1. Dong, E.; Du, H.; Gardner, L., An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases 2020, 20 (5), 533-534.
2. Asghar, H.; Diop, O. M.; Weldegebriel, G.; Malik, F.; Shetty, S.; El Bassioni, L.; Akande, A. O.; Al Maamoun, E.; Zaidi, S.; Adeniji, A. J., Environmental surveillance for polioviruses in the Global Polio Eradication Initiative. The Journal of infectious diseases 2014, 210 (suppl_1), S294-S303.
3. Yan, T.; O’Brien, P.; Shelton, J.; Whelen, A.; Pagaling, E., Municipal wastewater as a microbial surveillance platform for enteric diseases: a case study for Salmonella and salmonellosis. Environmental science & technology 2018, 52 (8), 4869-4877.
4. McCall, C.; Wu, H.; Miyani, B.; Xagoraraki, I., Identification of multiple potential viral diseases in a large urban center using wastewater surveillance. Water research 2020, 184, 116160.
5. Farkas, K.; Cooper, D. M.; McDonald, J. E.; Malham, S. K.; de Rougemont, A.; Jones, D. L., Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. Science of the Total Environment 2018, 634, 1174-1183.
6. Kroiss, S. J.; Ahmadzai, M.; Ahmed, J.; Alam, M. M.; Chabot-Couture, G.; Famulare, M.; Mahamud, A.; McCarthy, K. A.; Mercer, L. D.; Muhammad, S., Assessing the sensitivity of the polio environmental surveillance system. PloS one 2018, 13 (12), e0208336.
7. Larsen, D. A.; Wigginton, K. R., Tracking COVID-19 with wastewater. Nature Biotechnology 2020, 38 (10), 1151-1153.
8. Peccia, J.; Zulli, A.; Brackney, D. E.; Grubaugh, N. D.; Kaplan, E. H.; Casanovas-Massana, A.; Ko, A. I.; Malik, A. A.; Wang, D.; Wang, M., Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology 2020, 38 (10), 1164-1167.
9. Graham, K. E.; Loeb, S. K.; Wolfe, M. K.; Catoe, D.; Sinnott-Armstrong, N.; Kim, S.; Yamahara, K. M.; Sassoubre, L. M.; Mendoza Grijalva, L. M.; Roldan-Hernandez, L., SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. Environmental science & technology 2020.
10. Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O'Brien, J. W.; Choi, P. M.; Kitajima, M.; Simpson, S. L.; Li, J., First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment 2020, 728, 138764.
11. Bivins, A.; North, D.; Ahmad, A.; Ahmed, W.; Alm, E.; Been, F.; Bhattacharya, P.; Bijlsma, L.; Boehm, A. B.; Brown, J., Wastewater-based epidemiology: global collaborative to maximize contributions in the fight against COVID-19. ACS Publications: 2020.
12. Gonzalez, R.; Curtis, K.; Bivins, A.; Bibby, K.; Weir, M. H.; Yetka, K.; Thompson, H.; Keeling, D.; Mitchell, J.; Gonzalez, D., COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water research 2020, 186, 116296.
13. Sherchan, S. P.; Shahin, S.; Ward, L. M.; Tandukar, S.; Aw, T. G.; Schmitz, B.; Ahmed, W.; Kitajima, M., First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Science of The Total Environment 2020, 743, 140621.
14. Medema, G.; Been, F.; Heijnen, L.; Petterson, S., Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Current Opinion in Environmental Science & Health 2020.
15. Gerrity, D.; Papp, K.; Stoker, M.; Sims, A.; Frehner, W., Early-pandemic wastewater surveillance of SARS-CoV-2 in Southern Nevada: Methodology, occurrence, and incidence/prevalence considerations. Water research X 2021, 10, 100086.
16. Symonds, E.; Verbyla, M.; Lukasik, J.; Kafle, R.; Breitbart, M.; Mihelcic, J., A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia. Water research 2014, 65, 257-270.
17. Haramoto, E.; Kitajima, M.; Hata, A.; Torrey, J. R.; Masago, Y.; Sano, D.; Katayama, H., A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water research 2018, 135, 168-186.
18. Corpuz, M. V. A.; Buonerba, A.; Vigliotta, G.; Zarra, T.; Ballesteros Jr, F.; Campiglia, P.; Belgiorno, V.; Korshin, G.; Naddeo, V., Viruses in wastewater: occurrence, abundance and detection methods. Science of the Total Environment 2020, 745, 140910.
19. Olson, M. R.; Axler, R. P.; Hicks, R. E., Effects of freezing and storage temperature on MS2 viability. Journal of virological methods 2004, 122 (2), 147-152.
20. Rzeżutka, A.; Cook, N., Survival of human enteric viruses in the environment and food. FEMS microbiology reviews 2004, 28 (4), 441-453.
21. Bertrand, I.; Schijven, J.; Sánchez, G.; Wyn‐Jones, P.; Ottoson, J.; Morin, T.; Muscillo, M.; Verani, M.; Nasser, A.; de Roda Husman, A., The impact of temperature on the inactivation of enteric viruses in food and water: a review. Journal of Applied Microbiology 2012, 112 (6), 1059-1074.
22. John, D. E.; Rose, J. B., Review of factors affecting microbial survival in groundwater. Environmental Science & Technology 2005, 39 (19), 7345-7356.
23. Gundy, P. M.; Gerba, C. P.; Pepper, I. L., Survival of Coronaviruses in Water and Wastewater. Food Environ. Virol. 2009, 1 (1), 10-14.
24. Perreault, D. M.; Anslyn, E. V., Unifying the current data on the mechanism of cleavage–transesterification of RNA. Angewandte Chemie International Edition in English 1997, 36 (5), 432-450.
25. Soukup, G. A.; Breaker, R. R., Relationship between internucleotide linkage geometry and the stability of RNA. Rna 1999, 5 (10), 1308-1325.
26. Liu, M.; Gong, X.; Alluri, R. K.; Wu, J., Characterization of RNA damage under oxidative stress in Escherichia coli. Biological chemistry 2012, 393 (3), 123.
27. Li, Z.; Wu, J.; DeLeo, C. J., RNA damage and surveillance under oxidative stress. IUBMB life 2006, 58 (10), 581-588.
28. Ahmed, W.; Bertsch, P. M.; Bivins, A.; Bibby, K.; Farkas, K.; Gathercole, A.; Haramoto, E.; Gyawali, P.; Korajkic, A.; McMinn, B. R., Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Science of The Total Environment 2020, 739, 139960.
29. LaTurner, Z. W.; Zong, D. M.; Kalvapalle, P.; Gamas, K. R.; Terwilliger, A.; Crosby, T.; Ali, P.; Avadhanula, V.; Santos, H. H.; Weesner, K., Evaluating recovery, cost, and throughput of different concentration methods for SARS-CoV-2 wastewater-based epidemiology. Water Research 2021, 117043.
30. Gerba, C. P.; Betancourt, W. Q.; Kitajima, M.; Rock, C. M., Reducing uncertainty in estimating virus reduction by advanced water treatment processes. Water research 2018, 133, 282-288.
31. Seyhan, A. A.; Burke, J. M., Mg2+-independent hairpin ribozyme catalysis in hydrated RNA films. Rna 2000, 6 (2), 189-198.
32. Ma, S.; Huang, Y.; van Huystee, R., Improved plant RNA stability in storage. Analytical biochemistry 2004, 1 (326), 122-124.
33. Hernandez, G. E.; Mondala, T. S.; Head, S. R., Assessing a novel room-temperature RNA storage medium for compatibility in microarray gene expression analysis. Biotechniques 2009, 47 (2), 667-670.
34. Kansagara, A. G.; McMahon, H. E.; Hogan, M. E., Dry-state, room-temperature storage of DNA and RNA. Nature Methods 2008, 5 (9), iv-v.
35. Fabre, A.-L.; Colotte, M.; Luis, A.; Tuffet, S.; Bonnet, J., An efficient method for long-term room temperature storage of RNA. European Journal of Human Genetics 2014, 22 (3), 379-385.
36. Xie, X.; Bahnemann, J.; Wang, S.; Yang, Y.; Hoffmann, M. R., “Nanofiltration” enabled by super-absorbent polymer beads for concentrating microorganisms in water samples. Scientific Reports 2016, 6, 20516.
37. Badiger, M.; Kulkarni, M.; Mashelkar, R., Concentration of macromolecules from aqueous solutions: a new swellex process. Chemical engineering science 1992, 47 (1), 3-9.
38. Iritani, E.; Iwata, M.; Murase, T., Concentration of proteinaceous solutions with superabsorbent hydrogels. Separation science and technology 1993, 28 (10), 1819-1836.
39. Prazeres, D., Concentration of BSA using a superabsorbent polymer: process evaluation. Journal of biotechnology 1995, 39 (2), 157-164.
40. Pellaux, R.; Heile, J.-m.; Schenzle, A. J.; Held, M., Method for the concentration and purification of biological compounds. Google Patents: 2010.
41. Cussler, E.; Stokar, M.; Varberg, J., Gels as size selective extraction solvents. AIChE journal 1984, 30 (4), 578-582.
42. Vartak, H.; Rele, M.; Rao, M.; Deshpande, V., A method for concentrating dilute solutions of macromolecules. Analytical biochemistry 1983, 133 (1), 260-263.
43. Wei, C.; Huang, Y.; Liao, Q.; Fu, Q.; Xia, A.; Sun, Y., The kinetics of the polyacrylic superabsorbent polymers swelling in microalgae suspension to concentrate cells density. Bioresource technology 2018, 249, 713-719.
44. Martin del Campo, J. S.; Patino, R., Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production. Biotechnology and bioengineering 2013, 110 (12), 3227-3234.
45. Chen, W.; Wang, T.; Dou, Z.; Xie, X., Self-Driven “Microfiltration” Enabled by Porous Superabsorbent Polymer (PSAP) Beads for Biofluid Specimen Processing and Storage. ACS materials letters 2020, 2 (11), 1545-1554.
46. Tarelli, E.; Mire-Sluis, A.; Tivnann, H. A.; Bolgiano, B.; Crane, D. T.; Gee, C.; Lemercinier, X.; Athayde, M. L.; Sutcliffe, N.; Corran, P. H., Recombinant human albumin as a stabilizer for biological materials and for the preparation of international reference reagents. Biologicals 1998, 26 (4), 331-346.
47. An, F.-F.; Zhang, X.-H., Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017, 7 (15), 3667.
48. Okay, O.; Sariisik, S. B., Swelling behavior of poly (acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments. European Polymer Journal 2000, 36 (2), 393-399.
49. Dika, C.; Duval, J.; Ly-Chatain, H.; Merlin, C.; Gantzer, C., Impact of internal RNA on aggregation and electrokinetics of viruses: comparison between MS2 phage and corresponding virus-like particles. Applied and environmental microbiology 2011, 77 (14), 4939-4948.
50. Schaldach, C.; Bourcier, W. L.; Shaw, H. F.; Viani, B. E.; Wilson, W., The influence of ionic strength on the interaction of viruses with charged surfaces under environmental conditions. Journal of colloid and interface science 2006, 294 (1), 1-10.
51. Pecson, B. M.; Martin, L. V.; Kohn, T., Quantitative PCR for determining the infectivity of bacteriophage MS2 upon inactivation by heat, UV-B radiation, and singlet oxygen: advantages and limitations of an enzymatic treatment to reduce false-positive results. Applied and environmental microbiology 2009, 75 (17), 5544-5554.
52. Weng, S.; Dunkin, N.; Schwab, K. J.; McQuarrie, J.; Bell, K.; Jacangelo, J. G., Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. Journal of environmental management 2018, 221, 1-9.
53. Amsden, B., Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 1998, 31 (23), 8382-8395.
54. Rattanakul, S.; Oguma, K., Analysis of hydroxyl radicals and inactivation mechanisms of bacteriophage MS2 in response to a simultaneous application of UV and chlorine. Environmental science & technology 2017, 51 (1), 455-462.
55. Kluge, J. A.; Li, A. B.; Kahn, B. T.; Michaud, D. S.; Omenetto, F. G.; Kaplan, D. L., Silk-based blood stabilization for diagnostics. Proceedings of the National Academy of Sciences 2016, 113 (21), 5892-5897.
56. Mahfouz, N.; Caucci, S.; Achatz, E.; Semmler, T.; Guenther, S.; Berendonk, T. U.; Schroeder, M., High genomic diversity of multi-drug resistant wastewater Escherichia coli. Scientific reports 2018, 8 (1), 1-12.