) into the 3-dimensional space formed by the �rst three principal components,
corresponding to the three dominant FC topographies (Figure 1B). This projection allowed for a simple
visualization of the temporal progression of BOLD activity within each spatiotemporal pattern. The
structure of the resulting projection is interpreted as follows: reconstructed time points with a spatial
pattern of BOLD activity resembling the spatial weights of one of the three principal components have
higher scores on the axis of that principal component. The bene�t of this representation of
spatiotemporal patterns is two-fold: 1) examination of the movement of consecutive time points provides
information regarding the ‘speed’ of change in BOLD activity between time points (e.g., steady states vs.
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rapid propagation or transition events), and 2) time points between two spatiotemporal patterns that are
close together in this space indicate common patterns of BOLD activity between those spatiotemporal
patterns (see below). The reconstructed time points of each spatiotemporal pattern is also displayed in
Movie 1. 

The temporal cycle of each spatiotemporal pattern forms an oval in the three-dimensional principal
component space (Figure 3B), corresponding to a full cycle of the spatiotemporal pattern. For all three
spatiotemporal patterns, most consecutive time points cluster closely together, indicating a ‘steady state’
of BOLD activity with relative stability of BOLD activity over that period. The steady states of the SMLV-
to-FPN, FPN-to-DMN and FPN-to-SMLV vary strongest along the �rst, second and third principal
component axes, respectively. This is apparent from the location of steady state time points (i.e.
consecutive time points clustered closely together in space) in the 2-dimensional plots formed by two
principal component axes in the three-dimensional space. For example, the steady state time points of
the SMLV-to-FPN (time points displayed in blue) exhibit the highest positive and negative scores on the
�rst principal component axis with smaller scores on the �rst and third principal component axes. This
simply re�ects the fact that the spatial pattern of BOLD activity during the steady states of the SMLV-to-
FPN is strongly correlated with the pattern of spatial weights of the �rst principal component. These
steady state periods are interrupted by large movement between consecutive time points that correspond
to rapid propagation of BOLD activity towards another steady state. All three spatiotemporal patterns
spend most of their cycle in a period of steady synchronous activity that is interrupted by rapid
propagation events.  

In the case of the SMLV-to-FPN, the speed of propagation is relatively slower compared with the more
abrupt propagation of the FPN-to-DMN and FPN-to-SMLV. This becomes apparent by tracing consecutive
propagation time points (i.e. time points with long distances from their previous time point) between the
steady states of each spatiotemporal pattern. The propagation events of the FPN-to-DMN and FPN-to-
SMLV travel the same distance in approximately three time points as the SMLV-to-FPN in approximately
�ve time points. For each spatiotemporal pattern, a full-cycle contains two mirrored steady-states and two
mirrored propagation events. Mirrored steady-states and propagation events are the same spatial pattern
of BOLD activity with a sign-�ip - i.e. �ipped positive and negative values. Another notable observation in
this representation is that propagation time points of the SMLV-to-FPN and FPN-to-DMN vary most
strongly along the third principal component axis. This indicates that the pattern of BOLD activity during
propagation events of the SMLV-to-FPN and FPN-to-DMN resemble the pattern of spatial weights of the
third principal component. The opposite is true of the FPN-to-SMLV. In this spatiotemporal pattern,
steady-state time points vary strongest along the third principal component axis, and the propagation
time points vary strongest along the second principal component axis.

4. Recurring Spatial Topographies in Spatiotemporal Patterns

 There is overlap in cortex-wide BOLD activity at certain time points between the three spatiotemporal
patterns. For example, the pattern of BOLD activity at 8.6 seconds into the SMLV-to-FPN corresponds
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closely (r = 0.909) to the pattern of activity at 12.2s into the FPN-to-SMLV.  This suggests that the same
spatial topography of BOLD activity may appear across more than one spatiotemporal pattern. To
examine repeating spatial topographies across the three spatiotemporal patterns, we applied a clustering
algorithm to the reconstructed time points from all three spatiotemporal patterns.  We concatenated the
reconstructed time points from each spatiotemporal pattern (n=90, 30 time points per spatiotemporal
pattern) and clustered the time points from the concatenated matrix using a k-means clustering
algorithm. To avoid scaling differences in the distance calculations between time points, the BOLD values
within each time point were z-score normalized. We chose a six-cluster solution from the k-means
algorithm, as this was found to capture the three mirrored pairs of steady states from each
spatiotemporal pattern (Figure 3E). Examination of the cluster assignments of each time point across
spatiotemporal patterns (Figure 3C and D) yields several important insights. First, the six clusters
correspond to the three pairs of mirrored or sign-�ipped steady-states of the three spatiotemporal
patterns. The �rst two clusters correspond to the steady states of the SMLV-to-FPN. Clusters three and
four correspond to the steady states of the FPN-to-DMN, and clusters �ve and six correspond to the
steady states of the FPN-to-SMLV. Second, the pattern of BOLD activity in the steady-states of one
spatiotemporal pattern occurs within propagation events of the other two spatiotemporal patterns. For
example, the pattern of BOLD activity in the steady-states of the FPN-to-SMLV (cluster three and four)
occur within propagation events of the SMLV-to-FPN and the FPN-to-DMN. Further, the pattern of BOLD
activity in the steady-states of the FPN-to-DMN (cluster �ve and six) occur within propagation events of
the FPN-to-SMLV. In other words, the same pattern of BOLD activity occurs as a steady state or a
propagation event depending on the spatiotemporal pattern. Third, the FPN-to-DMN and FPN-to-SMLV
spatiotemporal patterns are mirror images of each other. The pattern of BOLD activity in the FPN-to-DMN
steady-states occurs as propagation events in the SMLV-to-DMN, and vice versa. In fact, the FPN-to-DMN
can be converted to the FPN-to-SMLV by swapping the steady-states (clusters �ve and six) and the
propagation events (clusters three and four), and vice versa.

5. Relationships With Previously Observed Phenomena in Intrinsic BOLD Fluctuations

A further aim of this study was to understand the relationship between these three spatiotemporal
patterns and previously observed phenomena in intrinsic BOLD signals. First, we consider spatiotemporal
patterns discovered by previous approaches. Lag projections (Mitra et al., 2014) and the QPP (Majeed et
al., 2011) correspond to time-lagged phenomena at shorter (~2s) and longer (~20s) time scales,
respectively. Lag projections are computed as the column average of the pairwise time-lag matrix. The
time-lag between a pair of BOLD time courses is the difference in time at which the correlation between
the BOLD time courses is maximal. The column average of the pairwise time-lag matrix, or lag projection,
provides the average ‘ordering’ in time of cortical BOLD time courses. We hypothesized that the average
time-delay, represented by the lag projection, would match the dominant spatiotemporal pattern, the
SMLV-to-FPN. To test this hypothesis, we computed the lag projection of all cortical BOLD time courses
from the same 50 subject sample of resting-state scans. We found that the spatial correlation between
the time-lag delay map of the SMLV-to-FPN and the lag projection map is strong (r = 0.81), and both
exhibit the same direction of propagation (Figure 4). Thus, the time-lag dynamics described by lag
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projections map closely onto that described by the SMLV-to-FPN. However, there is a discrepancy
between the estimated duration between the two approaches - the estimated duration of the SMLV-to-FPN
from the cPCA is ~22s, and the full duration of the lag projection is ~2.5s. This may suggest that the
time-lag structure of the SMLV-to-FPN exists at shorter time scales. Note, the lag projection we computed
only partially resembles the average lag projection in Mitra et al. (2014) - the differences are due to
preprocessing differences, which we discuss in Supplementary Results F.

While lag projections describe short-time scale propagation structures, the QPP is a much longer
temporally-extended pattern (>20s). Visual comparison of the spatiotemporal pattern of the QPP (Majeed
et al., 2011) with the SMLV-to-FPN revealed a super�cial similarity. Thus, we hypothesized that both the
QPP and the SMLV-to-FPN describe the same spatiotemporal dynamics. We derived the QPP from a
repeated-template-averaging procedure with a commonly used window size (~21s; 30TRs; Youse� et al.,
2018) on the resting-state fMRI data. We then computed the correlation between the time course of the
QPP and the time course of the SMLV-to-FPN. We found that the time courses of the SMLV-to-FPN and
QPP were strongly correlated (r = 0.72) at a time-lag of 7TRs (~5s). The similarity in spatiotemporal
dynamics between the QPP and SMLV-to-FPN can also be illustrated visually. We visualized the
spatiotemporal template of the QPP from the repeated template-averaging procedure, and compared it to
the time point reconstruction of the SMLV-to-FPN described above (Movie 2). As can be seen from the
visualization, the temporal dynamics of the SMLV-to-FPN overlap signi�cantly with the dynamics of the
QPP.

During the steady states of SMLV-to-FPN, the distribution of weights is roughly unipolar, meaning it is
either all positive or all negative (Figure 2A). This suggests that the SMLV-to-FPN may track the global
mean time course of cortical vertices, otherwise known as the ‘global signal’. We found that this is indeed
the case - the time course of the SMLV-to-FPN and the global mean time course are statistically
indistinguishable (r = 0.97). This would also suggest that the temporal dynamics surrounding the time
points before and after the peak of the global signal correspond to the dynamics of the SMLV-to-FPN. We
constructed a dynamic visualization of the global signal through a peak-averaging procedure.
Speci�cally, all BOLD time courses within a �xed window (15TRs on each side) were averaged around
randomly-sampled peaks (N=200, > 1 standard deviation above the mean) of the global mean time
course. Visually comparing the spatiotemporal visualization of the global signal to the SMLV-to-FPN, we
found that the temporal dynamics surrounding peaks of the global signal precisely match those of the
SMLV-to-FPN (Movie 2). 

The temporal dynamics of the FPN-to-DMN largely represents an anti-correlated pattern between the FPN
and DMN - i.e. when regions of the DMN exhibit negative BOLD activity, the regions of the FPN exhibit
positive BOLD activity (and vice versa). This resembles the “task-positive” (i.e. FPN) vs. “task-negative”
(i.e. DMN) anti-correlation pattern originally observed by Fox et al. (2005) and Fransson (2005). We
reproduced these results by correlating each cortical vertices’ BOLD time course with a seed time course
from the left and right precuneus, a key node of the DMN. Note that the same results were observed with
a seed placed in the left and right inferior parietal cortex. As expected, an anti-correlated pattern was

https://www.zotero.org/google-docs/?zr5WOl
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observed between the FPN and DMN (Figure 4). We compared the precuneus-seed correlation map to the
time points of the FPN-to-DMN using spatial correlation. We found that the pattern of correlations in the
precuneus-seed map precisely corresponds to the pattern of BOLD activity in the beginning phase of the
FPN-to-DMN (r = 0.92, t = 1.8s). Thus, this would seem to suggest that the task-positive vs. task-negative
pattern arises from the anti-correlated dynamics between the FPN (task-positive) and DMN (task-
negative) represented by the FPN-to-DMN spatiotemporal pattern.

A similar anti-correlation pattern to the task-positive/task-negative pattern has been observed in the FC
gradient literature (Margulies et al., 2016; Vos de Wael et al., 2020), known as the ‘principal’ or ‘primary’ FC
gradient (PG). In our zero-lag FC topography survey (Figure 1), we computed the PG as the �rst
component derived from the Laplacian Eigenmaps (LE) algorithm, consistent with Vos de Wael et al.
(2020). As opposed to the task-positive/task-negative pattern, the PG exhibits an anti-correlated pattern
of spatial weights between the SMLV complex and the DMN (Figure 4). Further, the PG has been referred
to as the principal direction of variance in cortical functional connectivity (Margulies et al., 2016).
However, the results from both PCA (Figure 1) and cPCA (Figure 2) identify the SMLV-to-FPN as the
principal direction of variance in cortical functional connectivity, which does not exhibit the anti-correlated
pattern between the SMLV complex and the DMN observed in the PG. In fact, none of the three
spatiotemporal patterns exhibit an anti-correlated dynamic between the SMLV complex and the DMN.

With no clear correspondence between the PG and the three spatiotemporal patterns, we sought to
identify the factors that might explain the uniqueness of the PG. We discovered that the spatial
topography of the PG is due to the con�uence of two factors: 1) global signal regression and/or time
point normalization (i.e., z-scoring or de-meaning without unit-variance scaling), and 2) thresholding of
FC matrices. First, as has been previously observed by Liu et al. (2017), regression of the global mean
time course, and de-meaning of cortex-wide BOLD values within a time point (i.e. time-point centering)
have very similar effects on cortical time series. Implicit in the computation of LE for functional
connectivity gradients, as well as other manifold-learning techniques, is a time-point centering step (Ham
et al., 2004 see Supplementary Discussion E). This is relevant because the global mean time course
precisely tracks the time course of the SMLV-to-FPN (r = 0.96). This would suggest that removal of the
global mean time course through global signal regression and/or time-point centering effectively removes
the SMLV-to-FPN from BOLD time courses. What is left over is the second most dimension of variance in
FC, the FPN-to-DMN. In fact, this would explain the appearance of the task-positive vs. task-negative
pattern after global signal signal regression in seed-based correlation analysis (Fox et al., 2005). We
tested this possibility by comparing the output of PCA and cPCA with and without a time-point centering
preprocessing step (Figure 4B). Consistent with our hypothesis, PCA of time-point centered BOLD time
courses produces a pattern of spatial weights for the �rst principal component that resembles the second
principal component from PCA of non-time-point centered BOLD time courses (PC2: r = 0.94). Further, the
�rst complex principal component of cPCA on time-point centered BOLD time courses exhibits a time-
delay map that resembles the second complex principal component time-delay map on non-time-point
centered data  (cPC2:= 0.49 vs cPC1: = 0.10). Note, the correlation between the time-lag maps was
computed using a circular correlation coe�cient due to the circular properties of the spatiotemporal
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patterns (e.g. 0 and 2 are identical angles). Thus, at least one effect of time-point centering and/or global
signal regression of BOLD time courses is the removal of the �rst principal component and/or the SMLV-
to-FPN from BOLD time courses.

It is the dual effect of time-point centering and FC matrix thresholding that resolves the discrepancy
between the DMN-to-FPN and the PG observed in our study. The FC matrix represents Pearson’s
correlation of BOLD time courses between all pairs of cortical vertices (i.e. correlation matrix). It is
standard practice in computation of the PG that a threshold is performed row or column-wise on the FC
matrix (e.g. 90th percentile of correlation values within that row) before the creation of an a�nity matrix
to input to the manifold learning algorithm (Margulies et al., 2016; Vos de Wael et al., 2020). This
preprocessing step is intended to remove noisy or arti�cial correlation values from the FC matrix. In our
survey of zero-lag FC topographies (Figure 1), we applied a 90th percentile threshold across rows of the
FC matrix prior to LE. We found that this preprocessing step obscures the relationship between the PG
and DMN-to-FPN. In fact, if no thresholding of the FC matrix is performed, the �rst eigenmap produced
from LE precisely resembles the FPN-to-DMN contrast observed in the second principal component of
non-time-point centered BOLD time courses (r = 0.83; Figure 4A and 4C). As one raises the percentile
threshold applied to the FC matrix, the spatial weights of vertices within the FPN, DMN and SMLV
complex become more uniform, and the spatial weights of the vertices within the FPN fall to zero (Figure
4C). At the higher end of percentile thresholds (e.g. 90th percentile) a contrast between the SMLV and
DMN begins to appear that is almost equally similar to the unipolar contrast of the �rst principal
component (r = 0.83) and the anti-correlation contrast of the second principal component (r = 0.82).

6. Network-Based Representations of Functional Connectivity

FC topographies are low-dimensional representations of zero-lag synchronous relationships among
BOLD time courses. In the network or graph-based approach to FC analysis, the unit of analysis is
pairwise relationships between BOLD time courses. Rather than reducing pairwise relationships to lower-
dimensional representations, the network-based approach analyzes the structure of these relationships.
We sought to identify the degree to which the structure of pairwise zero-lag synchronous relationships
between BOLD time courses arises from the shared dynamics of the three distinct spatiotemporal
patterns. A network representation of FC was constructed by computing the correlations between all pairs
of cortical BOLD time courses to create a correlation or FC matrix (Figure 5). We compared this FC matrix
to a FC matrix that was reconstructed from the three spatiotemporal patterns. Reconstructed cortical
BOLD time courses were created from the spatiotemporal patterns by projecting the time courses of each
pattern back into the cortical vertex space. A ‘reconstructed’ FC matrix was computed from these
reconstructed time courses in the same manner as the original BOLD time courses. We estimated the
similarity between the two FC matrices by computing the correlation coe�cient between the lower
triangles of each matrix. Despite a larger mean correlation value in the reconstructed FC matrix, we found
that the patterns of correlations between the FC matrices were highly similar (r = 0.77). 



Page 13/34

We also sought to determine whether the community structure of cortical BOLD time courses can arise
from the shared dynamics of the three spatiotemporal patterns. We �rst thresholded the FC matrices by
setting those correlation values below the top 80% of correlation values to zero. We estimated network
communities from the original FC matrix using the Louvain modularity-maximization algorithm with a
resolution parameter value of 1. To assess the degree of community structure in the original FC matrix,
we computed the modularity value of the partition of vertices into communities from the Louvain
algorithm. The modularity value varies from -1 to 1 and represents the ratio of the summed intra-
community correlation coe�cients to that expected at random, such that higher values indicate a ‘higher
quality’ partition. The modularity value of the original FC matrix was Q = 0.34. We then examined whether
the same community structure of the original FC matrix was present in the FC matrix reconstructed from
the spatiotemporal patterns. We assigned the vertices of the reconstructed FC matrix to the community
assignments derived from the original FC matrix and re-calculated the modularity value. We found that
the modularity value of the community assignments applied to the reconstructed FC matrix was almost
as strong as the original FC matrix (Q = 0.29). In other words, the community structure of the original FC
matrix is present in the FC matrix constructed from the shared dynamics of the three spatiotemporal
patterns. 

Discussion
Over the past decade, intrinsic functional brain organization has been characterized by a myriad of
analytic methods (Bijsterbosch et al., 2020). This study attempted to synthesize this complex landscape
into a set of fundamental patterns and organizational principles. We found three canonical
spatiotemporal patterns of BOLD activity that are consistently observed across analytic methods, what
we refer to as the ‘SMLV-to-FPN’, ‘FPN-to-DMN’ and ‘FPN-to-SMLV’ spatiotemporal patterns. These
spatiotemporal patterns are best represented by time-lag analyses capable of characterizing temporally-
extended patterns of BOLD activity. However, we also found that many zero-lag FC analyses are capable
of representing parts of this spatiotemporal pattern, albeit in the form of ‘static’ or ‘stationary’ snapshots.
Further, we found that a signi�cant proportion of cortex-wide FC network structure is explained by the
shared dynamics of these three spatiotemporal patterns. 

The three spatiotemporal patterns account for a wide-variety of previous �ndings in resting-state fMRI.
Previous research has demonstrated that travelling waves or propagatory patterns are ubiquitous
features of intrinsic cortical BOLD activity (Gu et al., 2020; Majeed et al., 2011; Mitra et al., 2015). We
found that the ‘SMLV-to-FPN’, representing the dominant axis of variance in cortical BOLD time courses,
captures the same pattern of propagatory activity in lag projections originally discovered by Mitra et al.
(2014). Further, the ‘SMLV-to-FPN’ precisely matches the spatiotemporal dynamics of the QPP originally
discovered by (Majeed et al., 2011) (though recent �ndings suggest there may be more than one QPP,
Youse� and Keilholz, 2021). Consistent with �ndings that the time course of the QPP is closely correlated
with the global BOLD signal (Youse� et al., 2018), we �nd that the time course of the SMLV-to-FPN is
statistically indistinguishable from that of the global BOLD signal. Further, the spatiotemporal pattern of
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BOLD activity around peaks of the global signal precisely matches the spatiotemporal pattern of the
SMLV-to-FPN. 

Another ubiquitous feature of intrinsic cortical BOLD activity is anti-correlated FC between the DMN and
FPN, sometimes referred to as the ‘task-positive’ and ‘task-negative’ pattern (Fox et al., 2005; Fransson,
2005). Some have argued that the anti-correlated pattern of FC between the DMN and FPN is arti�cially
introduced by regression of the global BOLD time course (Murphy et al., 2009). Others have argued that
features of the anti-correlated pattern are independent of global signal regression (Fox et al., 2009). Our
�ndings suggest that the global signal and DMN-FPN correspond to descriptions of two distinct
spatiotemporal patterns, the ‘SMLV-to-FPN’ and the ‘DMN-to-FPN’, respectively. We found that global
signal regression effectively eliminates the dominant axis of variance in cortical BOLD signals,
corresponding to the ‘SMLV-to-FPN’. This leaves the second most dominant axis of variance in cortical
BOLD signals, the ‘DMN-to-FPN’ as the primary contributor to functional connectivity. Thus, global signal
regression does not produce the anti-correlated pattern between the DMN and FPN, but merely eliminates
the variance in BOLD signals associated with the SMLV-to-FPN. The anti-correlated pattern of FC between
the DMN and FPN that emerges after this procedure is not arti�cial but corresponds to the anti-correlated
dynamics of the DMN-to-FPN. The independence of this anti-correlated pattern of FC from the global
signal (or SMLV-to-FPN) is further con�rmed by the observation that both patterns are represented as
distinct FC topographies across a wide variety of analytic methods.

Despite their independence, the FPN-to-DMN shares at least two features in common with the SMLV-to-
FPN. First, the all-positive contrast between SMLV (high amplitude) and DMN (low amplitude) in the
beginning phase of the SMLV-to-FPN has a strong degree of spatial similarity with the anti-correlated
contrast in the later phase of the FPN-to-DMN (r = 0.7). The discrepancy between the two patterns is the
lack of high amplitude values in the SMLV in the beginning phase of the FPN-to-DMN. However, the SMLV
does appear at a later phase of the FPN-to-DMN, during the propagation of the SMLV to the FPN. In the
SMLV-to-FPN, SMLV activation is simultaneous with activation of the FPN. In the FPN-to-DMN, SMLV
activation occurs slightly after that of the FPN. This suggests that the primary difference between the two
spatiotemporal patterns is a differential onset time of BOLD activity within the SMLV. Second, the
direction of propagation is consistent between the two spatiotemporal patterns. Both patterns exhibit
propagation from the SMLV towards the FPN. However, as noted above, the propagation of BOLD activity
from the SMLV to FPN occurs later in the FPN-to-DMN than the SMLV-to-FPN. The similarity between the
two spatiotemporal patterns suggests that they may share common physiological or neuronal
mechanisms.

The temporal dynamics of the three spatiotemporal patterns can be divided into steady-states and
propagation events. Steady-states are periods of relative stability of BOLD activity across consecutive
time points of the spatiotemporal pattern. These steady-states are interrupted by propagation events
exhibiting rapid changes in BOLD activity between consecutive time points. The three spatiotemporal
patterns can be distinguished by their ratio of time points classi�ed into propagation events versus
steady-states. The FPN-to-DMN and FPN-to-SMLV spend most of their time in steady-states with very few



Page 15/34

time points exhibiting propagation. The SMLV-to-FPN exhibits a smooth, spatially continuous
propagation of BOLD activity and contains a higher ratio of propagation time points versus steady-state
time points than the FPN-to-DMN and FPN-to-SMLV. 

Analysis of the temporal evolution of the three spatiotemporal patterns revealed a surprising pattern: the
same spatial topography of BOLD activity can appear across more than one spatiotemporal pattern. For
example, the spatial topography of BOLD activity that occurs during the propagation events of the SMLV-
to-FPN and FPN-to-DMN appears in the steady-state time points of the FPN-to-SMLV. Comparison of the
temporal evolution between the FPN-to-DMN and SMLV-to-FPN revealed another striking observation - the
dynamics of the FPN-to-DMN and SLMV-to-FPN appear to be mirror images of one another. Speci�cally,
the steady-state time points of the FPN-DMN resemble the propagation time points of the FPN-to-SMLV,
and vice versa. However, these spatiotemporal patterns exhibit opposite directions of propagation:
propagation of BOLD activity from the FPN to DMN and SMLV to FPN in the FPN-to-DMN, and
propagation of BOLD activity from the DMN to FPN and FPN to SMLV in the FPN-to-SMLV.

Our �ndings suggest that intrinsic functional brain representations are markedly consistent across
analytic methods. This fact is even more surprising considering the wide array of mathematical and
statistical assumptions of the analytic methods surveyed in this study. This observation does not imply
that all analytic methods we surveyed produce the same insights. Each method affords a unique
perspective on the spatial and temporal properties of the three spatiotemporal patterns discovered in this
survey. Further, the level of functional brain organization explored in this study is an important
quali�cation of our �ndings. This study has shown consistency at the level of widely-distributed cortical
BOLD activity patterns among analytic approaches. Most of the analysis approaches we surveyed can
reveal �ner-grained spatial insights at higher component or cluster numbers. Thus, we do not expect the
same consistency in analytic approaches at �ner-grained levels of analysis (e.g. an ICA solution of 50
components vs. a PCA solution of 50 components). Despite this quali�cation, the consistency of widely-
distributed representations of cortical functional brain organization, in the form of three common
spatiotemporal patterns, attests to the dominance of these structures at higher spatial levels of analysis.
Another limitation of this study was the exclusion of subcortical areas from our analyses. This study was
primarily interested in cortical functional brain organization. However, previous research suggests that the
large-scale spatiotemporal patterns observed in this study have signi�cant subcortical contributions as
well (Youse� and Keilholz, 2021; Youse� et al., 2018).

The appearance of these three large-scale spatiotemporal patterns across a wide-variety of analytic
methods leads to the question of what these patterns may represent in terms of neuronal or
hemodynamic processes. The similar time-scales and temporal dynamics between these three
spatiotemporal patterns suggest they may emerge from similar mechanisms. Momentary �uctuations in
arousal and/or vigilance are known to be related to the global BOLD signal (Liu et al., 2015, 2018;
Schölvinck et al., 2010), BOLD propagation dynamics (Gu et al., 2020), and the anti-correlated dynamic
between the FPN and DMN (Kucyi et al., 2020). All three of these features of intrinsic BOLD activity were
found to be related to one or more of three spatiotemporal patterns. This may suggest that the three
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spatiotemporal patterns emerge from neurometabolic processes associated with momentary �uctuations
in arousal. Future research may be directed towards a more complete understanding of the common or
distinct neuronal or physiological mechanisms that give rise to these spatiotemporal patterns. 

Materials And Methods
Resting-State fMRI Data

Our study utilized resting-state fMRI scans from the Human Connectome Project (HCP) S1200 release
(Van Essen et al., 2013). Participants were non-related, healthy young adults (ages 22–37). Resting-state
fMRI data was collected over two consecutive days for each subject and two sessions, each consisting of
two 15 minute runs, amounting to four resting-state scans per subject. Within a session, the two runs
were acquired with opposite phase encoding directions: L/R encoding and R/L encoding. We selected a
single 15 min scan from a random sample of participants (n=50; 21 males) on the �rst day of scanning.
We balanced the number of L/R and R/L phase encoding scans across our participants (n=25 for each
encoding direction) to ensure results were not biased by acquisition from any given phase encoding
direction. We chose a single 15 min scan per participant to ensure that the phase encoding/decoding
parameter and the imaging session (two resting-state scans per imaging session) did not differ within the
same participant. A second independent random sample of participants (n=50, 22 males) was used as a
validation sample. We selected surface-based CIFTI resting-state fMRI scans that had been previously
preprocessed with the HCP’s ICA-based artefact removal process (Smith et al., 2013) to minimize effects
of spatially structured noise in our analysis. All brain-imaging data were acquired on a customized
Siemens 3 T Skyra at Washington University in St. Louis using a multi-band sequence. The structural
images were 0.7 mm isotropic. The resting-state fMRI data were at 2 mm isotropic spatial resolution and
with TR = 0.72 s temporal resolution. Further details of the data collection and preprocessing pipelines of
the HCP can be found elsewhere (Smith et al., 2013; Van Essen et al., 2013). Informed consent was
obtained from all subjects. All methods were carried out in accordance with relevant guidelines and the
University of Miami Institutional Review Board approved the study. 

Resting-State fMRI Preprocessing

Resting-state fMRI scans were spatially smoothed with a 5mm FWHM kernel using the surface-based
smoothing algorithm in Connectome Workbench Version 1.4.2. Resting-state fMRI signals from each
vertex were then temporally �ltered to the conventional low-frequency range of resting-state fMRI studies
using a Butterworth bandpass zero-phase �lter (0.01-0.1Hz). Due to 1) the computational complexity of
our analytic pipeline, owing to the large number of analyses studied, and 2) our interest in global,
spatially distributed patterns, resting-state fMRI scans were then resampled to the fs4 average space
from Freesurfer (Dale et al., 1999). This step down-sampled the total number of vertices in the left and
right cortex to 4800 vertices. In group analyses, we z-scored (to zero mean and unit variance) the BOLD
time series from all vertices before temporal concatenation of individual scans. All analyses were applied
to group-level data formed by temporal concatenation of subject resting-state scans. 
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Survey of Functional Connectivity Topographies

Description of Zero-lag FC Analyses

Our study distinguished between two different descriptions of intrinsic functional brain organization -
zero-lag synchrony between brain regions, and time-lag synchrony between brain regions. Zero-lag
synchrony is de�ned as in-phase or anti-phase statistical dependence between intrinsic BOLD signals -
e.g. the correlation between two intrinsic BOLD signals with no time-lag. Following the standard
terminology of the functional magnetic resonance imaging (fMRI) literature, we refer to zero-lag
synchrony among intrinsic BOLD �uctuations as ‘functional connectivity’ (FC) (Reid et al., 2019). FC
between cortical brain regions organize into global, cortex-wide patterns, referred to as ‘FC topographies’.
All analyses were conducted so as to be consistent as possible with previous studies. For some of these
analyses, results were compared with and without global signal regression. Global signal regression was
performed by regression of the global mean time series (averaged across all cortical vertices) on all
cortical time series. Residual time series from each regression were then used for subsequent analysis.
All analyses were conducted using custom Python scripts, and are publicly-available at
https://github.com/tsb46/BOLD_WAVES. The following zero-lag FC analyses were conducted:

Principal component analysis (PCA): consists of eigendecomposition of the empirical covariance
matrix of the vertices’ time series, or alternatively, singular value decomposition of the mean-centered
group data matrix (time series along rows, vertices as columns). The �rst T principal components
represent the top T dimensions of variance among cortical BOLD time courses. By construction, the
�rst principal component is the latent direction of variation with the largest explained variance
across all input variables, followed by the second most explanatory component, and so forth. The
principal component spatial weights on each vertex were used to interpret the spatial patterns of
each principal component. Principal component scores were obtained from the projection of the
temporally-concatenated group time series onto the principal component space, and represent the
time course of each principal component. 

Varimax rotation of principal components: consists of an orthogonal rotation of the principal
component spatial weights, such that the simple structure of the spatial weights are maximized.
Simple structure is de�ned such that each vertex loads most strongly one component, and weakly on
all others. We used the implementation of varimax rotation in the FactorAnalyzer Python package
(https://github.com/EducationalTestingService/factor_analyzer). 

Laplacian Eigenmaps (spectral embedding): is a nonlinear manifold learning algorithm popular in
the FC gradient literature (Vos de Wael et al., 2020). The input to the Laplacian eigenmaps algorithm
was the vertex-by-vertex cosine similarity matrix (Margulies et al., 2016), representing the similarity in
BOLD time series between all cortical vertices. Of note, cosine similarity is equivalent to Pearson
correlation in mean-centered and unit normalized time series (i.e. z-score normalization), as was the
case with our data. Laplacian Eigenmaps performs an eigendecomposition of the transformed
similarity matrix, known as the normalized Laplacian matrix. We also computed Laplacian
Eigenmaps with a Gaussian radial basis function (gamma=1), and the results were virtually identical

https://github.com/tsb46/BOLD_WAVES
https://github.com/EducationalTestingService/factor_analyzer
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to the cosine similarity metric. We used the spectral embedding algorithm implemented in the scikit-
learn (V0.23) Python package, and details can be found at (https://scikit-
learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html). 

Spatial and temporal independent component analysis (ICA): estimates linearly mixed, statistically
independent sources from a set of input variables. In the case of spatial ICA, principal component
axes derived from PCA of the time point-by-time point covariance matrix are rotated to enforce
statistical independence in the spatial domain. In the case of temporal ICA, principal component
axes derived from PCA of the vertex-by-vertex covariance are rotated to enforce statistical
independence in the temporal domain. As with varimax rotation, we input a three principal
component solution for both temporal and spatial ICA. We used the FastICA algorithm implemented
in the scikit-learn (V0.23) Python package. Details can be found at (https://scikit-
learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html). 

Seed-based correlation analysis: consists of correlations between a seed brain region time course
and time courses of all cortical vertices. Seed-based correlation analysis was performed for three
seed locations. There are various methods for determining the location of seed regions. In our
analysis, we chose seed regions within the three most prominent networks in the three dominant
spatiotemporal patterns - SMLV, FPN and DMN. We chose seeds in the somatosensory cortex
(SMLV), precuneus (DMN), and supramarginal gyrus (FPN) (Supplementary Figure B2). The spatial
outline of the SMLV, DMN and FPN for guiding the selection of seed regions were determined through
a k-means clustering analysis of the temporally-concatenated group time series with cortical vertices
as observations and BOLD values at each time points as input variables (i.e. features). We found
that a three-cluster k-means clustering solution precisely delineated the spatial outline of the three
networks. This spatial outline was used to ensure the seeds were placed within their appropriate
location of each network. In addition, we also tested the robustness of our results for different seed
locations in the three networks - medial insula (SMLV), inferior parietal cortex (DMN) and dorsolateral
prefrontal cortex (FPN) - and found that the results were identical.

Co-activation pattern (CAP) analysis: Three CAP analyses were performed for the same three seed
regions used in the seed-based regression analysis. CAP analyses �rst identify time points with the
highest activation for a seed time course. Consistent with previous studies (Liu and Duyn, 2013b), we
chose the top 15% of time points from the seed time course. The BOLD values for all cortical vertices
in the top 15% time points are then input to a k-means clustering algorithm to identify recurring CAPs
of BOLD activity. We chose a two cluster solution for all CAP analyses. For each seed, the two cluster
centroids from the k-means clustering analysis represent two CAPs associated with the seed time
course. 

Hidden Markov modeling (HMM): is a probabilistic generative model used to infer the sequence and
form of discrete hidden states, as well as their transition probabilities from an unobserved sequence
of latent states. HMM construes the data-generating process based on multivariate Gaussian
distributions conditioned on unknown latent ‘brain states’ that are assumed to generate the observed
cortical BOLD time series. Each brain state represents a recurring pattern of BOLD co-

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
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activations/deactivations, somewhat similar to CAPs. To avoid over�tting and to reduce noise in the
high-dimensional input data, we conducted a PCA of the cortical BOLD time series. The �rst 100
principal component projections of the time series served as input to the HMM algorithm. Associated
with each brain state is a mean amplitude vector with a value for each principal component (N =
100), and a covariance matrix between the 100 principal component time courses. The mean
amplitude vector represents the pattern of BOLD activity amplitudes associated with that brain state.
For interpretation, the mean amplitude vector is projected back into cortical verex space for
interpretation. A variety of potential ‘observation models’ are frequently used in HMM models. As
cortical time series are measured on a continuous scale (as opposed to discrete measurements), the
probability of a time point conditional on a hidden brain state (i.e. emission probabilities) is modeled
as a mixture of Gaussian distributions. We used the HMM algorithm with Gaussian mixture emission
probabilities implemented in the Python package hmmlearn (V0.2.5)
(https://github.com/hmmlearn/hmmlearn). 

Model Selection: Choice of Number of Dimensions in Dimension-Reduction Algorithms

The dimension-reduction algorithms used in this study, including PCA, PCA with varimax rotation, spatial
and temporal ICA, and Laplacian Eigenmaps, as well as HMMs, require a choice of the number of latent
dimensions/hidden states to estimate. For PCA with varimax rotation, spatial and temporal ICA, and
HMM, this controls the degree of richness and/or �ne-grained distinctions of the data description - i.e.
how many separate unobserved hidden phenomena are assumed and quantitatively modeled to underlie
each given data point or observation. We did not assume or try to derive a single ‘best’ number of latent
dimensions to represent intrinsic functional brain organization (Bzdok et al., 2016; Schaefer et al., 2018).
As we were interested in large-scale cortical patterns of FC, our survey focuses on low-dimensional latent
solutions. As an initial estimate of the number of latent dimensions for all choices of dimension
reduction algorithms, we examined the �rst T dominant axes of variation (i.e. principal components) of
the correlation matrix formed between all pairs of cortical BOLD time series. Speci�cally, we examined the
drop-off in explained variance (i.e. eigenvalues) associated with neighboring principal components, a
procedure known as Catell’s scree plot test (Cattell, 1966). According to this test, the number of
components to extract is indicated by an ‘elbow’ in the plot, representing a ‘diminishing return’ in
extracting more components. Clear elbows in the scree plot were observed after a principal component
solution of one and three (Figure 1A). We chose the higher-dimensional solution of three components.
Note, the elbow in explained variance after three components was independent of the functional
resolution (i.e. vertex size) of the cortex - we found the same elbow after three components in a scree plot
constructed from high-resolution functional scans (~60,000 vertices without downsampling to 4,800
vertices as described above in our preprocessing pipeline). Thus, three latent dimensions were estimated
for all dimension-reduction algorithms, and three hidden states were estimated for the HMM. 

Time-lagged Analyses of Resting-State fMRI Data

Quasiperiodic Pattern and Lag Projections

https://github.com/hmmlearn/hmmlearn
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Time-lag analyses capture relationships between two or more time series at past or future lags of the
time series. We refer to representations of time-lag relationships between cortical time series as
‘spatiotemporal patterns’. There are two widely-used algorithms for the study of spatiotemporal patterns
in BOLD signals: 1) interpolated cross-covariance functions (Mitra et al., 2014, 2015) for the detection of
lag/latency projections (~0-2s) and 2) a repeated-template-averaging algorithm of similar spatiotemporal
segments (Majeed et al., 2011) for detection of the QPP (~20s). 

Lag projections represent the average time-lag between a brain region’s time course and all other brain
regions. It provides an estimate of the average temporal ‘ordering’ of brain region time courses, such that
a brain region with a greater average time-lag occurs after a brain region with a smaller average time-lag.
For our study, we applied the lag projection algorithm to all cortical vertex time courses. The time-lag
between a pair of cortical vertex time courses is de�ned as the peak of their lagged cross-covariance
function. Lag projections are derived as the column average of the pairwise time-lag matrix between all
cortical vertex time courses.  

To estimate the QPP, the template-autoregressive matching algorithm of Majeed et al. (2011) was used.
The algorithm operates in the following manner: start with a random window of BOLD TRs, compute a
sliding window correlation of the window across the temporally concatenated group data at each time
point, and then average this segment with similar segments of BOLD TRs (de�ned using a correlation
threshold). This process is repeated iteratively until a level of convergence is reached. The result is a
spatiotemporal averaged template of BOLD dynamics (that could be displayed in a movie, for example),
along with the �nal sliding window correlation time series. The �nal sliding window time series is the
same length as the original subject or group concatenated time series and provides a time index of the
appearance of the QPP in BOLD data. Python code for this analysis was modi�ed from the C-PAC toolbox
(https://fcp-indi.github.io/). Consistent with previous studies (Majeed et al., 2011; Youse� et al., 2018), the
following parameters were chosen for the template matching algorithm: the window length was 30 TRs,
the maximum correlation threshold for identifying similar segments was r > 0.2, and the algorithm was
repeated 10 times. The template with the highest average sliding window correlation time series across
the 10 runs was chosen as the �nal result.

Complex Principal Component Analysis

To tie the three dominant FC topographies to spatiotemporal processes in the cortex, we used a simple
modi�cation of PCA for detection of spatiotemporal patterns. Speci�cally, we apply PCA to complex
BOLD signals obtained by the Hilbert transform of the original BOLD signals. We refer to this analysis as
complex PCA (cPCA). This technique has been referred to as complex Hilbert empirical orthogonal
functions in the Atmospheric and Climate sciences literature (Horel, 1984). 

cPCA allows the representation of time-lag relationships between BOLD signals through the introduction
of complex correlations between the Hilbert transformed BOLD signals. The original time courses and
their Hilbert transforms are complex vectors with real and imaginary components, corresponding to the
non-zero-lagged time course (t=0) and the time course phase shifted by t=(i.e. 90 degree), respectively.

https://fcp-indi.github.io/
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The correlation between two complex signals is itself a complex number (composed of a real and
imaginary part), and allows one to derive the phase offset (and magnitude) between the original time
courses - i.e. the time-lag at which the correlation is maximum. In the same manner, cPCA produces
complex spatial weights for each principal component that can give information regarding the time-lags
between BOLD time courses. In the same manner that a complex signal is composed of real and
imaginary signal components, the complex principal component’s spatial weights are composed of real
and imaginary components. and the phase delay of the spatial weights. The real part of the complex
principal component corresponds to the ‘beginning phase’ of the complex principal component = 0, where
represents phase in radians), corresponding to the spatial map of BOLD activity at the beginning of the
spatiotemporal pattern. The imaginary component corresponds to a ‘later phase’ of the complex principal
component = 0 +), corresponding to the spatial map of BOLD activity several time points (a quarter cycle)
after the beginning of the complex principal component. 

In the same manner that a complex signal can be represented in terms of amplitude and phase
components (via Euler’s transform), the real and imaginary components of the complex principal
component can be represented in terms of amplitude and phase spatial weights. Of interest in this study
is the phase spatial map that represents the time-lag between pairs of BOLD time courses - i.e. those
cortical vertices with a low phase value activate earlier than cortical vertices with a high phase value.
Importantly, the principal components from the cPCA retain the same interpretive relevance as the original
PCA - the �rst N principal components represent the top N dimensions of variance in the Hilbert
transformed BOLD signals. An illustration of cPCA applied to simulated globally propagated �elds is
provided in Supplementary Results D.  cPCA was implemented with singular value decomposition of the
groupwise temporally-concatenated complex-valued time series using the fast randomized SVD
algorithm developed by Facebook (https://github.com/facebookarchive/fbpca). 

For simplicity, the phase spatial maps of each complex principal component are displayed in seconds
(Figure 2), as opposed to radians. However, the conversion of phase values (in radians) to time-units
(seconds) requires an estimation of the time-scale of each complex principal component. The phase
spatial maps of the complex principal components have no characteristic time scale other than that
imposed by our band-pass �ltering operation (0.01 - 0.1 Hz, i.e. 100 to 10s) in the preprocessing stage. To
approximate a unique time scale within this frequency range for each component, we calculated the
average duration for a full oscillation of each complex principal component using the temporal phase of
the complex component time series. This was calculated by �tting a linear curve to the unwrapped
temporal phases of the complex principal component time series. The slope of the curve was then used
as an estimate of the average duration in radians of a TR (0.72s) or time-points. To estimate the average
duration in TRs of a full oscillation, we divided a full oscillation (2 radians) by the duration in radians of a
TR. For example, for a TR duration of 0.5 radians, the duration of a full oscillation (2 radians) would be
approximately 12.6 TRs. Using this procedure, we found that the average duration of the �rst three
complex principal components are ~28s (38.7 TRs), ~27s (37.4 TRs) and ~28s (39.1 TRs), respectively.
Using this duration as an estimate of the characteristic time scale of each complex principal component,
allows us to provide an estimate of the time-delay in seconds of the spatial phase map. For example, for

https://github.com/facebookarchive/fbpca
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the �rst complex principal component, a 360 degree (2radians) phase difference between two cortical
BOLD time series would correspond to a ~28s time-lag between the time series. A smaller phase
difference between two cortical BOLD time series, such as 1radians, would correspond to ~14s time-lag
between the time series, and so forth.  

To examine the temporal progression of each complex principal component, we sampled the
reconstructed BOLD time courses from each complex principal component at multiple, equally-spaced
phases of its cycle (N=30; Figure 2). For each complex principal component, the reconstruction procedure
was as follows: 1) the complex principal component time series was projected back into the original
vertex-by-time space to produce time courses of the complex principal component at each vertex, 2) the
temporal phase of the complex principal component time course was segmented into equal-width phase
bins (N=30) spanning a full oscillation of the spatiotemporal pattern (0 to 2 radians), and 3) the vertex
values within each bin were averaged to produce a ‘snapshot’ of BOLD activity at each phase bin (N=30)
of the spatiotemporal pattern. The end result is a spatiotemporal representation of each complex
principal component in terms of time-varying BOLD activity at equally spaced phases of its cycle.
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Figure 1

Form and Properties of Three Fundamental Functional Connectivity Topographies. A) The spatial
correlation (abs. value) between the �rst three principal component maps and each FC topography
displayed as a table. The color of each cell in the table is shaded from light yellow (strong correlation) to
dark blue (weak correlation). All FC topographies in our survey exhibited strong spatial correlations
(Pearson’s correlation) with one (or two) of the �rst three principal components. B) The �rst three principal
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component spatial maps. C) The scree plot that displays the explained variance in cortical time series for
each successive principal component. The scree plot indicates a clear elbow after the third principal
component, indicating a ‘diminishing return’ in explained variance of extracting more components.
(P=precuneus, SM= somatosensory; SMG=supramarginal gyrus; Clus=cluster; Comp=component; PC =
Principal Component).

Figure 2
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Form and Properties of Three Fundamental Spatiotemporal Patterns. Time-lag delay maps and
reconstructed time points of the �rst three complex principal components. Time-lag delay maps represent
the temporal ordering (in seconds) of cortical vertex BOLD time series within the spatiotemporal pattern.
Time-lag delay maps describe a repeating or cyclical pattern expressed in radians (0 to 2π) around a unit
circle, where a phase value of 0 corresponds to the beginning of the spatiotemporal pattern, and 2π
corresponds to the end of the spatiotemporal pattern. For clarity, radians are converted to temporal units
(seconds) (see ‘Methods and Materials’). The values in the time-lag delay map correspond to the
temporal delay (in seconds) between two cortical vertices, such that smaller values occur before larger
values. Values are mapped to a cyclical color map to emphasize the cyclical temporal progression of
each spatiotemporal pattern. To illustrate the temporal progression of the spatiotemporal patterns, six
reconstructed time points are displayed for each pattern. A) The time-lag delay map (top) and
reconstructed time points (bottom) of the �rst spatiotemporal pattern - ‘SMLV-to-FPN’. B) The time-lag
delay map and reconstructed time points of the second spatiotemporal pattern - ‘DMN-to-FPN’ C) The
time-lag delay map and reconstructed time points of the third spatiotemporal pattern - ‘SMLV-to-FPN’.
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Figure 3

Spatiotemporal Patterns Consist of Steady States and Propagation Events That Repeat Across Patterns.
(PC = Principal Component) Illustration of the progression of BOLD activity over time in each
spatiotemporal pattern. A) The spatial weights for the �rst three principal components from PCA (Figure
1B). For visualization of temporal dynamics, the reconstructed time points (N=30) from each
spatiotemporal pattern were projected onto the 3-dimensional embedding space formed by the �rst three
principal components. B) Two-dimensional slices of each spatiotemporal pattern in the 3-dimensional
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principal component space - PC1-PC2, PC1-PC3, and PC2-PC3 spaces. The time points of the SMLV-to-
FPN, FPN-to-DMN, and FPN-to-SMLV are displayed as blue, green and red points, respectively.
Consecutive time points of each spatiotemporal pattern are linked by lines. The time points of each
spatiotemporal pattern are colored from light to darker to visualize the progression of time (N=30). The
score of each time point on a given principal component is proportional to the Pearson correlation
coe�cient between the BOLD activity at that time point with the spatial weights of the principal
component. Examination of the movement of time points within the 3-dimensional space provides
information regarding the temporal dynamics of the spatiotemporal pattern. C) The same two-
dimensional slices of each spatiotemporal pattern in the 3-dimensional principal component space
colored according to their cluster assignment by a k-means clustering algorithm. K-means clustering was
used to identify recurring spatial patterns of BOLD activity across time points of the three spatiotemporal
patterns. Six clusters were estimated. D) The cluster assignments (color) by time (y-axis) of each
spatiotemporal pattern (x-axis). Note, that the same cluster assignment can occur across more than one
spatiotemporal pattern. E) The cluster centroids from the k-means clustering algorithm, corresponding to
the average spatial pattern of BOLD activity for the time points that belong to that cluster. Note, the
cluster centroids of the �rst two clusters are mean-centered versions of the original unimodal (all-positive
or all-negative) steady-state of the SMLV-to-FPN, as z-score normalization of the time-points across
vertices was performed beforehand.

Figure 4

Similar Time-lag Dynamics between SMLV-to-FPN and Lag Projection. Comparison between the time-lag
delay map of the SMLV-to-FPN (left) and the average lag projection (right). As in Figure 2, the SMLV-to-
FPN time-lag delay map represents the phase delay (in radians) of cortical BOLD time series. The lag
projection map represents the average time-lag delay (in seconds) between each vertex of the cortex. The
spatial correlation between the SMLV-to-FPN time-lag delay map and lag projection is r = 0.81, indicating
a strong similarity in time-lag dynamics.
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Figure 5

The Task-Positive/Task-Negative Pattern and the Primary Gradient Emerge from the FPN-to-DMN
Spatiotemporal Pattern. A) From left to right, the FPN-to-DMN, task-positive/task-negative (TP/TN)
pattern, and the PG represented by the spatial weights of the second principal component from PCA (sign
�ipped for consistency), seed-based correlation map (precuneus seed), and �rst Laplacian eigenmap with
no thresholding of the a�nity matrix, respectively. Note, the color mapping of each brain map is non-
symmetric to emphasize the smaller negative values within the FPN. As can be observed visually, similar
spatial patterns are produced from all three analyses - FPN-to-DMN:TP/TN (r =0.96) and FPN-to-DMN:PG
(r = 0.83). B) From left to right, the �rst principal component from non-time-centered BOLD time courses,
the �rst principal component of time-centered BOLD time courses, and the �rst complex principal
component time-lag delay map from time-centered BOLD time courses. As can be observed visually, time-
point centering of BOLD time courses replaces the original unipolar �rst principal component (left) with a
bipolar (anti-correlated) principal component (middle). In the same manner, the �rst complex principal
component of cPCA of time-centered BOLD time courses (right) exhibits a time-lag map resembling the
time-lag map of the second complex principal component from cPCA of non-time-centered BOLD time
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courses (Figure 2). C) The effect of functional connectivity (FC) matrix percentile thresholding on the
resulting spatial weights of the PG, computed as the �rst eigenmap of the Laplacian Eigenmap algorithm
(only the left hemisphere presented for space). At zero to low-thresholding of the FC matrix, the �rst
Laplacian Eigenmap resembles the second principal component of non-time-centered BOLD time
courses. As the threshold is raised, the spatial weights of vertices within the FPN, DMN and SMLV
complex become more uniform, and the spatial weights of the vertices within the FPN fall to zero. At
higher thresholds this results in an Eigenmap that resembles the �rst principal component of non-time-
centered BOLD time courses.

Figure 6

The Network Structure of Functional Connectivity Is Explained by the Three Fundamental Spatiotemporal
Patterns. Comparison of the correlation matrix of cortical BOLD time courses (left) with the correlation
matrix of reconstructed cortical BOLD time courses (right) derived from the three spatiotemporal patterns,
and the module assignments of each vertex (bottom). The rows and columns of the original and
reconstructed correlation matrix are sorted and outlined (in black) according to the modular structure of
the original correlation matrix estimated from the Louvain modularity algorithm. The algorithm identi�ed
four primary modules in the DMN, sensory-motor cortices, FPN, and the posterior parietal/visual cortex.
Modules with < 100 vertices were considered ‘junk’ modules and are placed in the upper right hand corner
of each sorted correlation matrix. ‘Junk’ modules were not represented in the module assignments
(bottom). Beside the title in parentheses of each correlation matrix is the modularity value. The
modularity value represents the degree of community structure for the modular partition of that
correlation matrix (i.e. degree of intra vs. inter module correlation weights). The modular structure
estimated from the original correlation matrix (Q = 0.34) retains a high degree of modularity when used to
partition the reconstructed correlation matrix (Q =0.29), indicating the three spatiotemporal patterns
explain a signi�cant amount of the modular structure in the original correlation matrix. Further, despite a
higher mean value of correlations in the reconstructed correlation matrix, the pattern of correlations
between the two correlation matrices is highly similar (r = 0.77).
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