

Chemical Profiles of The Active Fraction From *Prinsepia Utilis* Royle Leaves and Its Anti-Benign Prostatic Hyperplasia Evaluation in Animal Models

Ying Peng

Shanghai Jiao Tong University

Chongsheng Peng

Shanghai Jiao Tong University

Yang Wu

Shanghai Jiao Tong University

Chongzhi Sun

Shanghai Jiao Tong University

Xiaobo Li (xbli@sjtu.edu.cn)

Shanghai Jiao Tong University

Research Article

Keywords: Prinsepia utilis Royle, flavonoid, benign prostatic hyperplasia, UPLC-QTOF-MS/MS, quantification

Posted Date: July 14th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-668362/v1

License:
This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Abstract

Background

The *Prinsepia utilis* Royle leaves (*P. utilis*) is a folk herb used for benign prostatic hyperplasia (BPH) control by ethnic minorities for centuries in China with rich in resources. Our previous studies have confirmed the anti-BPH effect of its water extract (QCJ) and the active fraction (Fr. B) separated from the QCJ by animal test. The Fr. B from *P. utilis* maybe as a candidate for BPH control.

Methods

In this study, the chemical ingredients of Fr. B were identified by UPLC-QTOF-MS, and quantified by HPLC. Murine animal models were divided into 8 groups, Sham rats, BPH rats administered with Finasteride (1 mg/kg), BPH rats administered with Pule'an (460 mg/kg), BPH rats administered with Low QCJ (860 mg (dry leaf)/kg), BPH rats administered with High QCJ (2580 mg (dry leaf)/kg), BPH rats administered with Low Fr. B (160 mg (dry leaf)/kg), BPH rats administered with High Fr. B (480 mg (dry leaf)/kg). The expression of vascular endothelial growth factor (VEGF) in the prostate tissue of rats was tested, and serum levels of dihydrotestosterone (DHT), testosterone (T), estradiol (E2), interleukin-6 (IL-6), tumor necrosis factor- α (TNF- α) and total superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), malondialdehyde (MDA) in prostate homogenate were measured. One-way ANOVA followed by LSD was used for statistical analysis.

Results

The BPH rats treated by Fr. B exhibited the significant reductions of VEGF and MDA levels, as well the significant increases of SOD, GSH-Px and CAT in the prostate tissue after 28 day administration (P < 0.05). Moreover, Fr. B significantly reduced DHT, DHT/E2 ratio, TNF- α , while increased T levels in serum of BPH rats (P < 0.05). UPLC-QTOF-MS analysis revealed 10 flavonoids as the key constituents of this fraction, which accounted for 54.96% of all substance of Fr. B. Compound 1 was with a relative content of 11.1%, and compound 2 was with a relative content of 13% in Fr. B.

Conclusions

These results indicated that the Fr. B obtained from *P. Utilis* alleviated the symptoms of BPH rats through multiple mechanisms including reduction of DHT/E2 ratio, inhibition of growth factor, anti-inflammation and anti-oxidation, in which flavonoids might be the key constituents. It supported the hypothesis that the Fr. B should be further explored as a candidate for BPH patients.

Background

Prinsepia utilis Royle (P. utilis) is belonged to prinsepia genus (rosaceae), mainly distributed in southwest China such as Yunnan and Guizhou Province. It is a food medicine homologous plant, of which the roots, leaves and fruits were traditionally used to treat toothache, carbuncle and gangrene [1]. As multi-ethnic herb, the leaves of P. Utilis was used as tea in folk for benign prostatic hyperplasia (BPH) symptom control by Naxi, Bai, Yi, Mosuo and other ethnic minorities for centuries in Yunan province.

Generally, BPH is considered to be a product of androgen action upon an aging prostate. But longitudinal epidemiological studies showed that androgen levels were unlikely to be solely responsible [2]. There are many potential etiological factors contributing to BPH pathogenesis such as inflammation, oxidative stress, imbalance between prostate cell growth and apoptosis [3, 4]. It was reported that the leaves of *P. utilis* had the functions of anti-inflammation [5], anti-oxidation [6], regulating blood lipids [7] and anti-bacteria [8]. Our previous studies confirmed the anti-BPH activities of *P. utilis* leaves extract (QCJ) on BPH rats and the Fr. B separated from QCJ was the active fraction [9]. However, whether its anti-BPH activity is related to anti-inflammation, anti-oxidation or anti-androgenic need further study.

According to the chemical reports on *P. utilis*, flavonoids, amino acids, steroids and terpenoids have been isolated from *P. utilis* fruit, stems and leaves [10]. The content of total flavonoids is up to be 7.25% in *P. utilis* fruit [11], 3% in stems and leaves of *P. utilis* [12]. The flavonoids usually exhibited potent anti-inflammatory and antioxidant properties. It was reported that flavonoid-rich fraction from *Prinsepia utilis* Royle fruits exhibited strong radical scavenging activities [13]. Many medicinal plants rich flavonoids showed well anti-BPH potential [14, 15], which being reported to exert BPH protective effect through regulating inflammatory responses and reducing oxidative stress.

Therefore, these findings led us to further analyze the chemical ingredients of Fr. B with UPLC-QTOF-MS, assess its therapeutic effects on testosterone-induced BPH rats by oral administration of Fr. B and compared with Finasteride and Pule'an used as first-line therapy in China in terms of its efficacy and possible mechanisms as anti-androgenic, anti-oxidant and anti-inflammatory in this study.

Materials And Methods

Extraction and isolation of Fr.B

P. utilis leaves was collected from Dali, Yunnan, China and authenticated by one of the authors Xiaobo Li. Voucher specimen has been deposited at herbarium of School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China. Preparation of Fr. B was previously described by Wu et al [9]. Dried and powdered leaves (2 kg) were re-fluxed 3 times with distilled water. The combined extraction was filtrated and then concentrated under reduced pressure to obtain a crude aqueous extract (QCJ). The sample was redissolved, and then separated by macroporous resin AB-8. After adsorption, the resin was washed with 5% ethanol without collection, followed by 40% ethanol, the elution was then evaporated under vacuum at 65 °C and lyophilized to obtain Fr. B.

UPLC-Q-TOF-MS analysis of Fr. B

The qualitative chemical profiles of Fr. B was analyzed by UPLC-Q-TOF-MS which was performed on a Waters ACQUITY UPLC I-Class system (Waters Corp., Milford, MA, United States) with an ACQUITY UPLC BEH C18 column (100×2.1 mm, 1.7 µm, Waters Corp., United States) by gradient elution using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) at a flow rate of 0.4 mL/min. The gradient profile was 0–2 min (A: 90%), 2–9 min (A: 90 – 80%), 9–11 min (A: 80 – 65%), 11–14 min (A: 65 – 0%). The injection volume was 1 µl. The temperature of the column oven was set to 45°C. Mass spectrometry was carried out using a Waters VION IMS QTOF mass spectrometer (Waters Corp., Milford, MA, United States). Ionization was performed in both positive and negative electrospray ionization (ESI) mode. The MS parameters were as follows, capillary voltage, 2.5 kV; cone voltage, 40 V; source temperature, 115 °C; desolvation temperature, 450 °C; gas flows of cone and desolvation, 50 and 900 L/h. A MSE (Mass Spectrometry Elevated Energy) experiment in two scan functions was carried out as follows. Function 1 (low energy), m/z 50-1000, 0.2 s scan time, 0.02 s inter-scan delay, 4 eV collision energy. Function 2 (high energy), m/z 50-1000, 0.2 s scan time, 0.02 s inter-scan delay, collision energy ramp of 20–45 eV. The data were processed using UNIFI 1.8.1 software (Waters Corp., Milford, MA, United States).

Quantitative analysis of Fr. B

The quantitative analysis of Fr. B were performed on an Agilent 1200 HPLC (high-performance liquid chromatography) system, equipped with a quaternary solvent delivery system, an on-line degasser, an autosampler, a column temperature controller, and a DAD (photo-diode-array-detector) detector. Agilent Zorbax SB-C18 Column ($5 \mu m$, $4.6 \times 250 mm$) was employed during the experiment with a flow rate of 1.0 ml/min. The column temperature was maintained at 30°C, and the injection volume was 10 μ l. The mobile phase was composed of water (A) and acetonitrile (B) with the following gradient elution: 0-10 min, 95×4 ; 10-15 min, $95 \times 90 \times 4$; 15-20 min, 90×4 ; 20-30 min, $90 \times 85 \times 4$; 30-40 min, $85 \times 80 \times 4 \times 40-50 min$, $80 \times 75 \times 4$; 50-60 min, $75 \times 70 \times 4$; 60-70 min, $70 \times 80 \times 40 \times 40 = 10 min$, $80 \times 80 \times 40 =$

Animals and BPH models

Male Spraue-Dawley rats (180-220 g) were procured from Shanghai Slac Laboratory Animal Co. Ltd (Shanghai, China), and housed in the Laboratory Animal Center of Shanghai Jiao Tong University (Shanghai, China). The animals were housed in groups under controlled room temperature ($25 \pm 2^{\circ}\text{C}$, $55 \pm 10^{\circ}$ relative humidity) with a 12/12 h light/dark cycle. Standard laboratory chow and water were available ad libitum. All experimental procedures were approved by the Animal Ethics Committee of Shanghai Jiao Tong University (Shanghai, China).

Following 1 week acclimation, rats were randomly assigned to 8 groups (n = 10) as following, Sham, BPH model, Finasteride, Pule'an, Low QCJ, High QCJ, Low Fr. B, High Fr. B. The scrotum of the sham animals were cut following sewing up without cutting off the both testicles. Rats in the other groups were castrated. After incision disinfection with penicillin for 1 week, Sham rats were treated with saline (s.c., 0.5 ml/kg, alternate days) and 0.5% CMC-Na (i.g. 10 ml/kg, daily). BPH group rats were received testosterone propionate (s.c., 10 mg/kg) alternate days and 0.5% CMC-Na (i.g. 10 ml/kg) daily for 4 weeks [16, 17]. Two positive groups, the rats were treated with testosterone propionate (s.c., 10 mg/kg) and received a treatment with Finasteride (i.g., 1 mg/kg) or Pule'an (i.g., 460 mg/kg). Low/High QCJ groups rats were treated with testosterone propionate (s.c., 10 mg/kg) and received a treatment with QCJ (i.g., 860 mg (dry leaf)/kg or 2580 mg (dry leaf)/kg respectively). Low/High Fr. B groups rats were treated with testosterone propionate (s.c., 10 mg/kg) and received a treatment with Fr. B (i.g., 160 mg (dry leaf)/kg or 480 mg (dry leaf)/kg respectively).

At the end of experiment, animals were sacrificed under anaesthesia after blood sample collection. The prostates were removed and ventral prostate tissues were fixed in 10% neutral buffered formalin and embedded in paraffin for both histological and immunohistochemical examinations. The remainder of each prostate was stored at -80 °C and used for further analyses.

Histology and Immunohistochemical localization of vascular endothelial growth factor (VEGF)

Prostate tissue were fixed for one day in paraformaldehyde solution (4% in phosphate-buffered saline (PBS) 0.1 M) at room temperature, dehydrated by graded ethanol and embedded in paraffin. 10 µm thick sections collected on glass slides, deparaffinized then stained with hematoxylin and eosin (H&E) for histopathological examination using light microscopy (Olympus BX51, Japan) associated to an Imaging system (Image Pro Plus 6.0).

Slices were deparaffinized and immersed in freshly prepared 3% H₂O₂, blocked with goat serum for 30 min, then treated with citrate buffer. The sections were rinsed with PBS and incubated at 4 °C overnight with VEGF Antibody (Boster Biological Technology, Wuhan, China.), incubated with secondary antibody (goat anti-Rabbit IgG, Boster Biological Technology, Wuhan, China.) at 37 °C for 30 min. After washed with PBS, the sections were incubated in strept avidin-biotin complex at 37 °C for 30 min, and immersed in diaminobenzidine for 5 min. The haematoxylin-stained sections were dehydrated with ethanol and visualized with an optical microscope (Olympus BX51, Japan). The VEGF content was expressed as average optical density (IOD/Area).

Evaluation of dihydrotestosterone (DHT), testosterone (T), estradiol (E2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) in plasma

DHT, T and E_2 levels of the rats plasma were assayed with the commercially available kits (Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China). TNF- α , IL-6 levels were assayed in plasma sample with the commercially available kits (MultiSciences Biotech Co., Ltd., Hangzhou, China). All the procedures were performed according to manufacturer's instructions of the kits.

Evaluation of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) in prostate tissue

Prostate samples were homogenized and assayed for MDA, SOD, GSH-Px and CAT using commercially available kits (MultiSciences Biotech Co., Ltd., Hangzhou, China). All the procedures were performed according to manufacturer's instructions of the kits.

Statistical analysis

All data were expressed as mean ± standard deviation. The results were analyzed by one-way ANOVA followed by LSD for multiple comparisons using SPSS 21.0 software for Windows (SPSS Inc., Chicago, IL). A P value of < 0.05 was considered significant.

Results

Chemical ingredients of Fr. B

The BPI chromatograms of Fr. B by UPLC-Q-TOF-MS with both positive and negative ions were shown in Fig. 1. Ten flavonoid glycosides were assigned from Fr. B by their tandem mass data analysis of each peak in detail. Detailed information including retention time, accurate MS, and MS/MS fragment ions are listed in Table 1. Further, quantification of the ten flavanoids glycosides in Fr. B was performed by HPLC with quercetin as internal standard, and **compound 2** as index. The results showed that ten flavonoid glycosides were accounted for 54.96% of all substance of Fr. B, in which **compound 1** was with a relative content of 11.1%, and **compound 2** was with a relative content of 13% in Fr. B (Fig. 2).

Table 1
Flavonoid glycosides profile of Fr. B as characterized by UPLC-QTOF-MS/MS analysis

peak	t _R (min)	formula	MW	[M + H] ⁺	MS/MS	[M-H] ⁻	TOF-MS/MS analysis MS/MS	Putative identity
1	2.46	C ₃₉ H ₅₀ O ₂₅	918.2641	919.2706	773,611,465,303	917.2817	755,609,463,462,301,300	Quercetin 3-0-α-L-rhamnopyranosyl-(1→6)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside-7-0-β-D-glucopyranoside
2	3.20	C ₃₉ H ₅₀ O ₂₄	902.2692	903.2755	757,595,449,287	901.2599	739,593,447,446,285,284	kaempferol 3-0-α-L- rhamnopyranosyl- (1→6)-[α-L- rhamnopyranosyl- (1→2)]-β-D- glucopyranoside- 7-0-β-D- glucopyranoside
3	3.67	C ₃₃ H ₄₀ O ₂₁	772.2062	773.2111	627,465,303	771.1976	609,463,301	Quercetin 3-0-α-L- rhamnopyranosyl- (1→6)-β-D- glucopyranoside- 7-0-β-D- glucopyranoside
4	4.78	C ₃₃ H ₄₀ O ₂₀	756.2113	757.2175	611,449,287,228	755.2016	593,447,285	kaempferol 3-0-α- L- rhamnopyranosyl- (1→6)-β-d- glucopyranoside- 7-0-β-D- glucopyranoside
5	5.25	C ₃₄ H ₄₂ O ₂₁	786.2219	787.2267	641,479,317	785.2145	623,477,315	Isorhamnetin 3-O-α-L- rhamnopyranosyl- (1→6)-β-D- glucopyranoside- 7-O-β-D- glucopyranoside
6	7.21	C ₃₃ H ₄₀ O ₁₉	740.2164	741.2215	595,449,287	739.2073	593,285,284	Kaempferol 3-0-α- L- rhamnopyranosyl- (1→6)-[α-L- rhamnopyranosyl- (1→2)]-β-D- glucopyranoside
7	7.48	C ₃₄ H ₄₂ O ₂₀	770.2269	771.2328	625,479,317	769.2176	623,315,314	Isorhamnetin 3-0- α-L- rhamnopyranosyl- (1→6)-[α-L- rhamnopyranosyl- (1→2)]-β-D- glucopyranoside
8	7.64	C ₂₇ H ₃₀ O ₁₆	610.1534	611.1610	465,303	609.1450	463,301,300	Quercetin 3-0-α-L-rhamnopyranosyl- (1→6)-β-D- glucopyranoside
9	9.08	C ₂₇ H ₃₀ O ₁₅	594.1585	595.1665	449,287	593.1495	447,285	kaempferol 3-0-α-L- rhamnopyranosyl- $(1\rightarrow 6)$ -β-D- glucopyranoside

Compounds 1 and 2 were further determined by reference compounds.

peak	t _R (min)	formula	MW	[M + H] ⁺	MS/MS	[M-H] ⁻	MS/MS	Putative identity			
10	9.53	C ₂₈ H ₃₂ O ₁₆	624.169	625.1756	479,317	623.1609	477,315	Isorhamnetin 3-0- α-L- rhamnopyranosyl- (1→6)-β-D- glucopyranoside			
Compounds 1 and 2 were further determined by reference compounds.											

Effect of Fr. B on prostate morphology of PBH rats

Prostate tissue collected from the Sham rats showed normal architecture and histology, regular acini with cuboidal and low cylindrical epithelium with round nuclei showing basal alignment. While a significant disorganization of prostate tissue, irregular acinar shape with papillary projection into the lumen and foci of piling-up hyperplastic nodules were observed in the prostate tissue of rats after BPH induction. Finasteride, Pule'an, QCJ and Fr. B treatment could significantly improved the histological pattern and marked hyperplasia of prostate tissue in BPH rats. The expression of VEGF in the rat prostates was analyzed by immunohistochemical analysis. As shown in Fig. 3, compared with the sham operation group, VEGF levels in the prostate tissue of BPH group rats were significantly increased (P < 0.01). Finasteride, Pule'an, QCJ and Fr. B significantly reduced the expression of VEGF in the prostate of BPH rat (P < 0.01), and the high dose of QCJ and Fr. B decreased the VEGF level by 50.04% and 51.02%, while low dose decreased the level of VEGF by 39.67% and 34.36% respectively, which indicated that QCJ and Fr. B might regulate the expression of VEGF to reduce the abnormal proliferation of prostate cells and alleviate BPH.

Effects of Fr. B on sex hormone levels in BPH rat serum

The basal levels of DHT, T and E_2 in serum of Sham animals were showed in Fig. 4, those in serum collected from BPH animals showed a marked increase (P < 0.01). Treatment with Finasteride, Pule'an, QCJ and Fr. B considerably reduced DHT and DHT/ E_2 levels (P < 0.01). However, a significant increase was observed in T levels with QCJ and Fr. B administration (P < 0.05, Fig. 4). DHT is converted by the steroid enzyme 5 α -reductase from T [18], The production and accumulation of DHT in the prostate promote cell growth and induce hyperplasia [19]. The level of DHT in serum of rats was significantly lower than that of BPH rats, while the level of T was significantly higher, suggesting that Fr. B may play an anti-prostate hyperplasia role by inhibiting the production of DHT.

Effects of Fr. B on inflammatory factors in BPH rat serum

As shown in Fig. 5, serum levels of TNF- α and IL-6 were markedly elevated in BPH rats (P < 0.05). Oral administration of Finasteride, Pule'an, QCJ and Fr. B to BPH rats considerably reduced TNF- α levels (P < 0.01). Pule'an could significantly decrease IL-6 levels of BPH rats (P < 0.05). However, Finasteride, QCJ and Fr. B group showed an decreasing trend in IL-6 levels without significant effect statistically (Fig. 5).

Effects of Fr. B on MDA, SOD, GSH-Px and CAT levels in BPH rat prostates tissues

As shown in Fig. 6, homogenates of the prostates tissues from Sham animals had a basal levels of MDA, while that from BPH rats showed a marked increase (P < 0.01). Oral administration of Finasteride, Pule'an, QCJ and Fr. B to BPH rats significantly decreased levels of MDA (P < 0.01). Moreover, we also observed that the contents of SOD, GSH-Px and CAT in BPH rat prostates were significantly reduced, these are three important endogenous antioxidants in the body. Administration of Finasteride, Pule'an, QCJ and Fr. B to BPH rats could significantly increase SOD levels of BPH rats (P < 0.05). Similarly, treatment with Finasteride, high dose of QCJ and Fr. B also demonstrated a significant trend of protection increasing the reduced levels of CAT and GSH-Px (P < 0.05) as well, whereas Pule'an group showed an increasing trend without statistically significance.

Discussion

Phytotherapy has been playing an important role in the treatment of BPH for over decades because of its mildness, effectiveness and low adverse effects. Lots of the researchers revealed that several kinds of constituents including the fatty acids, polyphenols, flavonoids, phytosterols, alkanoids may be responsible for BPH inhibitory activities of phytotherapy and the suggested mechanisms includes 5α -reductase inhibitor, α 1-adrenoceptor antagonist, aromatase inhibitor, anti-androgen, growth factor inhibitor, and so on [20]. The special chemical structure of flavonoids makes them have good anti-BPH properties. Total flavanol glycosides from *Abacopteris penangiana* and its acid hydrolysate [21], total flavonoid extract of *Pteris multifida* [14] and dihydroquercetin [22], were reported to exert BPH protective effect through regulating inflammatory responses and reducing oxidative stress. In this study, we found that the active fraction Fr. B of *P. utilis*

leaves riched in flavanoids, of which ten identified flavonoid glycosides accounted for 54.96% of all Fr. B substances, which contributed to BPH reduction by mechanisms related with anti-oxidant, anti-inflammatory effect, reduction of DHT/E2 ratio, and inhibition of growth factor.

In vitro and in vivo studies describe oxidative stress as a major pathway involved in the occurrence of BPH [23, 24]. High plasma peroxide levels were found in BPH patients compared with controls [25, 26]. Circulating MDA levels were found to be significantly higher in BPH patients than in healthy donors [25]. However, other works found circulating MDA levels in BPH patients similar to those in controls [23]. In our study, the level of MDA in prostate of BPH rats was significantly increased, indicating the prostate tissue was in a state of oxidative damage. Fr. B could significantly decrease the level of MDA in prostate of BPH rats. Normally, highly oxidative stresses are removed by natural protective mechanism, the superoxide dismutase enzyme system, such as SOD, GSH-Px and CAT [16, 27, 28]. Fr. B could significantly increase the content of antioxidant enzymes (SOD, GSH-Px and CAT) and enhance the antioxidant capacity of rats. Prostate enlargement due to chronic inflammatory process may progressively conduce to BPH progression. Therefore, inflammation is a therapeutic target for BPH [29]. Although Fr. B had no significant decrease in serum IL-6 in BPH rats, it had a significant effect on TNF-α, suggesting its potential to improve BPH-related inflammation. These results suggested that Fr. B attenuate symptoms of BPH, at least in part, by decreasing the proinflammatory cytokines secretion and oxidative stress.

In addition, androgens are essential for the development and differentiated function of the prostate, as well as for proliferation and survival of prostatic cells [30, 31]. It is clear that androgens, estrogens [32] and growth factors [33] contribute to the BPH, but the exact etiology remains unknown. In this study, increased DHT levels and decreased T levels, as well as increased DHT/E₂ resulting from BPH induction, were significantly improved by Fr. B treatment. This reflected the androgens regulation potential mechanism of Fr. B on treating BPH. Recently, increasing evidences suggested that prostate growth was under the indirect control of androgens through the mediation of different growth factors [34]. VEGF is a major inducer of angiogenesis as it influences endothelial cell growth. The immunohistochemical assay showed that the expression of VEGF in the prostatic tissue with BPH rats were significantly increased compared normal prostatic tissue [35]. We also found that Fr. B could significantly decrease the expression of VEGF in prostate tissue of BPH rats. Its specific mechanism and signal pathway need to be further discussed.

Conclusion

Collectively, the results of present study showed that Fr. B prepared from the water extract of *P. utilis* leaves attenuated symptoms of BPH through multiple mechanisms including reduction of DHT/E2 ratio, inhibition of growth factor, anti-inflammation and anti-oxidation. Ten flavonoids were assigned from Fr. B by UPLC-QTOF-MS/MS. These results support that Fr. B should be further explored as a prospective natural foods or supplements for BPH treatment.

List Of Abbreviations

P. Utilis

Prinsepia utilis Royle; BPH:Benign prostatic hyperplasia; QCJ:Water extract from *P. utilis* leaves; Fr. B:Fraction separated from QCJ; UPLC-Q-TOF-MS:Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry; HPLC:High-performance liquid chromatography; DAD:Photo-diode-array-detector; ESI:Electrospray ionization; MSE:Mass spectrometry elevated energy; VEGF:Vascular endothelial growth factor; DHT:Dihydrotestosterone; T:Testosterone; E2:Estradiol; TNF-α:Tumor necrosis factor-α; IL-6:Interleukin-6; MDA:Malondialdehyde; SOD:Superoxide dismutase; GSH-Px:Glutathione peroxidase; CAT:Catalase

Declarations

Ethics approval and consent to participate

Ethical approval for this study was obtained from the Laboratory Animal Welfare and Ethics Committee of Shanghai Jiao Tong University, China. The animal care and experimental procedures were carried out in accordance with the Guidelines of the Animal Care and Use Committee of Shanghai Jiao Tong University, China.

Consent for publication

Not applicable.

Availability of data and materials

All data analysed during this study are included in this published article. The datasets generated during this study are not publicly available but are available from the corresponding author on reasonable request.

Competing interests

The authors declared no conflict of interest.

Authors' contributions

Xiaobo Li designed the study and interpreted the results. Ying Peng and Chongsheng Peng collected test data and drafted the manuscript. Yang Wu and Chongzhi Sun did the experiments.

Conflicts of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

References

- 1. Lan M. Materia medicalo of Yunnan. Kunming. People's Publishing House of Yunnan; 1975.
- 2. Paterniti I, Campolo M, Cordaro M, Siracusa R, Filippone A, Esposito E, et al. Effects of different natural extracts in an experimental model of benign prostatic hyperplasia (BPH). Inflamm Res. 2018;67(7):617 26. https://doi.org/10.1007/s00011-018-1152-9.
- 3. Keehn A, Taylor J, Lowe FC. *Phytotherapy for Benign Prostatic Hyperplasia*. *Curr Urol Rep.* 2016;17(7):53. https://doi.org/10.1007/s11934-016-0609-z.
- 4. Minciullo PL, Inferrera A, Navarra M, Calapai G, Magno C, Gangemi S. *Oxidative stress in benign prostatic hyperplasia: a systematic review. Urol Int.* 2015;*94*(*3*):*249 54.* https://doi.org/10.1159/000366210.
- 5. Wang YJ, Zhang Y, Du J, Yang LJ, Zhang Q, Sun QQ, et al. Study on the anti-inflammatory active constituents of Prinsepia utilis. West China Journal of Pharmaceutical Sciences. 2006;21(2):152-4.
- 6. Gupta R, Goyal R, Bhattacharya S, Dhar KL. *Antioxidative in vitro and antiosteoporotic activities of Prinsepia utilis Royle in female rats. Eur J Integr Med.* 2015;7(2):157 63. https://doi.org/10.1016/j.eujim.2014.10.002.
- 7. Yang Y, Liu G, Zhang XY, Hu TT, Wang ZG, Li X, et al. Effect of Prinsepia utilis tea on blood lipids in hyperlipidemic mice. Science and Technology of Food Industry. 2015;36(13):361-3.
- 8. Pu ZH, Yin ZQ, Jia RY, Song X, Xu J, Wang XQ, et al. Preliminary isolation and antibacterial activity of the ethyl acetate extract of Prinsepia utilis Royle in vitro. Agricultural Sciences. 2014;5:540-5.
- 9. Wu Y, Peng Y, Peng CS, Guan H, Sun CZ, Li XB. Screening Active Components from Prinsepia utilis Royle Leaves for Combating Benign Prostatic Hyperplasia in Rats. Modern Food Science and Technology. 2019;35(3):46–51.
- 10. Guan H. Effects of Prinsepia utilis Royle leaves on benign prostatic hyperplasia. Shanghai Jiaotong University. 2017.
- 11. Zhan SQ, Yuan DS, Li XT, Li JL, Yin ZQ. *Identification and Determination of Total Flavonoids from Prinsepia utilis Royle. Medicinal Plant.* 2010; 1(10):12 5.
- 12. Zuo AH, Wei QH, Zeng YE, Jiang B, Yang J. Determination of the total flavones content in Prinsepia utilis Royle with ultraviolet spectrophotometry. Yunnan Journal of Traditional Chinese Medicine and Materia Medica. 2008;29(6):43 4.
- 13. Zhang X, Jia Y, Ma Y, Cheng G, Cai S. *Phenolic Composition, Antioxidant Properties, and Inhibition toward Digestive Enzymes with Molecular Docking Analysis of Different Fractions from Prinsepia utilis Royle Fruits. Molecules.* 2018;*23*(12):3373. https://doi.org/10.3390/molecules23123373.
- 14. Dai GC, Hu B, Zhang WF, Peng F, Wang R, Liu Z., et al. Chemical characterization, anti-benign prostatic hyperplasia effect and subchronic toxicity study of total flavonoid extract of Pteris multifida. Food Chem Toxicol. 2017;108(Pt B):524 31. https://doi.org/10.1016/j.fct.2016.11.010.
- 15. Wei H, Wu G, Shi D, Song S, Zhang X, Lei Y, et al. Total flavan glycoside from Abacopteris penangiana rhizomes and its acid hydrolysate: characterisation and anti-benign prostatic hyperplasia potential. Food Chem. 2012;134(4):1959-66. https://doi.org/10.1016/j.foodchem.2012.03.128.
- 16. Ammar AE, Esmat A, Hassona MD, Tadros MG, Abdel-Naim AB, Guns EST. *The effect of pomegranate fruit extract on testosterone-induced BPH in rats. Prostate.* 2015:*75*(*7*):*679 92.* https://doi.org/10.1002/pros.22951.
- 17. Bian Q, Wang W, Wang N, Peng Y, Ma W, Dai R. *Arachidonic acid metabolomic study of BPH in rats and the interventional effects of Zishen pill, a traditional Chinese medicine. J Pharm Biomed Anal.* 2016;128:149 57. https://doi.org/10.1016/j.jpba.2016.05.027.
- 18. Carson C *3rd*, Rittmaster R. *The role of dihydrotestosterone in benign prostatic hyperplasia. Urology.* 2003;*61*(*4 Suppl 1*):*2–7*. https://doi.org/10.1016/s0090-4295(03)00045-1.

- 19. Sun H, Li TJ, Sun LN, Qiu Y, Huang BB, Yi B, et al. Inhibitory effect of traditional Chinese medicine Zi-Shen Pill on benign prostatic hyperplasia in rats. J Ethnopharmacol. 2008;15(2):203-8. https://doi.org/10.1016/j.jep.2007.09.026.
- 20. Zhang H, Jing Y, Wu G. *Inhibitory effects of crude polysaccharides from Semen vaccariae on benign prostatic hyperplasia in mice. J Ethnopharmacol.* 2013;145(2):667-9. https://doi.org/10.1016/j.jep.2012.11.027.
- 21. Yang X, Yuan L, Xiong C, Yin C, Ruan J. *Abacopteris penangiana exerts testosterone-induced benign prostatic hyperplasia protective effect through regulating inflammatory responses, reducing oxidative stress and anti-proliferative. J Ethnopharmacol.* 2014;157:105 13. https://doi.org/10.1016/j.jep.2014.09.025.
- 22. Borovskaya TG, Krivova NA, Zaeva OB, Fomina TI, Kamalova SI, Poluektova ME, et al. Dihydroquercetin Effects on the Morphology and Antioxidant/Prooxidant Balance of the Prostate in Rats with Sulpiride-Induced Benign Hyperplasia. Bull Exp Biol Med. 2015;158(4):513-6. https://doi.org/10.1007/s10517-015-2797-9.
- 23. Minciullo PL, Inferrera A, Navarra M, Calapai G, Magno C, Gangemi S. *Oxidative stress in benign prostatic hyperplasia: a systematic review. Urol Int.* 2015;94(3):249 54. https://doi.org/10.1159/000366210.
- 24. Roumeguère T, Sfeir J, El Rassy E, Albisinni S, *Van* Antwerpen P, Boudjeltia KZ, .et al. Oxidative stress and prostatic diseases. Mol Clin Oncol. 2017;7(5):723-8. https://doi.org/10.3892/mco.2017.1413.
- 25. Kaya E, Ozgok Y, Zor M, Eken A, Bedir S, Erdem O, et al. Oxidative stress parameters in patients with prostate cancer, benign prostatic hyperplasia and asymptomatic inflammatory prostatitis: A prospective controlled study. Adv Clin Exp Med. 2017;26(7):1095-9. https://doi.org/10.17219/acem/66837.
- 26. Pace G, *Di* Massimo C, *De* Amicis D, Corbacelli C, *Di* Renzo L, Vicentini C, *et al. Oxidative stress in benign prostatic hyperplasia and prostate cancer. Urol Int.* 2010;85(3):328 33. https://doi.org/10.1159/000315064.
- 27. Ahmad M, Suhail N, Mansoor T, Banu N, Ahmad S. *Evaluation of Oxidative Stress and DNA Damage in Benign Prostatic Hyperplasia Patients and Comparison with Controls. Indian J Clin Biochem.* 2012;*27*(*4*):385-8. https://doi.org/10.1007/s12291-012-0229-4.
- 28. Aydin A, Arsova-Sarafinovska Z, Sayal A, Eken A, Erdem O, Erten K, et al. Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. Clin Biochem. 2006;39(2):176-9. https://doi.org/10.1016/j.clinbiochem.2005.11.018.
- 29. Robert G, Descazeaud A, Nicolaïew N, Terry S, Sirab N, Vacherot F, et al. Inflammation in benign prostatic hyperplasia: a 282 patients' immunohistochemical analysis. Prostate. 2010;69(16):1774-80. https://doi.org/10.1002/pros.21027.
- 30. Banerjee PP, Banerjee S, Brown TR, Zirkin BR. Androgen action in prostate function and disease. Am J Clin Exp Utol. 2018;6(2):62-77.
- 31. Miao M, Wang T, Liu J, Li Y, Fu Z, Tian S. *The Effect of Leonuri Herba Alkaloids on Senile BPH (Male and Female Hormone Induced) Model Rats. Saudi J Biol Sci.* 2017;24(3):630-3. https://doi.org/10.1016/j.sjbs.2017.01.035.
- 32. Ho CK, Habib FK. *Estrogen and androgen signaling in the pathogenesis of BPH. Nat Rev Urol.* 2011;8(1):29–41. https://doi.org/10.1038/nrurol.2010.207.
- 33. Al-Trad B, Al-Zoubi M, Qar J, Al-Batayneh K, Hussien E, Muhaidat R, et al. Inhibitory Effect of Thymoquinone on Testosterone-Induced Benign Prostatic Hyperplasia in Wistar Rats. Phytother Res. 2017;31(12):1910-5. https://doi.org/10.1002/ptr.5936.
- 34. Soulitzis N, Karyotis I, Delakas D, Spandidos DA. Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol. 2006;29(2):305 14.
- 35. Wu X, Gu Y, Li L. *The anti-hyperplasia, anti-oxidative and anti-inflammatory properties of Qing Ye Dan and swertiamarin in testosterone-induced benign prostatic hyperplasia in rats. Toxicol Lett.* 2017;*265*:9–16. https://doi.org/10.1016/j.toxlet.2016.11.011.

Figures

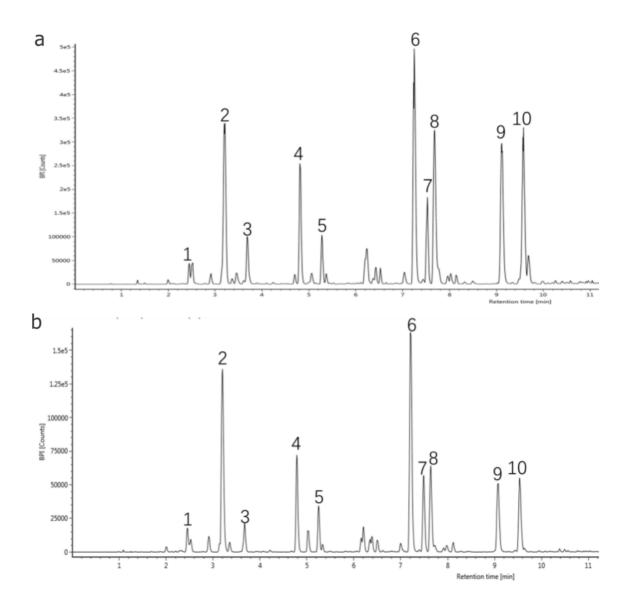


Figure 1

The BPI chromatograms of Fr. B by UPLC-QTOF-MS BPI chromatogram in positive ESI mode; (b) BPI chromatogram in negative ESI mode

Compound 1

Compound 2

Figure 2

Structures of compound 1 and compound 2 Kaempferol-3-O-[α -L-rhamnopyranosyl-($1\rightarrow 6$)-[α -L-rhamnopyranosyl-($1\rightarrow 2$)]- β -D-glucopyranoside (compound 1, peak 2); Kaempferol 3-O-[α -L-rhamnopyranosyl-($1\rightarrow 6$)-[α -L-rhamnopyranosyl-($1\rightarrow 6$)-[α -L-rhamnopyranosyl-($1\rightarrow 6$)]- β -D-glucopyranoside (compound 2, peak 6)

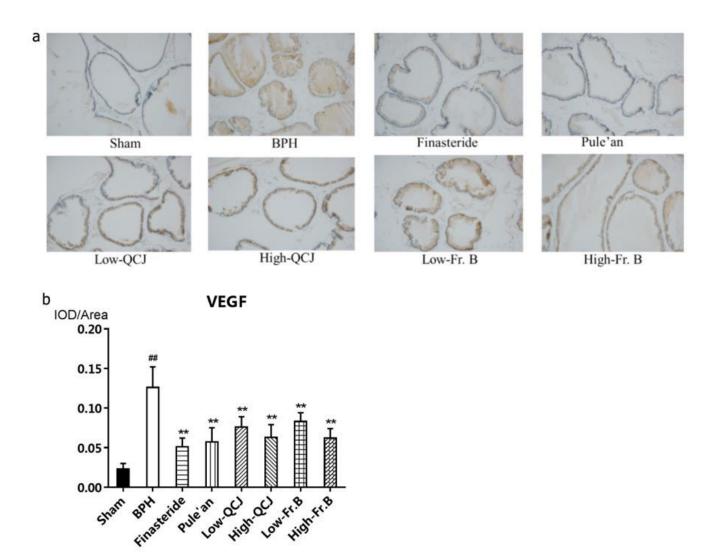


Figure 3

Effects of QCJ and Fr. B on prostatic histopathology morphology (a) and the expression of VEGF (b) in BPH rats ##P<0.01, versus Sham group; *P<0.05, **P<0.01, versus BPH group

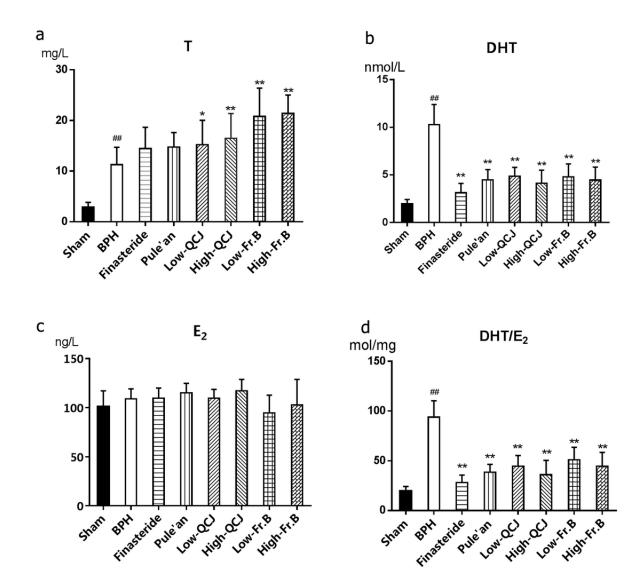


Figure 4

Effects of QCJ and Fr. B on the levels of DHT (a), T (b), E2 (c) and DHT/E2 (d) in serum of BPH rats ##P<0.01, versus Sham group; *P<0.05, **P<0.01, versus BPH group

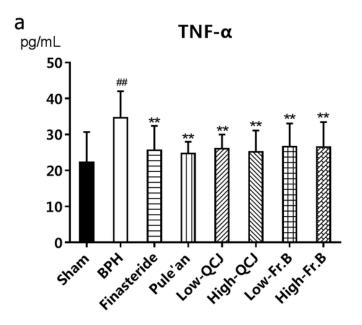
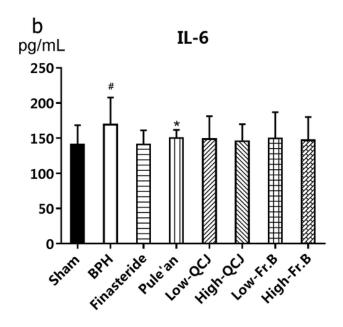
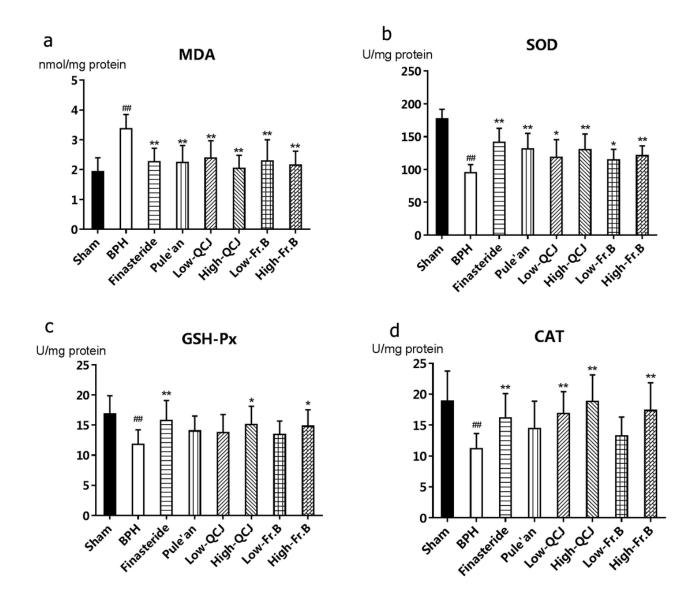




Figure 5

Effects of QCJ and Fr. B on the levels of TNF- α (a) and IL-6 (b) in serum of BPH rats #P<0.05, ##P<0.01versus Sham group; *P<0.05, **P<0.01, versus BPH group

Effects of QCJ and Fr. B on oxidative stress parameters in prostate tissue of rats (a) MDA; (b) SOD; (c) GSH-Px; (d) CAT; ##P<0.01, versus Sham group; *P<0.05, **P<0.01, versus BPH group

Figure 6