1. Asrani, S.K., Devarbhavi, H., Eaton, J. & Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 70, 151-171 (2019).
2. Eltzschig, H.K. & Eckle, T. Ischemia and reperfusion-from mechanism to translation. Nat. Med. 17, 1391-1401 (2011).
3. Monga, S.P. Lipid metabolic reprogramming in hepatic ischemia-reperfusion injury. Nat. Med. 24, 6-7 (2018).
4. Froghi, F., Froghi, S. & Davidson, B.R. Liver sschaemia-reperfusion Injury. Liver Diseases 129-141 (2020).
5. Zhai, Y., Petrowsky, H., Hong, J.C., Busuttil, R.W. & Kupiec-Weglinski, J.W. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 10, 79-89 (2013).
6. Davidson, S.M., et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 89-99 (2019).
7. Dar, W.A., Sullivan, E., Bynon, J.S., Eltzschig, H. & Ju, C. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 39, 788-801 (2019).
8. Cannistrà, M., et al. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int. J. Surg. 33, S57-S70 (2016).
9. Li, S., Li, H., Xu, X., Saw, P.E. & Zhang, L. Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics 10, 1262-1280 (2020).
10. Ni, D., et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv. Mater. 31, 1902956 (2019).
11. Park, J., et al. In situ electrochemical generation of nitric oxide for neuronal modulation. Nat. Nanotechnol. 15, 690-697 (2020).
12. Midgley, A.C., Wei, Y., Li, Z., Kong, D. & Zhao, Q. Nitric-oxide-releasing biomaterial regulation of the stem cell microenvironment in regenerative medicine. Adv. Mater. 32, 1805818 (2020).
13. Carpenter, A.W. & Schoenfisch, M.H. Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev. 41, 3742-3752 (2012).
14. Hou, J., et al. Targeted delivery of nitric oxide via a ‘bump-and-hole’-based enzyme-prodrug pair. Nat. Chem. Biol. 15, 151-160 (2019).
15. Huang, Z., Fu, J. & Zhang, Y. Nitric oxide donor-based cancer therapy: advances and prospects. J. Med. Chem. 60, 7617-7635 (2017).
16. Duranski, M.R., et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Investig. 115, 1232-1240 (2005).
17. Fu, P. & Li, W. Nitric oxide in liver ischemia-reperfusion injury. Liver Pathophysiology 125-127 (2017).
18. Bhatraju, P., Crawford, J., Hall, M. & Lang Jr, J.D. Inhaled nitric oxide: current clinical concepts. Nitric Oxide 50, 114-128 (2015).
19. Gao, L., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577-583 (2007).
20. Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357-4412 (2019).
21. Wu, J., et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004-1076 (2019).
22. Jiao, L., et al. When nanozymes meet single-atom catalysis. Angew. Chem. 132, 2585-2596 (2020).
23. Jiang, D., et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865-877 (2018).
24. Fan, K., et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 1-11 (2018).
25. Han, S.I., et al. Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv. Mater. 32, 2001566 (2020).
26. Jiang, D., et al. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683-3704 (2019).
27. Wu, H., et al. Bioactive ROS-scavenging nanozymes for regenerative medicine: Reestablishing the antioxidant firewall. Nano Select 1, 285-297 (2020).
28. Kim, J.Y., et al. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials 133, 1-10 (2017).
29. Yang, B., Chen, Y. & Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881-4985 (2019).
30. Zhang, Y., et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 33, 2006570 (2021).
31. Xu, Y., et al. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew. Chem. Int. Ed. 58, 5572-5576 (2019).
32. Huo, M., Wang, L., Chen, Y. & Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 1-12 (2017).
33. Cai, X., et al. Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater. Today 44, 211-228 (2021).
34. Liu, Y., et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020).
35. Teranishi, T., Hosoe, M., Tanaka, T. & Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 103, 3818-3827 (1999).
36. Pan, Y., Liu, Y., Zeng, G., Zhao, L. & Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071-2073 (2011).
37. Brenner, D., Blaser, H. & Mak, T.W. Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15, 362-374 (2015).
38. Roland, C.R., Walp, L., Stack, R.M. & Flye, M.W. Outcome of Kupffer cell antigen presentation to a cloned murine Th1 lymphocyte depends on the inducibility of nitric oxide synthase by IFN-gamma. J. Immunol. 153, 5453-5464 (1994).
39. Cuzzocrea, S., Riley, D.P., Caputi, A.P. & Salvemini, D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol. Rev. 53, 135-159 (2001).
40. Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1, 1397-1406 (2001).
41. Ambalavanan, N., John, E.S., Carlo, W.A., Bulger, A. & Philips, J.B. Feasibility of nitric oxide administration by oxygen hood in neonatal pulmonary hypertension. J Perinatol. 22, 50-56 (2002).
42. Lang, J.D., et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J. Clin. Investig. 117, 2583-2591 (2007).
43. Zhang, D.-Y., et al. Ultrasmall platinum nanozymes as broad-spectrum antioxidants for theranostic application in acute kidney injury. Chem. Eng. J. 409, 127371 (2021).
44. Zhang, Y., et al. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12, 651-661 (2018).
45. Mu, J., He, L., Huang, P. & Chen, X. Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coord. Chem. Rev. 399, 213039 (2019).
46. Chen, T.-T., Yi, J.-T., Zhao, Y.-Y. & Chu, X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J. Am. Chem. Soc. 140, 9912-9920 (2018).