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Abstract 10 

The Boussinesq equation (BqE) has been of considerable interest in coastal and ocean 11 

engineering models for simulating surface water waves in shallow seas and harbors, tsunami 12 

wave propagation, wave over-topping, inundation, and near-shore wave process in which 13 

nonlinearity and dispersion effects are taken into consideration. The study deals with the 14 

dynamics of localized waves and their interaction solutions to a dimensionally reduced (2+1)-15 

dimensional BqE from N-soliton solutions with the use of Hirota’s bilinear method (HBM). 16 

Taking the long-wave limit approach in coordination with some constraint parameters in the 17 

N-soliton solutions, the localized waves (i.e., soliton, breather, lump, and rogue waves) and 18 

their interaction solutions are constructed. The interaction solutions can be obtained among 19 

localized waves, such as (i) one breather or one lump from the two solitons, (ii) one stripe and 20 

one breather, and one stripe and one lump from the three solitons, and (iii) two stripes and one 21 

breather, one lump and one periodic breather, two stripes and one lump, two breathers, and two 22 

lumps from the four solitons. It is to be found that all interactions among the solitons are elastic. 23 

The energy, phase shift, shape, and propagation direction of these localized waves and their 24 

interaction solutions can be influenced and controlled by the involved constraint parameters. 25 

The dynamical characteristics of these localized waves and their interaction solutions are 26 

demonstrated through some 3D and density graphs. The outcomes achieved in this study can 27 

be used to illustrate the wave interaction phenomena in shallow water.  28 

 29 
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1. Introduction 32 

The research of localized waves is one of the foremost topics in the areas of nonlinear 33 

science and mathematical physics. In nonlinear science, solitons, lumps, breathers, and rogue 34 

waves are localized waves, which are important objects in nonlinear physical systems [1]. Due 35 

to its importance in nonlinear science, researchers have paid deep attention to the exploration 36 

of these localized waves to a family of nonlinear evolution equations (NLEEs). Generally, 37 

solitary waves are localized waves that propagate at a constant speed without changing their 38 

shape [2]. Such a wave shape preserves its identity after pair-wise collisions, caused by a 39 

cancellation of nonlinear and dispersive effects in any nonlinear models [2]. With numerical 40 

simulations, Hirota [3] validated the preservation of soliton identities after pair-wise collisions. 41 

But the detailed analysis of the numerical results exposed the existence of some ripples after a 42 

collision meaning that the original identity is not completely recovered [4]. Therefore, it is 43 

directive to explore exact solutions of NLEEs admitting soliton solutions for proper scrutiny 44 

of collisions.  45 

It is worth mentioning that John Scott Russell, in 1834, first observed a solitary wave 46 

travelling along a Scottish canal, and thereafter in 1965, Zabusky and Kruskal introduced the 47 

term “soliton” [5, 6]. However, on the other hand, lumps are rationally decaying solutions that 48 

are localized in all spatial directions, while breathers are partially localized breathing waves 49 

with a periodic structure in one certain direction [7]. A rogue wave is a special kind of rational 50 

solution that is localized both in spatial and temporal directions [8, 9]. The mechanism of 51 

rogue/freak waves can be regarded as the high amplitude waves generated by the interaction of 52 

solitons and breathers [1, 10]. The concept of rogue/ freak waves in the ocean was first 53 

proposed by Draper in 1965 [1]. The nonlinear localized waves mentioned above (solitons, 54 

lumps, breathers, and rogue waves) appear in several fields, such as oceanography, fluids, 55 

plasma physics, mathematical physics, optical fibers, nonlinear optics, cold atoms, Bose-56 



3 
 

Einstein condensates, and so on [11-14]. These localized waves also illustrate various 57 

significant instances in nature via some of their related nonlinear models. Besides, interactions 58 

among different localized waves are also an interesting topic in nonlinear science [15]. 59 

Regarding the interest, researchers have focused on the exploration of some novel interaction 60 

solutions among four types of nonlinear localized waves to the NLEEs. 61 

Nowadays, analytic solutions have a great contribution in the diverse field of nonlinear 62 

science and physics for interpreting the hidden mechanism via some relevant NLEEs. In order 63 

to interpret such underlying mechanism to their nonlinear models, several effective methods 64 

have been developed and performed sophistically due to the accessibility of symbolic 65 

computation software that make it possible to perform the intricate and tedious calculations. 66 

Some examples of the effective analytic methods are the inverse scattering transform [16], the 67 

Backlund transformation [17], the Darboux transformation [18], the Kudryashov method [19], 68 

the modified Kudryshov method [20, 21], the generalized Kudryashov method [22], the Jacobi 69 

elliptic function expansion method [23], the sine-Gordon expansion method [24], the extended 70 

sinh-Gordon expansion method [25-27], the (��/�, 1/�)-expansion method [28], the auxiliary 71 

equation method [29], the new auxiliary equation method [22, 30], the variable separation 72 

method [31], the Riemann-Hilbert space approach [7, 32], the Painlevé analysis [33], the 73 

Consistent Riccati expansion method [34], and the HBM [3, 9, 35-38].  74 

Among the aforementioned methods, researchers have proved that the HBM is widely 75 

popular due to its simplicity and directness, which is particularly useful to derive �-soliton 76 

solutions to any nonlinear integrable models. Recently, with the use of the long-wave limit 77 

approach in coordination with constraint parameters, the localized waves including solitons, 78 

lumps, breathers, rogue waves, and their interaction solutions from �-soliton solutions have 79 

been found through a variety of nonlinear models, which are mostly published in 2018-2020 80 

[1, 10, 39-48]. Among the cited refs. [1, 10, 39-48], no significant studies have been found for 81 
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analyzing the wave propagation dynamics of the localized waves and their interaction 82 

structures in shallow water through some relevant models. Although, in the past, Wazwaz [49] 83 

mentioned that the study of wave propagation of long waves in shallow water has become a 84 

dynamic research field in nonlinear science. As in ref. Jawad et al. [50], the dynamics of wave 85 

propagation in shallow water are seen in lakes, rivers, ocean beaches and sea, and described by 86 

the BqE, which leads to  87 

         ��� − ��� − �(��)�� − ������ = 0.                                                                                      (1) 88 

The BqE was first introduced by Joseph Boussinesq in the 1870s for modeling the 89 

propagation of shallow water waves in multiple directions [51]. In this regard, the BqE 90 

contributes to a dominant role in explaining different physical aspects in the field of ocean 91 

engineering, fluid dynamics, and plasma physics dealing with a variety of wave phenomena. 92 

In ocean and coastal engineering, oceanographers and coastal engineers use the BqEs for 93 

simulating surface water waves in shallow seas and harbors, dune, ocean basin-scale tsunami 94 

propagation, wave over-topping, inundation, and near shore wave process modeling in which 95 

nonlinearities and dispersion are seen to be taken into consideration [52-57]. It is of interest to 96 

note here that the physical behaviors of any nonlinear models can be explored by analyzing 97 

their localized waves and interaction solutions. The Boussinesq (Bq) model is one of the ideal 98 

models for simulating wave propagation on ocean surfaces. To study the wave propagation 99 

dynamics on the ocean surfaces, we will construct the nonlinear localized waves and their 100 

interaction solutions to a new integrable Bq model. For this purpose, first, we consider the new 101 

integrable (3+1)-dimensional BqE [52], which leads to 102 

        ��� − ��� − �(��)�� − ������ +
��� ��� + ���� + ���� = 0,                                              (2)  103 

where �, �, �, �  are arbitrary constants, and �  is an unknown function that depends on the 104 

spatial coordinates (�, �, �), and temporal coordinate �. Eq. (2) explains the propagation of 105 

gravity waves on the water surface [52]. Wazwaz and Kaur [52] proposed the extended form 106 
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of BqE specified by Eq. (2) to testify the integrability conditions via the Painlevé test. The 107 

authors constructed real and complex multiple soliton solutions via the simplified Hirota’s 108 

method, and some novel solutions via the ���(−�(�))-expansion method. 109 

It is noteworthy to mention here that Eq. (2) can be converted into the standard fourth-110 

order BqE given by Eq. (1) if we set each of � and � equal to zero. On the other hand, if we 111 

put � = 0 in Eq. (2), then it reduces to the (2+1)-dimensional BqE, which is consistent with 112 

that of Wazwaz and Kaur [52]. It is convenient to reduce Eq. (2) from (3+1)-dimensions to 113 

(2+1)-dimensions by setting � = 0, � = �, and � = �. If we set � = 0 in Eq. (2), it is converted 114 

to the new integrable (2+1)-dimensional BqE, which can be found in Wazwaz and Kaur [52]. 115 

However, if we set � = � and � = 1 to Eq. (2), it is converted to (2+1)-dimensional BqE, but 116 

the second-order linear dispersion term (���) of the equation will disappear. Therefore, this 117 

paper is devoted to the study of dimensionally reduced (2+1)-dimensional BqE to construct the 118 

localized waves and their interaction solutions by setting � = � in Eq. (2), which leads to  119 ��� − ��� − �(��)�� − ������ +
��� ��� + ���� + ���� = 0.                                              (3)  120 

It is remarkable to mention here that Eq. (3) must follow the integrability conditions. In 121 

the past, the dimensionally reduced form of the generalized Kadomtsev-Petviashvili (gKP) and 122 

Boiti-Leon-Manna-Pempinelli (BLMP) equations were solved by Liu et al. [48] and Wu et al. 123 

[10], respectively, where both the group of investigators constructed the localized waves and 124 

their interaction solutions from �-soliton solutions via the HBM in coordination with long-125 

wave limit approach presented in Ablowitz and Satsuma [58]. For constructing the localized 126 

waves and their interaction wave solutions to the gKP and BLMP equations, Liu et al. [48] 127 

reduced the (3+1)-dimensional gKP equation dimensionally after substituting � = �, and Wu 128 

et al. [10] reduced the (3+1)-dimensional BLMP equation dimensionally after substituting � =129 

 0 and � = � . To the best of the authors’ knowledge, the localized waves and their novel 130 

interaction solutions have never been reported, so far, to the dimensionally reduced (2+1)-131 
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dimensional BqE given by Eq. (3). Therefore, the key aim of the study is to construct nonlinear 132 

localized waves and their variety of interaction solutions among the localized waves to the 133 

dimensionally reduced (2+1)-dimensional Hirota bilinear form BqE from �-solitons solutions 134 

via the long-wave limit approach in conjunction with some constraint parameters. It is to be 135 

pointed out here that the long-wave limit approach in coordination with some constraint 136 

parameters is relatively different over the direct search positive quadratic function, hyperbolic 137 

function, trigonometric function, and their combinations, and the homoclinic test function 138 

approaches, which can be found in refs. [35-38]. 139 

The organization of the paper is as follows. Sec.§2 deals with the �-soliton solutions of 140 

the new integrable (3+1)-dimensional BqE and its dimensionally reduced (2+1)-dimensional 141 

BqE via the HBM. Sec.§3 presents nonlinear localized waves and their novel interaction 142 

solutions of the reduced (2+1)-dimensional BqE from �-soliton solutions taking the long-wave 143 

limit approach in coordination with some constraint parameters. Finally, the discussion of the 144 

obtained results and conclusion are placed in Sec.§4. 145 

 146 

2.  �-soliton solutions to the novel integrable (3+1)-dimensional BqE and its 147 

dimensionally reduced from 148 

 149 

We use the following dependent variable transformation [52]: 150 � = ��� (ln �)��,                                                                                                                      (4) 151 

where �(�, �, �, �) is an unknown function of spatio-temporal coordinates �, �, �, and �. 152 

Eq. (2) under the transformation given by Eq. (4) is then transformed into the Hirota bilinear 153 

equation (HBE) as  154 ���� − ��� − ���� +
�� ����� + ����� + ������ (�. �) = 0.                                                 (5) 155 

In Eq. (5), �� , �� , �� , and ��  stand for Hirota’s bilinear differential operators (HBDOs) 156 

defined by (see Kumar et al. [38]) 157 ��� ���������(�. �) = � ��� − ������ � ��� − ������ � ��� − ������ � ��� − ������ �(�, �, �, �)�(��, ��, ��, ��)|����,����,��������,      (6)  158 
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where  �, �, �, and  �  are non-negative integers.  159 

By virtue of the definition of HBDO and its properties, Eq. (5) is turned into the following 160 

form: 161 ���� − ��� − ���� + ��� − �(������ − 4������ + 3���� ) +
�� ������� − ���� + ������ −162 ����� + �(���� − ����) = 0.                                                                                                    (7)  163 

Based on the simplified HBM and the transformation given by Eq. (4), �-soliton solutions are 164 

obtained from  165 

�� = 1 + ∑ ��� + ∑ ����������� �������� + ∑ �������������������� +⋯������ + �∏ ������ � ��∑ ������ �,                  (8) 166 

where ��  and ���  stand for denoting the dispersion variables and generalized phase shifts, 167 

respectively, and are given by 168 

�� = ��� + ��� + ��� + �− �� ��� −����� − ����� + ���� � + ��, � = 1, 2, … , �, and  169 

��� =
��������������������������������������������������������������������������������������������������������������������������������������������������������, �, � = 1, 2, … , �,   (9) 170 

where ��, �� , ��, and �� are arbitrary constants associated with the amplitude and phase of the  171 �th-soliton. It is pertinent to mention that Wazwaz and Kaur [52] have recently constructed the 172 

multiple solitons for Eq. (1) by using the above expression. So, we will not repeat its physical 173 

importance.  174 

Without loss of generality, � = �  can be set in Eq. (5). Then, Eq. (5) is converted to the 175 

following HBE:  176 

  ���� − ��� − ���� +
��� ��� + ����� + ������ (�. �) = 0.                                                (10) 177 

Also, the functions for obtaining �-soliton solutions of Eq. (10), the dispersion variables (��), 178 

and the generalized phase shifts ����� are changed, respectively, into  179 

�� = 1 + ∑ ��� + ∑ ����������� �������� + ∑ �������������������� +⋯������ + �∏ ������ � ��∑ ������ �,                         (11) 180 



8 
 

where  �� = ��� + ��� − ��� ��� + ����� − ����� + ���� � + ��, � = 1, 2, … , �,                             (12) 181 

and 182 

��� =
��������������������������������������������������������������������������������������������������������������������������������������������������������, �, � = 1, 2, … , �. (13) 183 

Using Eq. (11) with the aid of Eqs. (12) and (13) in Eq. (4), one can obtain the following �-184 

soliton solutions of Eq. (2): 185 � = ��� (ln ��)��, � = 1, 2, … , �,                                                                                               (14) 186 

where ��(�, �, �) is a function involving spatial coordinates  �, �, and temporal coordinate �. 187 

Taking � = 1, � = 2, � = 3, and � = 4 to Eq. (14) along with Eqs. (11)-(13), one can 188 

acquire one-stripe, two-stripe, three-stripe, and four-stripe bright solitons, respectively, of Eq. 189 

(3). These bright solitons are displayed in Figs. 1(a)-(d) under the suitable selection of the 190 

constraint parameters as �� = 1, �� = −1, �� = 2, �� = −2, �� = 1, �� = −1, �� = 2, �� =191 −2, �� = 0, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � = 1, � = 1, and � = 0. Furthermore, 192 

Figs. 1(e)-(h) exhibit the corresponding density views of Figs. 1(a)-(d). It is realized visually 193 

from Figs. 1(a)-(d) and Figs. 1(e)-(h) that the �-soliton solutions remain unchanged in their 194 

height, width, and speed before � < 0 and after � > 0. During interactions, the solitons change 195 

only their phases. Therefore, the interactions among the �-solitons are elastic. Now, if we set 196 � = −1 instead of � = 1 in the �-soliton solutions given by Eq. (14), the bright type �-197 

solitons are changed into the dark types in the (�, �)-plane. It is to be mentioned here that the 198 

interactions of the dark solitons maintain the similar behaviors as that of the bright solitons. 199 

 200 

3. Localized waves and their interaction solutions among �-soliton solutions 201 

In this section, we will discuss localized waves and their interaction solutions in the case of 202 

two-stripe, three-stripe, and four-stripe solitons.  203 
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3.1 Interaction solutions between two-stripe solitons 204 

Here, we discuss two cross-stripe solitons, parallel-stripe solitons, �-periodic breather, �-205 

periodic breather, lump, and rogue wave solutions of Eq. (3). By taking � = 2 in Eq. (11), one 206 

can derive a function for two-soliton solutions given by 207 �� = 1 + ��� + ��� + ���������,                                                                                          (15) 208 

where �� and ��� are given by Eqs. (12) and (13), respectively. Substitution of Eq. (15) into Eq. 209 

(14), yields the two-soliton solutions of Eq. (3) as 210 � = ��� (ln ��)��.                                                                                                                    (16) 211 

Case I: Two cross-stripe and two parallel-stripe solitons 212 

In order to determine the intersection solutions between two stripe solitons of Eq. (3), the 213 

constraint parameters ��, ��, and �� need to satisfy the following conditions for Eq. (16) along 214 

with Eq. (15): 215 �� = ��,  �� = ��, (� = 1, 2),                                                                                                 (17) 216 

where �� and �� are real constants, �� ≠ 0, and �� ≠ ��.  217 

For cross-stripe solitons, the cross-product of ��, ��, ��, and �� follows (���� − ����) ≠ 0. In 218 

order to construct the two cross-stripe solitons, we use �� = 3, �� = −2, �� = 3, �� = 0, 219 �� = 0, �� = 0, � = 1, � = 1, � = 1, and � = 1 in Eq. (16). Eq. (16) then becomes 220 

� = 6 �ln �1 + �����������√���� + �����√�� � + �����√�����√�� ����������√���√��������.          (18) 221 

The class of solutions given by Eq. (18) corresponds to the two cross-stripe solitons, which are 222 

displayed in Figs. 2(a)-(c). The illustrations are produced in the (�, �)-plane for � = −5, � =223 

0, � = 5, respectively. On the other hand, Figs. 2(d)-(f) illustrate the density views of Figs. 224 

2(a)-(c), respectively. It can be perceived from Figs. 2(a)-(c) and Figs. 2(d)-(f) that two solitons 225 

intersect with each other in the (�, �)-plane. It is also observed from Figs. 2(d)-(f) that one 226 

soliton is perpendicular to the �-axis and propagates along the negative direction of the axis of 227 
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� , and another soliton crosses diagonally in the (�, �) -plane. However, they propagate 228 

independently keeping their original shapes and amplitudes unaltered. On the other hand, for 229 

parallel-stripe solitons, the values of ��, ��, ��, and �� satisfy (�� − ��)(�� − ��) ≠ 0, but 230 ���� − ���� = 0. As per the mentioned rules, if we take �� = 5, �� = −3, �� = −5, �� = 3, 231 �� = 0, �� = 0, � = 1, � = 1, � = 1, and � = 1 in Eq. (16), it yields 232 

� = 6 �ln �1 + �����������√����� + ������������√��� �
+ ������√������√�� � ������������√���√��������.       (19) 233 

The solution indicated by Eq. (19) represents the two parallel-stripe solitons. For � < 0, two 234 

parallel-stripe solitons are separated from each other, one with higher amplitude and another 235 

with lower amplitude. At � = 0, these two stripes overlap with one other. For � > 0, two 236 

parallel-stripe solitons are separated further, but the positions of the solitons are found to be 237 

reverse than that of the solitons presented for time � < 0. Thus, the solitons alter their positions 238 

at the mentioned times, but the amplitudes of the solitons remain unchanged during 239 

propagation. Due to the shake of brevity, the figures are not included here.  240 

Case II: One �-periodic breather 241 

To construct one �-periodic breather wave solutions of Eq. (3), the constraint parameters ��, ��, 242 

and �� need to satisfy the following conditions for Eq. (16) along with Eq. (15): 243 �� = ��∗ = ���,  �� = ��, �� = ��,  �� = �� = 0, and �� ≠ 0, �� ≠ 0.                            (20) 244 

Here and henceforth ‘∗’ refers to the complex conjugate of a complex number, where �� = −1. 245 

If we substitute the values of the constraint parameters as �� = 1,  �� =
��, �� = 0, �� = 0, 246 � = 1, � = 1, � = 1, and � = 1 into Eq. (16), it turns into the following form: 247 

� = 6 �ln �1 + 2�������� cos �� + �� �� + 13 ����������.                                                              (21) 248 

The solution specified by Eq. (21) presents one �-periodic breather wave, which is displayed 249 

in Figs. 3(a)-(c) at � = −5, � = 0, and � = 5, respectively. On the other hand, Figs. 3(d)-(f) 250 

illustrate the density views of Figs. 3(a)-(c) for a clear understanding. It can be realized from 251 
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Fig. 3 that with the evolution of time (� = −5, 0, 5), the positions of �-periodic breather are 252 

changed from the negative direction of the �-axis to its positive direction. However, the shape 253 

and amplitude of the �-periodic breather wave remain unchanged.  254 

Case III: One ��-periodic breather 255 

To find one ��-periodic breather wave solutions of Eq. (3), the constraint parameters ��, ��, 256 

and �� are prerequisite to satisfy the following conditions for Eq. (16) together with Eq. (15): 257 �� =  �� = ��, �� = ��∗ = �� + ���,  �� = �� = 0, and �� ≠ 0, �� ≠ 0, �� ≠ 0.                (22) 258 

If we take �� =
��, �� =

��, �� = 1, �� = 0, �� = 0, � = 1, � = 1, � = 1, and � = 1 in Eq. 259 

(16), it reduces to the following form: 260 

� = 6 �ln �1 + ����� �������� � ���� ���� �� ���������� + ����� � ������� � ����� ��� �� ����������
+261 

�√�����√������ ����� � ��� � ������ ������� �� ��������������.                                                                  (23) 262 

The solution specified by Eq. (23) characterizes one ��-periodic breather and is displayed in 263 

Figs. 4(a) and 4(c). It is interesting to mention here that one ��-periodic breather can be 264 

changed into one �-periodic breather when we consider �� = 0  and substitute it to the solution 265 � given by Eq. (16). To ensure such behavior, one �-periodic breather is illustrated in Figs. 266 

4(b) and 4(d). 267 

Case IV:  Lump soliton and rogue wave solutions  268 

In 1979, Ablowitz and Satsuma proposed a method called “long wave limit method” [58]. With 269 

the assist of this method, the lump solitons can be obtained from �-soliton solutions after 270 

imposing some restrictions on parameters. In order to compute one lump solution of Eq. (3), 271 

setting constraint parameters as �� = ����, �� = ����, �� = ���, �� = ���, and �� = ��∗ =272 �� to Eq. (15), the function �� can be rearranged as 273 �� = (���� + ���)������ + �(��).                                                                                       (24) 274 
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Taking the long-wave limit as � → 0 in Eq. (24) along with Eq. (16), the lump soliton of Eq. 275 

(3) can be expressed as follows: 276 � = ��� � ��������� − (�����)�
(��������)��,                                                                                            (25) 277 

where 278 ��� = �(�� + ��) + 2��1 − ��� �1 − ���� − 2,                                                            (26) 279 

and 280 �� = � + �� � − ��� ��� + �1 + � − ����  �, � = 1, 2.                                                      (27) 281 

Now, setting the constraint parameters as �� = ��∗ = �� + ���(�� ≠ 0) to Eqs. (25)-(27), we 282 

find that the two-solitons will degenerate into one lump soliton. Taking �� = 1, �� = 1, � =283 

1, � = 1, � = 1, and � = 1 in Eqs. (25)-(27), one can explore one lump-soliton solution. The 284 

time evolution 3D plots of lump soliton are exhibited in Figs. 5(a)-(c) at � = −5, � = 0, and 285 � = 5, respectively, whereas, Figs. 5(d)-(f) demonstrate the density views of Figs. 5(a)-(c), 286 

respectively. It is clearly seen from the figures that the lump has one peak and two troughs. It 287 

is also seen from the figures that peak and trough amplitudes of the lump soliton remain 288 

unchanged when time increases (� = −5, 0, 5). But the crest and trough positions of the lump 289 

soliton are changed during the propagation in the (�, �)-plane. It is pinpoint to mention here 290 

that the line rogue wave can be derived from Eq. (3) through the class of solutions given by 291 

Eq. (25), if we assume ��  and  ��  as real constants. The mentioned line rogue wave is a 292 

rational solution with the process of growth and decay [39]. The constraints for localized waves 293 

and their interaction solutions between two-stripe solitons are summarized in Table 1.  294 

  295 
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Table 1. The nonlinear localized waves from two-soliton solutions 296 

�-soliton 
Types of the localized 

waves  
Constraints 

� = 2 

Two stripe solitons 

�� = ��, �� = ��, �� = ��,  �� = ��,  �� = �� = 0. 

Cross intersection: (���� − ����) ≠ 0. 

Parallel intersection: (�� − ��)(�� − ��) ≠ 0; but ���� − ���� = 0. 

One �-periodic breather �� = ��∗ = ���,  �� = ��, �� = ��,  �� = �� = 0, and �� ≠ 0, �� ≠ 0. 

One �-periodic breather �� = �� = ��,  �� = ��∗ = ���, �� = �� = 0, and �� ≠ 0, �� ≠ 0. 

One (�, �)-periodic breather 
�� =  �� = ��, �� = ��∗ = �� + ���,  �� = �� = 0, and �� ≠
0, �� ≠ 0, �� ≠ 0.  

One lump soliton 
 �� = ���� , �� = ��� (� = 1, 2),  �� = ��∗ = �� + ���, �� =��∗ = ��, and � → 0. 

 297 

3.2 Interaction solutions among three-stripe solitons 298 

The following subsections discuss the interaction solutions among three-stripe solitons to 299 

the BqE by their graphical illustrations. Interaction solutions among three-stripe solitons, viz. 300 

three cross-stripe solitons, two parallel-stripe solitons with other one stripe soliton, three 301 

parallel-stripe solitons, one stripe soliton and one periodic breather, and one stripe soliton and 302 

one lump soliton can be obtained from three soliton solutions. In order to get such interaction 303 

solutions among three-stripe solitons, setting � = 3 to Eq. (11), one can obtain a function for 304 

three-soliton solutions given by 305 �� = 1 + ��� + ��� + ��� + ��������� + ��������� + ��������� + �������������,         (28) 306 

where �� and ��� are specified by Eqs. (12) and (13), respectively, and the phase shift satisfies 307 

the equation ���� = ���������. Now, plugging Eq. (28) into Eq. (14), the class of three-soliton 308 

solutions of Eq. (3) is found in the following form: 309 � = ��� (ln ��)��.                                                                                                                   (29) 310 

On restricting certain conditions on the specified parameters and a long-wave limit approach, 311 

one can construct several types of localized interaction solutions. Exploration of these solutions 312 

is described in detail as follows. 313 
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Case I: Interaction between two parallel stripe solitons and other one stripe soliton 314 

Here, we would like to interact the two parallel stripe solitons with other one stripe soliton 315 

among three-stripe solitons of Eq. (3), the involved constraint parameters ��, ��, and �� require 316 

to maintain the following conditions for Eq. (29): 317 �� = ��,  �� = ��, (� = 1, 2, 3), and �� = �� = �� = 0,                                                     (30) 318 

where ��, �� are real constants,  ∏ ����� − �������� = 0, and ∑ ����� − ������ ≠ 0��� . 319 

Taking �� = 3, �� = −2, �� = 1, �� = 3, �� = 2, �� = 1, �� = 0, �� = 0, �� = 0, � = 1, 320 � = 1, � = 1, and � = 1, one can obtain the interaction solution among two parallel stripe 321 

solitons and other one stripe soliton. The time evolution 3D plots of a solution from the class 322 

of solutions given by Eq. (29) for � = −5, � = 2, and � = 5 is displayed in Figs. 6(a)-(c), 323 

whereas Figs. 6(d)-(f) display the respective density views of Figs. 6(a)-(c) for a better 324 

perspective. It is seen from Fig. 6 that the two parallel solitons merge at � = 0. But, two parallel 325 

solitons separate and intersect with the remaining one soliton normally at � = −5 as well as at 326 � = 5. If the constraint parameters satisfy the condition ∏ ����� − �������� ≠ 0 for Eq. (28), 327 

the solution obtained from Eq. (29) represents three cross-stripe solitons. Alternatively, if the 328 

constraint parameters satisfy the condition ∑ ����� − ������
= 0���  for Eq. (28), the class of 329 

solutions given by Eq. (29) represents three parallel-stripe solitons. Due to the sake of 330 

conciseness, three cross-stripe and three parallel-stripe solitons are not displayed here. For 331 

three cross-stripe solitons, the selected parameters are �� = 3, �� = 2, �� = 1, �� = 3, �� =332 −2, �� = −0.5, �� = 0, �� = 0, �� = 0, and �� = 3, �� = 2, �� = 1, �� = 3, �� = 2, �� =333 

1, �� = 0, �� = 0, �� = 0 are selected for three parallel-stripe solitons. For both cases, � =334 

1, � = 1, � = 1, and � = 1 are used. 335 

 336 

 337 

 338 
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Case II: One stripe soliton and one periodic breather  339 

To consider the interaction solutions between one stripe soliton and one (�, �) -periodic 340 

breather wave for Eq. (3), the constraint parameters �� ,  �� , and ��  allow to maintain the 341 

following conditions for Eq. (29): 342 �� = �� + ���, �� = �� − ���, �� = �� + ���, �� = �� − ���, �� = ��, �� = ��, and �� =343 �� = �� = 0,                                                                                                                        (31) 344 

where �� ≠ 0, �� ≠ 0, �� ≠ 0, �� ≠ 0, �� ≠ 0, and �� ≠ 0. 345 

It is mentionable at this juncture that for the parallel one stripe soliton and one (�, �)-periodic 346 

breather wave, the constraint parameters must follow the condition ���� − ���� = 0, and for 347 

the cross one stripe soliton and one (�, �)-periodic breather wave, the constraint parameters 348 

must satisfy the condition ���� − ���� ≠ 0. Now, if we set the constraint parameters as �� =349 �� = 0.25 , �� = −0.75 , �� = ��∗ = −0.25 + 0.75� , �� = 0.75 ,  �� = 0 , �� = 0 , �� = 0 , 350 � = 1, � = 1, � = 1, and � = 1 to Eq. (29), it corresponds to the interaction solution between 351 

the parallel one stripe soliton and one (�, �)-periodic breather wave. The time evolution density 352 

graphs of the respective solution at time � = −5, � = 0, and � = 5 are demonstrated through 353 

Figs. 7(a1)-(a3). At time � = −5, one stripe soliton and one (�, �)-periodic breather waves are 354 

separated (see Fig. 7(a1)). Then, at time � = 0, they are merged together (see Fig. 7(a2)). 355 

Finally, at time � = 5, they are separated again. During the propagation, the amplitudes of the 356 

soliton and breather remain unchanged. The interaction behaviors of stripe and breather waves 357 

are elastic. It is worthy of note here that if we set �� = 0, �� = 0 to the condition given by Eq. 358 

(31), the interaction between one stripe soliton and one (�, �)-periodic breather reforms to the 359 

interaction between one stripe soliton and one �-periodic breather. By selecting the constraint 360 

parameters as �� = ��∗ = 0.25�, �� = −0.75, �� = �� = −0.25, �� = 0.75, �� = 0, �� = 0, 361 �� = 0, � = 1, � = 1, � = 1, and � = 1 to the condition specified by Eq. (31), the time 362 

evolution density graphs of one stripe soliton and one �-periodic breather are presented in Figs. 363 
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7(b1)-(b3). It is perceived from Figs. 7(b1)-(b3) that the breather soliton is propagating 364 

parallelly along the �-axis. Furthermore, if we set �� = 0, �� = 0 to the condition given by 365 

Eq. (31), the collision between one stripe soliton and one (�, �)-periodic breather turns into the 366 

collision between one stripe soliton and one � -periodic breather. Setting the constraint 367 

parameters �� = �� = 0.25 , �� = −0.75 , �� = ��∗ = 0.75� , �� = 0.75 ,  �� = 0 , �� = 0 , 368 �� = 0, � = 1, � = 1, � = 1, and � = 1 to Eq. (29), one can produce the interaction solution 369 

between one stripe soliton and one �-periodic breather. The time evolution density graphs of 370 

one stripe soliton and one �-periodic breather are displayed in Figs. 7(c1)-(c3). In this case, the 371 

corresponding figures show that the breather wave propagates parallelly along the �-axis. It 372 

can be observed from each panel of density graphs that with the evolution of time, the stripe 373 

and all periodic breathers change their positions retaining their amplitudes unchanged.  374 

Case III:  One lump soliton and one stripe soliton  375 

In order to detect the interaction solutions between one lump soliton and one stripe soliton for 376 

Eq. (3), the constraint parameters ��, ��, and �� require to maintain the following conditions 377 

for Eq. (29) in consort with Eq. (28): 378  �� = ����,  �� = ����, �� = ����, �� = ���, �� = ���, �� = ��∗ = ��, and �� = 0.                (32) 379 

Inserting the values presented in Eq. (32) into Eq. (28), it is possible to present the function �� 380 

as 381 �� = (��� + ����) ������ + (���� + ����� + ����� + ��� + ������)���  ������ + �(��).         (33) 382 

Taking the long-wave limit as � → 0 in Eq. (33), the class of interaction solutions between one 383 

lump and one stripe soliton of Eq. (3) can be obtained from Eq. (29). This leads to 384 

� = ��� ��� ���12 + �
1

�
2
�  + ��

1
�

2
+ �23�

1
+ �13�

2
+ �12 + �12�23���3  ����,                    (34) 385 

where 386 ��� = �(�� + ��) + 2��1 − ��� �1 − ���� − 2,                                                            (35) 387 
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��� = −2�� − 4���� + ����� + ����� + 2 ��1 − ��� ����(���� − ��� + 1)�, (� = 1, 2),      (36) 388 

�� = � + �� � − ��� ��� + �1 + � − ����  �, � = 1, 2,                                                      (37) 389 

and 390 

 �� = ��� + ����� − ��� ����� + ����� − ������ + ���� �.                                             (38) 391 

Setting the constraint parameters  �� = ��∗ = 1 + �,  �� = −0.5, and �� = 0.5 to Eqs. (34)-392 

(38), one can see the elastic interaction between one lump soliton and one stripe soliton in Fig. 393 

8. Figs. 8(a1)-8(a5) illustrate the 3D plots in the (�, �)-plane at � = −20, � = −10, � = 0, � =394 

10, � = 20, respectively, whereas Figs. 8(b1)-8(b5) demonstrate the density views of Figs. 395 

8(a1)-8(a5), respectively. At � = −20, lump soliton appears in the negative side of the �-axis 396 

and is separated from the line soliton (see Fig. 8(a1)). It can be also seen from Figs. 8(a2)-(a3) 397 

that the lump soliton is gradually integrated with the soliton as time goes on (� = −10, 0). 398 

Furthermore, as the time increases (� = 10, 20), the lump soliton gradually appears on the 399 

positive side of the �-axis and is separated from the line soliton, which can clearly be observed 400 

from Figs. 8(a4)-(a5). During the propagation, the amplitude of the lump soliton is found to be 401 

unchanged. The mentioned behaviors can be clarified from the corresponding density views 402 

displayed in Figs. 8(b1)-8(b5).  403 

The overview of restrictions of parameters for localized waves and their interaction solutions 404 

among three solitons of Eq. (3) are presented in Table 2. The first column in Table 2 shows 405 

the order of �-soliton, while the second column shows the types of localized wave solutions. 406 

The last column provides the corresponding restrictions of parameters for the interaction of 407 

localized wave solutions. 408 

  409 
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Table 2. The nonlinear localized wave interaction structures of N-soliton solutions 410 

 411 �-soliton 
Localized waves and 

interaction structures 
Constraints 

� = 3 

Three stripe solitons 

�� = �� , �� = ��, (� = 1, 2, 3), and �� = �� = �� = 0. 

For cross intersection: ∏ ����� − �������� ≠ 0;  

For parallel intersection: ∑ ����� − ������
= 0;���  

For cross and parallel intersection: 

 ∏ ����� − �������� = 0, and ∑ ����� − ������ ≠ 0��� . 

One stripe soliton + one �-

periodic breather 

�� = ��∗ = ���,  �� =  �� = ��,  �� = ��, �� = ��, and �� = �� =�� = 0.      

One stripe soliton + one �-

periodic breather 

�� = �� = ��,  �� = ��∗ = ���,  �� = ��, �� = ��, and �� = �� = �� =

0.       

One stripe soliton + one (�, �)-

periodic breather 

�� = �� = ��,  �� = ��∗ = �� + ���,  �� = ��, �� = ��, and �� = �� =�� = 0.  

For cross intersection: ���� − ���� ≠ 0, and  

For parallel intersection: ���� − ���� = 0. 

One stripe soliton + one lump 

soliton 

 �� = ����,  �� = ����, �� = ����, �� = ���, �� = ���,  �� = ��∗ =�� + ���, �� = ��∗ = ��, �� = 0, and � → 0.  

 412 

3.3 Interaction solutions among four-stripe solitons 413 

The following subsections discuss the interaction solutions among four-stripe solitons to 414 

the BqE by their graphical illustrations. To reach such aims, setting � = 4 to Eq. (11), one can 415 

attain a function for four-soliton solutions given by 416 �� = 1 + ��� + ��� + ��� + ��� + ��������� + ��������� + ��������� + ��������� +417 +��������� + ��������� + ������������� + ������������� + ������������� +418 ������������� + �����������������,                                                                                    (39) 419 

where �� and ��� are specified by Eqs. (12) and (13), respectively, and the phase shifts follow 420 ���� = ��������� and ����� = ������������������. 421 

Plugging Eq. (39) into Eq. (14), four-stripe solitons of Eq. (3) can be found in the following 422 

form: 423 � = ��� (ln ��)��.                                                                                                                    (40) 424 
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On restricting certain conditions on the given parameters and a long-wave limit approach, one 425 

can achieve several types of localized interaction solutions. The construction procedure of the 426 

localized interaction solutions is described as follows: 427 

Case I: Interaction among two-stripe solitons and one periodic breather 428 

For Eq. (40), if we take �� = ��∗ = �� + ���, �� = ��∗ = �� + ���, �� = ��, �� = ��, �� = ��, 429 �� = ��, and �� = �� = �� = �� = 0, the four-stripe soliton solutions will degenerate into 430 

the interaction among two-stripe solitons and one periodic breather wave solutions. For 431 

different values of ��, ��, ��, ��, ��, ��, ��, and ��, the periodic breather can move along a line 432 

parallel to the �  or �  axes or its cross-sectional direction. More specifically, three assumptions 433 

can be made, such as the interaction among (i) two-stripe solitons and one �-periodic breather, 434 

(ii) two-stripe solitons and one �-periodic breather, and (iii) two-stripe solitons and one ��-435 

periodic breather. Figs. 9(a)-(f) present such types of interaction solutions in the (�, �)-plane.  436 

(i) Setting �� = ��∗ = 0.50� , �� = 0.50, �� = 0.75, �� = �� = 0.25, �� = 0.25, �� = 0.75, 437 �� = 0, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � = 1, and � = 1 in the class of solutions 438 

given by Eq. (40), one can characterize the interaction solution among two-stripe solitons and 439 

one �-periodic breather. Such characteristics are illustrated by their 3D and respective density 440 

views displayed in Figs. 9(a) and 9(d), respectively. It is seen from the imposing constraint 441 

values that the breather wave is parallel to the �-axis when �� and �� are purely imaginary 442 

numbers and the others are real numbers. 443 

(ii) Substituting �� = �� = 0.25, �� = 0.25, �� = 0.50, �� = ��∗ = 0.45� ,  �� = 0.50, �� =444 

0.50 , �� = 0 , �� = 0 , �� = 0 , �� = 0 , � = 1 , � = 1 , � = 1 , and � = 1  in the class of 445 

solutions specified by Eq. (40), one can represent the interaction solutions among two-stripe 446 

solitons and one �-periodic breather. These behaviors are exhibited by their 3D and density 447 

plots through Fig. 9(b) and Fig. 9(c), respectively. When ��  and ��  are purely imaginary 448 

numbers, and the others are real numbers, the breather wave is periodic only along the �-axis.  449 
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(iii) Putting �� = �� =
��, �� =

��, �� =
��, �� = ��∗ = −0.3 + �, �� = 0.8, �� = 0.25, �� = 0, 450 �� = 0, �� = 0, �� = 0, � = 1, � = 1, � = 1, and � = 1 in the class of solutions given by 451 

Eq. (40), one can expose the interaction solution among two-stripe solitons and one �-periodic 452 

breather. These behaviors are exposed by their 3D and density plots through Figs. 9(c) and 453 

9(e), respectively. In such cases, �� , ��  are imaginary numbers and the remaining are real 454 

numbers. 455 

Case II: Interaction between two periodic breathers 456 

The class of solutions presented by Eq. (40) expresses the interaction between two parallel �-457 

periodic breathers, when we set the constraint parameters as �� = ��∗ = 0.50� , �� = ��∗ =458 0.50�, �� = �� = 0.3, �� = �� = 0.50, �� = 0, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � =459 

1, and � = 1. Two parallel �-periodic breathers are displayed in Figs. 10(a) and 10(d) through 460 

the 3D and its density graphs. The interaction between two parallel �-periodic breathers turns 461 

into two parallel �-periodic breathers when we set �� = �� = 0.25, �� = �� = 0.50, �� =462 ��∗ = −0.50� , �� = ��∗ = 0.50� , �� = 0 , �� = 0 , �� = 0 , �� = 0 , � = 1 , � = 1 , � = 1 , 463 � = 1 in Eq. (40). These behaviors are illustrated in Figs. 10(b) and 10(e). Now, considering 464 �� = �� = 0.35 , �� = �� = 0.2, �� = ��∗ = 0.35 − 0.50� , �� = ��∗ = −0.25 + 0.75� , �� =465 

0 , �� = 0 , �� = 0 , �� = 0 , � = 1 , � = 1 , � = 1 , � = 1  in Eq. (40), one can attain the 466 

interaction between two cross ��-periodic breathers as shown in Figs. 10(c) and 10(f). It can 467 

be observed from the above figures that two breathers retain their velocities and shapes 468 

unchanged during propagation. The propagation behavior is not displayed due to the sake of 469 

conciseness. However, it is not so difficult to perceive that their interaction is elastic. That 470 

means, two periodic breathers only exchange their positions after this elastic collision 471 

procedure.  472 

 473 

 474 
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Case III: Interaction among one lump soliton, one periodic breather, and two solitons 475 

In order to explore the interaction solutions among one lump soliton and one periodic breather, 476 

and one lump soliton and two solitons for Eq. (3), the constraint parameters �� , �� , and �� 477 

guarantee to satisfy the following conditions for Eq. (40) along with Eq. (39): 478  �� = ���� (� = 1, 2, 3, 4), �� = ���, �� = ���, �� = ��∗ = ��, and �� = �� = 0.          (41) 479 

Inserting the values provided by Eq. (41) into Eq. (39), one can rewrite the function ��  as 480 

follows: 481 �� = (��� + ����) ������ + (���� + ����� + ����� + ��� + ������)���  ������ + (���� +482 ����� + ����� + ��� + ������)���  ������ + ���[���� + (���+���)�� + (���+���)�� +483 ��� + (���+���)(���+���)] × �(�����) ������ + �(��).                                                   (42) 484 

Taking the long-wave limit as � → 0 in Eq. (42), the class of interaction solutions between one 485 

lump and one stripe soliton of Eq. (3) can be obtained from Eq. (40), which is given by 486 

� = ��� ��� �(��� + ����) + (���� + ����� + ����� + ��� + ������)��� + (���� +487 

����� + ����� + ��� + ������)��� + ���[���� + (���+���)�� + (���+���)�� + ��� +488 

(���+���)(���+���)] × �(�����)  ����,                                                                              (43) 489 

where 490 �� = � + �� � − ��� ��� + �1 + � − ����  �, � = 1, 2,                                                      (44) 491 

��� = �(�� + ��) + 2��1 − ��� �1 − ���� − 2,                                                            (45) 492 

��� = −2�� − 4���� + ����� + ����� + 2��1 − ��� ����(���� − ��� + 1)�, (� = 1, 2; � = 3,4),      (46) 493 

��� =
��������������������������������������������� ��������������
��������������������������������������������� ��������������,                                 (47) 494 

and 495 

�� = ��� + ����� − ��� ����� + ����� − ������ + ���� �, � = 3, 4.                                   (48) 496 
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(i) Considering  �� = ��∗ = �� + ���, �� = ��∗ = �� + ���, and �� = �� = �� in Eqs. (43)–497 

(48), the class of solutions specified by Eq. (43) expresses the interaction solutions between 498 

one lump and one breather wave. In particular, taking �� = 0.5, �� = 1.5, �� = 0, �� = 0.75, 499 �� = −0.25, � = 1, � = 1, � = 1, � = 1, the specific structures of the interaction between 500 

one lump and one breather are displayed in Fig. 11. Figs. 11(a1)-(a5) illustrate the 3D plots of 501 

the specific solution obtained from Eq. (43) at � = −40, � = −20, � = 0, � = 20, � = 40, 502 

respectively, whereas Figs. 11(b1)-(b5) display the corresponding density views of Figs. 503 

11(a1)-(a5). At time � = −40, the lump soliton is found on the negative side of the � -axis, 504 

while the breather is found on the positive side of the � -axis. With the evolution of time (� =505 −20, 0, 20, 40), both breather and lump soliton propagate and change their positions. Thus, it 506 

is clear from the wave propagation behaviors (Figs. 11(a1)-(a5) or Figs. 11(b1)-(b5)) that the 507 

interaction structures among the solitons mentioned above is completely elastic.  508 

(ii) When selecting  �� = ��∗ = �� + ��� , �� = �� , �� = �� , and �� = �� = ��  to Eqs. 509 

(43)-(48), the solution given by Eq. (43) is reduced to the interaction among one lump and two-510 

stripe solitons. Taking the particular values of the constraint parameters as �� = 0.75, �� =511 

0.75, �� = −2, �� = −1, �� = −0.6, � = 1, � = 1, � = 1, � = 1, the aforesaid interaction 512 

soliton solution is displayed in Fig. 12. The interaction among the solitons is also elastic. It is 513 

remarkable to mention here that if we set �� = 0.75, �� = 0.75, �� = −1, �� = −1, �� =514 −0.6, � = 1, � = 1, � = 1, � = 1 in the solution prescribed by Eq. (43), it turns into the 515 

interaction between one lump and one-stripe solitons.  516 

Case IV: Interaction between two lump solitons 517 

In order to search the interaction solutions between two lump solitons for Eq. (3), the constraint 518 

parameters ��, ��, and �� allow to satisfy the following conditions for Eq. (40) along with Eq. 519 

(39): 520  �� = ���� (� = 1, 2, 3, 4), �� = ��� (� = 1, 2, 3, 4), �� = ��∗ = ��, and �� = ��∗ = ��.   (49) 521 
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Substituting the values provided by Eq. (49) into Eq. (39), the function �� can be brought as 522 

follows: 523 �� = (�������� + ������� + ������� + ������� + ������� + ������� + ������� +524 ������ + ������ + ������) ���������� + �(��).                                                              (50) 525 

Taking the long-wave limit as � → 0 in Eq. (50), the interaction between one lump and one 526 

stripe soliton solutions of Eq. (3) can be obtained from Eq. (40), which leads to 527 � = ��� ���(�������� + ������� + ������� + ������� + ������� + ������� + ������� +528 

������ + ������ + ������  )���,                                                                                         (51) 529 

where 530 �� = � + �� � − ��� ��� + �1 + � − ����  �, � = 1, 2, 3, 4,                                               (52) 531 

��� = ���� + ��� + 2��1 − ��� �1 − ���� − 2, (1 ≤ � ≤ � ≤ 4).                                  (53) 532 

The class of solutions indicated by Eq. (51) expresses two lump solitons. Considering �� =533 ��∗ = −1 + � , �� = ��∗ = −1 + 10� , � = 1 , � = 1 , � = 1 , � = 1  in Eq. (51), the 534 

propagation and time evolution of 3D plots of the elastic interaction between two lump solitons 535 

are shown in Figs. 13(a)-13(f) for time variation � = −50, � = −25, � = 0, � = 25, � = 50, 536 

respectively. At � = −50, two lump solitons appear on the negative side of the �-axis with different 537 

amplitudes (see Fig. 13(a)). With the evolution of time (� = −25, 0, 25, 50 ), two lump solitons 538 

propagate from the negative side of the �-axis to its positive side, which is clearly realized from Figs. 539 

13(b)-(f). It can be visualized from Figs. 13(a)-(f) that the two lumps propagate with the same velocity 540 

along the �-axis. During the propagation, the two lumps get closer, then collide with each other, and 541 

finally move apart. It is also perceived from the figures that during the propagation, two lumps preserve 542 

their amplitudes, but they altered their positions. The overview of the constraint parameters for the four-543 

soliton solutions of Eq. (3) is presented in Table 3. The first column in Table 3 shows the order of �-544 

soliton, the second column shows the localized wave structures, and the last column provides the 545 

corresponding parameters of the localized wave interaction solutions in the second column. 546 
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Table 3. The nonlinear localized wave interaction structures of N-soliton solutions 547 

�-soliton 
Localized waves and 

interaction structures 
Constraints  

� = 4 

Two stripe solitons + one �-

periodic breather 

�� = �� = ��, �� = ��∗ = ���, �� = ��, �� = ��, �� = ��, �� = ��, and �� = �� = �� = �� = 0. 

Two stripe solitons + one �-

periodic breather 

�� = ��∗ = ���, �� = �� = ��, �� = ��, �� = ��, �� = ��, �� = ��, 

and �� = �� = �� = �� = 0. 

Two stripe solitons + one 

(�, �)-periodic breather  

�� = �� = ��, �� = ��∗ = �� + ���, �� = ��, �� = ��, �� = ��, �� = ��, 

and �� = �� = �� = �� = 0. 

Two parallel �-periodic 

breathers  

�� = �� = ��, �� = ��∗ = ���, �� = �� = ��, �� = ��∗ = ���, and �� =�� = �� = �� = 0. 

Two parallel �-periodic 

breathers  

�� = ��∗ = ���, �� = �� = ��, �� = ��∗ = ���, �� = �� = ��, and �� =�� = �� = �� = 0. 

Two cross (�, �)-periodic 

breathers  

�� = �� = ��, �� = ��∗ = �� + ���, �� = �� = ��, �� = ��∗ = �� + ���, 

and �� = �� = �� = �� = 0. 

One �-periodic breather + one 

(�, �)-periodic breather 

�� = �� = ��, �� = ��∗ = ���, �� = �� = ��, �� = ��∗ = �� + ���, and �� = �� = �� = �� = 0. 

One �-periodic breather + one 

(�, �)-periodic breather 

�� = ��∗ = ���, �� = �� = ��, �� = �� = ��, �� = ��∗ = �� + ���, and �� = �� = �� = �� = 0. 

One �-periodic breather + one �-periodic breather 

�� = ��∗ = ���, �� = �� = ��, �� = �� = ��, �� = ��∗ = ���, and �� =�� = �� = �� = 0. 

Two lump solitons 

�� = ����, �� = ����, �� = ����, �� = ����, �� = ����, �� = ����, �� = ����, �� = ����, �� = ��∗ = �� = ��∗ = ��,  �� = ��∗ = �� + ���, �� = ��∗ = �� + ���, �� → 0, and �� → 0. 

One lump + one periodic 

breather 

�� = ����, �� = ����, �� = �� = ��, �� = ��∗ = �� + ���, �� = ���, �� = ���,  �� = ��∗ = ��, �� = �� = 0,  �� = ��∗ = �� + ���, and � →
0. 

 548 

4. Discussion of the results and concluding remarks 549 

It is mentioned earlier in the introduction section that Wazwaz and Kaur [52] examined 550 

a family of BqEs with distinct dimensions first time. They reported some real and complex 551 

multiple soliton solutions by virtue of the simplified Hirota’s method. In addition, they also 552 

reported a diverse range of soliton solutions in terms of hyperbolic, trigonometric, and rational 553 

functions via the exponential expansion scheme. However, in this article, we have used a 554 

dependent variable transformation to a dimensionally reduced (2+1)-dimensional BqE and 555 

thereby constructed �-soliton solutions via the HBM. Afterward, via the long-wave limit 556 



25 
 

approach in coordination with certain conditions on the parameters associated with �-solitons, 557 

we attained some nonlinear localized waves (soliton, breather, lump, and rogue), and their 558 

variety of interaction solutions. To the best of the authors’ knowledge, all the localized waves 559 

and their variety of interaction solutions are entirely new and reported for the first time.  560 

In order to illustrate the physical significance of the dimensionally reduced (2+1)-561 

dimensional BqE specified by Eq. (3), we have displayed the 3D plots and their corresponding 562 

density views to some of the acquired solutions, which represent the solitons, breathers, lumps, 563 

rogue waves, and their interactions. The interactions can occur among one stripe and one 564 

breather, one stripe and one lump, two stripes and one breather, one lump and one periodic 565 

breather, two stripes and one lump, two breathers, and two lumps. It is mentioned that the 3D 566 

plots and their density views are made by Maple software of some of the explored validated 567 

solutions with suitable values of the constraint parameters. �-soliton solutions of Eq. (3) given 568 

by Eq. (14) are presented in Fig. 1. It is apparent from Fig. 1 that the interactions among �-569 

soliton solutions are completely elastic. For � = 2, the cross-stripe, one periodic breather, and 570 

one lump soliton are obtained, which are illustrated in Figs. 2-5. For � = 3, we obtained the 571 

interaction solutions among three soliton solutions, viz. two parallel-stripe solitons and one 572 

soliton, one stripe and periodic breather, and one stripe and one lump solitons by selecting 573 

some special parameters, as shown in Figs. 6- 8, respectively. In addition, for � = 4, we have 574 

also attained the interaction solutions among four soliton solutions, such as two-stripe solitons 575 

and one periodic breather, two periodic breathers, one lump and one periodic breather, one 576 

lump and two-stripe solitons, and two lump solitons. The mentioned interaction solutions 577 

among four solitons are justified through Figs. 9-13. It is pinpoint to mention here that the lump 578 

solitons and rogue waves are obtained via the long-wave limit approach imposing some 579 

constraint parameters (see Ablowitz and Satsuma [58]). For other solitons, the HBM along with 580 

certain conditions on some constraint parameters are employed. Some of the interaction 581 
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solutions of the localized waves are presented and their dynamical features are analyzed 582 

through some time evolution plots (see Figs. 6-7 and Figs. 11-13). It is clear clearly from the 583 

mentioned time evolution plots that all the wave interactions among solitons are elastic. It is 584 

also to be mentioned here that all the reported solutions in this article have diverse structures 585 

over the solutions available in the literature, and the choice of the constraint parameters has a 586 

great influence on the attained solutions and their propagation behaviors. Tables 1-3 show 587 

some mathematical conditions to secure the localized waves and their interaction solutions 588 

from the two-soliton, three-soliton, and four-soliton solutions of Eq. (3) on how to select 589 

appropriate constraint parameters. It should be pointed out here that no interaction solutions 590 

for � ≥ 5 are explained due to the limitations of our computational scope. However, our future 591 

study will concentrate on constructing interaction solutions for the higher values of �, and will 592 

present how to select some more appropriate constraint parameters for their interaction 593 

solutions. The exhibited results reveal that the acquired solitons might be helpful for explaining 594 

the wave propagation behavior in shallow water surfaces. The executed approach can be used 595 

to determine localized waves and their interaction solutions to any other NLEEs arising in 596 

shallow water. 597 

  598 
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 770 

 771 

Figure 1. Graphical illustration of �-soliton solutions given by Eq. (14) of Eq. (3) with �� =772 

1, �� = −1, �� = 2, �� = −2, �� = 1, �� = −1, �� = 2, �� = −2, �� = 0, �� = 0, �� =773 

0, �� = 0, � = 1, � = 1, � = 1, � = 1, and  � = 0. The 3D plots for (a) � = 1, (b) � = 2, 774 

(c) � = 3, and (d) � = 4. (e)-(h) The density views of (a)-(d), respectively. 775 

 776 

 777 

Figure 2. Time evolution 3D plots of two cross-stripe soliton solutions given by Eq. (18) at (a) 778 � = −5, (b) � = 0, and (c) � = 5 with �� = 3, �� = −2, �� = 3, �� = 0, �� = 0, �� = 0, 779 � = 1, � = 1, � = 1, � = 1. (d)-(f) The density views of (a)-(c), respectively. 780 

(e)

(a) (b) (c) (d)

(f) (g) (h)
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 781 

Figure 3. Time evolution 3D plots of one �-periodic breather wave solutions given by Eq. (21) 782 

at (a) � = −5, (b) � = 0, and (c) � = 5 with �� = ��∗ = �, �� = 0.5, �� = 0.5, �� = 0, �� =783 

0, � = 1, � = 1, � = 1, � = 1. (d)-(f) The density views of (a)-(c), respectively. 784 

 785 

 786 

Figure 4. Periodic breather solutions given by Eq. (23) at � = 0. The 3D plots of (a) one ��-787 

periodic breather with �� =  �� =
��, �� = ��∗ =

�� + � ,  �� = �� = 0, � = 1 , � = 1, � = 1, 788 � = 1, and (b) one �-periodic breather with �� =  �� =
��, �� = ��∗ = �,  �� = �� = 0, � = 1, 789 � = 1, � = 1, � = 1. (c)-(d) The density views of (a)-(b), respectively. 790 
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 791 

Figure 5. Time evolution 3D plots of lump soliton solutions given by Eq. (25) at (a) � = −5, 792 

(b) � = 0, and (c) � = 5 under the specified conditions �� = ��∗ = 1 + �, � = 1, � = 1, � =793 

1, � = 1. (d)-(f) The density views of (a)-(c), respectively. 794 

 795 

Figure 6. Time evolution 3D plots of the interaction of two parallel-stripe solitons with another 796 

soliton given by Eq. (29) at (a) � = −5, (b) � = 2, and (c) � = 5 under suitable selection of 797 

constraint parameters as �� = 3, �� = −2, �� = 1, �� = 3, �� = 2, �� = 1, �� = 0, �� =798 

0, �� = 0, � = 1, � = 1, � = 1, � = 1. (d)-(f) The density views of (a)-(c), respectively. 799 
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 800 

Figure 7. Time evolution density plots of the interaction solutions between one-stripe soliton 801 

and one periodic breather given by Eq. (29) at (a1)-(c1) � = −5, (a2)-(c2) � = 0, and (a3)-(c3) 802 � = 5. (a1)-(a3) One stripe soliton and one ��-periodic breather with �� = �� = 0.25, �� =803 −0.75, �� = ��∗ = −0.25 + 0.75�, �� = 0.75, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � =804 

1, � = 1, (b1)-(b3) One stripe soliton and one �-periodic breather with �� = ��∗ = 0.25�, �� =805 −0.75, �� = �� = −0.25, �� = 0.75, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � = 1, � = 1, 806 

and (c1)-(c3) One stripe soliton and one �-periodic breather with �� = �� = 0.25, �� = −0.75, 807 �� = ��∗ = 0.75�, �� = 0.75, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � = 1, � = 1. 808 
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 809 

Figure 8. Time evolution 3D plots of lump-stripe solitons given by Eq. (34) at (a1) � = −20, 810 

(a2) � = −10 , (a3) � = 0 , (a4) � = 10 , and (a5) � = 20  with �� = (1 + �) , �� = (1 − �) , 811 �� = 0.5, �� = −0.5, � = 1, � = 1, � = 1, � = 1. (b1)-(b5) The density views of (a1)-(a5), 812 

respectively.  813 

 814 

Figure 9. Interaction solutions among two-stripe solitons and one periodic breather given by 815 

Eq. (40) at � = 0. The 3D plots of (a) two-stripe solitons and one �-periodic breather with �� =816 ��∗ = 0.50�, �� = 0.50, �� = 0.75, �� = �� = 0.25, �� = 0.25, �� = 0.75, �� = 0, �� = 0, 817 �� = 0 , �� = 0 , � = 1 , � = 1 , � = 1 , � = 1 , (b) two-stripe solitons and one � -periodic 818 

breather with �� = �� = 0.25 , �� = 0.25 , �� = 0.50 , �� = ��∗ = 0.45� ,  �� = 0.50 , �� =819 

0.50 , �� = 0 , �� = 0 , �� = 0 , �� = 0 , � = 1 , � = 1 , � = 1 , � = 1 , and (c) two-stripe 820 

solitons and one ��-periodic breather with �� = �� =
��, �� =

��, �� =
��, �� = ��∗ = −0.3 + �, 821 �� = 0.8, �� = 0.25, �� = 0, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � = 1, � = 1. (d)-(f) 822 

The density views of (a)-(c), respectively. 823 
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 824 

Figure 10. Interaction solutions between two periodic breathers given by Eq. (40) at � = 0. 825 

The 3D plots of  (a) two parallel �-periodic breathers with �� = ��∗ = 0.50�, �� = ��∗ = 0.50�, 826 �� = �� = 0.3 , �� =  �� = 0.50 ,  �� = 0 , �� = 0 , �� = 0 , �� = 0 , � = 1 , � = 1 , � = 1 , 827 � = 1, (b) two parallel �-periodic breathers with �� = �� = 0.25, �� = �� = 0.50, �� = ��∗ =828 −0.50� , �� = ��∗ = 0.50� , �� = 0, �� = 0, �� = 0, �� = 0, � = 1, � = 1, � = 1, � = 1, 829 

and (c) two cross �� -periodic breathers with  �� = �� = 0.35 , �� = �� = 0.2 , �� = ��∗ =830 0.35 − 0.50� , �� = ��∗ = −0.25 + 0.75� , �� = 0, �� = 0, �� = 0, �� = 0, � = 1, � = 1, 831 � = 1, � = 1. (d)-(f) The density views of (a)-(c), respectively. 832 

 833 

Figure 11. Time evolution 3D plots of the interaction solutions between one lump and one 834 

periodic breather given by Eq. (43) at (a1) � = −40, (a2) � = −20, (a3) � = 0, (a4) � = 20, and 835 

(a5) � = 40  under constraint parameters as �� = ��∗ = (0.5 + 1.5�) , �� = ��∗ =836 0.75�, �� = −0.25, �� = −0.25, � = 1, � = 1, � = 1, � = 1. (b1)-(b5) The density views of 837 

(a1)-(a5), respectively. 838 
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 839 

Figure 12. Time evolution 3D plots of the interaction solutions between one lump and two-840 

stripe solitons given by Eq. (43) at (a1) � = −40, (a2) � = −20, (a3) � = 0, (a4) � = 20, and 841 

(a5) � = 40 with �� = ��∗ = (0.75 + 0.75�), �� = −2, �� = −1, �� = −0.6, �� = −0.6, 842 � = 1, � = 1, � = 1, � = 1. (b1)-(b5) The density views of (a1)-(a5), respectively.  843 

 844 

Figure 13. Time evolution 3D plots of the interaction solutions between two lump soliton 845 

solutions given by Eq. (51) at (a) � = −50, (b) � = −25, (c) � = 0, (d) � = 25, and (e) � = 50 846 

under constraint parameters as �� = ��∗ = −1 + � , �� = ��∗ = −1 + 10� , � = 1 , � = 1 , 847 � = 1, and � = 1.  848 

 849 


