Hybrid hydrogel was synthesized by immobilizing TiO2 in polyethylene glycol diacrylate (TiO2@PEGDA) as an efficient adsorbent with photocatalysis property for bisphenol A (BPA) elimination. TiO2@PEGDA exhibited spherical and rough structure with limited crystallinity and abundant functional groups. The contact angle was 61.96°, indicating that TiO2@PEGDA is hydrophilic. The swelling capacity of TiO2@PEGDA (9.0%) was decreased compared with pristine PEGDA (15.6%). Adsorption results demonstrated that the maximum adsorption capacity of TiO2@PEGDA (101.4 mg/g) for BPA was slightly higher than pristine PEGDA (97.68 mg/g). The adsorption capacity was independent with pH at pH < 8.0, and decreased obviously when the value of pH was higher than 8.0. The adsorption behavior was fitted well with the pseudo-second-order kinetic and the Freundlich isotherm model. Both ΔG0 and ΔH0 were negative, indicating that BPA adsorbed on TiO2@PEGDA was an exothermic and spontaneous process. Regeneration study was performed by photocatalysis, and the adsorption capacity was 85.6% compared with the initial capacity after four cycles of illumination, indicating that TiO2@PEGDA could be recycled without significant loss of adsorption capacity. Consequently, TiO2@PEGDA can serve as an eco-friendly and promising material for efficiently adsorbing BPA with self-clean property.