1. Sayre RK, Devercelli AE, Neuman MJ, Wodon Q. Investing in Early Childhood Development: Review of the World Bank’s Recent Experience [Internet]. The World Bank; 2015 [cited 2021 Mar 26]. Available from: https://elibrary.worldbank.org/doi/abs/10.1596/978-1-4648-0403-8
2. Ertem IO, Organization WH. Developmental difficulties in early childhood: prevention, early identification, assessment and intervention in low- and middle-income countries: a review. Developmental difficulties in early childhood: prevention, early identification, assessment and intervention in low- and middle-income countries: a review [Internet]. 2012 [cited 2021 Mar 26]; Available from: https://apps.who.int/iris/handle/10665/97942
3. Rice D, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental Health Perspectives. Environmental Health Perspectives; 2000;108:511–33.
4. Lenroot RK, Giedd JN. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews. 2006;30:718–29.
5. Oliphant K, Lu J. Chapter 6 - Neurodevelopment and the gut microbiome. In: Claud EC, editor. The Developing Microbiome [Internet]. Academic Press; 2020 [cited 2020 Jul 20]. p. 115–43. Available from: http://www.sciencedirect.com/science/article/pii/B9780128206027000064
6. CDC. Facts About Developmental Disabilities | CDC [Internet]. Centers for Disease Control and Prevention. 2019 [cited 2021 Mar 26]. Available from: https://www.cdc.gov/ncbddd/developmentaldisabilities/facts.html
7. Olusanya BO, Davis AC, Wertlieb D, Boo N-Y, Nair MKC, Halpern R, et al. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Global Health. 2018;6:e1100–21.
8. You D, Hug L, Ejdemyr S, Idele P, Hogan D, Mathers C, et al. Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation. Lancet. 2015;386:2275–86.
9. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017;38:81–102.
10. Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J Clin Child Adolesc Psychol. 2018;47:199–212.
11. Raghuram K, Yang J, Church PT, Cieslak Z, Synnes A, Mukerji A, et al. Head Growth Trajectory and Neurodevelopmental Outcomes in Preterm Neonates. Pediatrics. 2017;140.
12. Kuban KCK, Allred EN, O’Shea TM, Paneth N, Westra S, Miller C, et al. Developmental Correlates of Head Circumference at Birth and Two Years in a Cohort of Extremely Low Gestational Age Newborns. J Pediatr. 2009;155:344-9.e1-3.
13. Neubauer V, Fuchs T, Griesmaier E, Kager K, Pupp‐Peglow U, Kiechl‐Kohlendorfer U. Poor postdischarge head growth is related to a 10% lower intelligence quotient in very preterm infants at the chronological age of five years. Acta Paediatrica. 2016;105:501–7.
14. Cordova EG, Cherkerzian S, Bell K, Joung KE, Collins CT, Makrides M, et al. Association of Poor Postnatal Growth with Neurodevelopmental Impairment in Infancy and Childhood: Comparing the Fetus and the Healthy Preterm Infant References. The Journal of Pediatrics [Internet]. 2020 [cited 2020 Jul 13]; Available from: http://www.sciencedirect.com/science/article/pii/S0022347620307034
15. Hack M, Breslau N, Weissman B, Aram D, Klein N, Borawski E. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med. 1991;325:231–7.
16. Brants C, van Tienoven TP, Rayyan M, Allegaert K, Raaijmakers A. Earlier achievement of full enteral feeding in extremely low birth weight neonates is not associated with growth improvement in the first 2 years of life. Eur J Pediatr. 2018;177:1247–54.
17. Travers CP, Wang T, Salas AA, Schofield E, Dills M, Laney D, et al. Higher or Usual Volume Feedings in Very Preterm Infants: A Randomized Clinical Trial. The Journal of Pediatrics [Internet]. 2020 [cited 2020 Jul 13]; Available from: http://www.sciencedirect.com/science/article/pii/S0022347620306247
18. Cormack BE, Jiang Y, Harding JE, Crowther CA, Bloomfield FH. Relationships between Neonatal Nutrition and Growth to 36 Weeks’ Corrected Age in ELBW Babies–Secondary Cohort Analysis from the Provide Trial. Nutrients. 2020;12:760.
19. Mariani E, Biasini A, Marvulli L, Martini S, Aceti A, Faldella G, et al. Strategies of Increased Protein Intake in ELBW Infants Fed by Human Milk Lead to Long Term Benefits. Front Public Health. 2018;6:272.
20. Darlow BA, Graham PJ, Rojas‐Reyes MX. Vitamin A supplementation to prevent mortality and short‐ and long‐term morbidity in very low birth weight infants. Cochrane Database Syst Rev [Internet]. 2016 [cited 2020 Jul 20];2016. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038719/
21. Salas AA, Woodfin T, Phillips V, Peralta-Carcelen M, Carlo WA, Ambalavanan N. Dose-response Effects of Early Vitamin D Supplementation on Neurodevelopmental and Respiratory Outcomes of Extremely Preterm Infants at 2 years of age: A Randomized Trial. Neonatology. 2018;113:256–62.
22. Torsvik IK, Ueland PM, Markestad T, Midttun Ø, Monsen A-LB. Motor development related to duration of exclusive breastfeeding, B vitamin status and B12 supplementation in infants with a birth weight between 2000-3000 g, results from a randomized intervention trial. BMC Pediatr [Internet]. 2015 [cited 2020 Jul 20];15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683944/
23. Miller J, Tonkin E, Damarell RA, McPhee AJ, Suganuma M, Suganuma H, et al. A Systematic Review and Meta-Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients [Internet]. 2018 [cited 2020 Apr 8];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024377/
24. La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, et al. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci U S A. 2014;111:12522–7.
25. Korpela K, Blakstad EW, Moltu SJ, Strømmen K, Nakstad B, Rønnestad AE, et al. Intestinal microbiota development and gestational age in preterm neonates. Sci Rep [Internet]. 2018 [cited 2020 Jul 20];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802739/
26. Tauchi H, Yahagi K, Yamauchi T, Hara T, Yamaoka R, Tsukuda N, et al. Gut microbiota development of preterm infants hospitalised in intensive care units. Benef Microbes. 2019;10:641–51.
27. Grier A, Qiu X, Bandyopadhyay S, Holden-Wiltse J, Kessler HA, Gill AL, et al. Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth. Microbiome [Internet]. 2017 [cited 2020 Jul 20];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725645/
28. Slykerman RF, Thompson J, Waldie KE, Murphy R, Wall C, Mitchell EA. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatrica. 2017;106:87–94.
29. Slykerman RF, Coomarasamy C, Wickens K, Thompson JMD, Stanley TV, Barthow C, et al. Exposure to antibiotics in the first 24 months of life and neurocognitive outcomes at 11 years of age. Psychopharmacology. 2019;236:1573–82.
30. Gur TL, Palkar AV, Rajasekera T, Allen J, Niraula A, Godbout J, et al. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behavioural Brain Research. 2019;359:886–94.
31. Farshim P, Walton G, Chakrabarti B, Givens I, Saddy D, Kitchen I, et al. Maternal Weaning Modulates Emotional Behavior and Regulates the Gut-Brain Axis. Scientific Reports. Nature Publishing Group; 2016;6:21958.
32. Cerdó T, Diéguez E, Campoy C. Early nutrition and gut microbiome: interrelationship between bacterial metabolism, immune system, brain structure, and neurodevelopment. American Journal of Physiology-Endocrinology and Metabolism. American Physiological Society; 2019;317:E617–30.
33. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. Nature Publishing Group; 2018;562:583–8.
34. Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol. 2019;61:739–51.
35. Pulikkan J, Mazumder A, Grace T. Role of the Gut Microbiome in Autism Spectrum Disorders. Adv Exp Med Biol. 2019;1118:253–69.
36. Dam SA, Mostert JC, Szopinska-Tokov JW, Bloemendaal M, Amato M, Arias-Vasquez A. The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterol Clin North Am. 2019;48:407–31.
37. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems. 2016;1.
38. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
39. Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome. 2020;15:11.
40. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The Lancet. 2012;379:2162–72.
41. Bourke J, Wong K, Srinivasjois R, Pereira G, Shepherd CCJ, White SW, et al. Predicting Long-Term Survival Without Major Disability for Infants Born Preterm. The Journal of Pediatrics. 2019;215:90-97.e1.
42. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatrics. 2013;13:59.
43. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.
44. Schmidt B, Asztalos EV, Roberts RS, Robertson CMT, Sauve RS, Whitfield MF, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA. 2003;289:1124–9.
45. Martin CR, Dammann O, Allred EN, Patel S, O’Shea TM, Kuban KCK, et al. Neurodevelopment of extremely preterm infants who had necrotizing enterocolitis with or without late bacteremia. J Pediatr. 2010;157:751-756.e1.
46. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. Nature Publishing Group; 2019;37:852–7.
47. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
48. Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:140.
49. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
51. Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution. 2016;7:1451–6.
52. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.
53. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
54. Killick R, Eckley IA. changepoint: An R Package for Changepoint Analysis. Journal of Statistical Software. 2014;58:1–19.
55. Lavielle M. Using penalized contrasts for the change-point problem. Signal Processing. 2005;85:1501–10.
56. Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010;26:1340–7.
57. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–21.
58. Layeghifard M, Li H, Wang PW, Donaldson SL, Coburn B, Clark ST, et al. Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes [Internet]. 2019 [cited 2021 Apr 7];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341074/
59. Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, et al. Climate-driven regime shifts in Arctic marine benthos. PNAS. National Academy of Sciences; 2012;109:14052–7.
60. Samhouri JF, Andrews KS, Fay G, Harvey CJ, Hazen EL, Hennessey SM, et al. Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere. 2017;8:e01860.
61. Masi AC, Stewart CJ. The role of the preterm intestinal microbiome in sepsis and necrotising enterocolitis. Early Hum Dev. 2019;138:104854.
62. Wang S, Egan M, Ryan CA, Boyaval P, Dempsey EM, Ross RP, et al. A good start in life is important—perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol Rev. Oxford Academic; 2020;44:763–81.
63. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell. 2013;155:1451–63.
64. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environmental Microbiology. 2010;12:304–14.
65. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalog established by metagenomic sequencing. Nature. 2010;464:59–65.
66. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 2013;54:2325–40.
67. Steinmeyer S, Lee K, Jayaraman A, Alaniz RC. Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link. Curr Allergy Asthma Rep. 2015;15:24.
68. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.
69. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.
70. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.
71. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science. 2011;331:337–41.
72. Stolp HB, Johansson PA, Habgood MD, Dziegielewska KM, Saunders NR, Ek CJ. Effects of neonatal systemic inflammation on blood-brain barrier permeability and behaviour in juvenile and adult rats. Cardiovasc Psychiatry Neurol. 2011;2011:469046.
73. Heida FH, Beyduz G, Bulthuis MLC, Kooi EMW, Bos AF, Timmer A, et al. Paneth cells in the developing gut: when do they arise and when are they immune competent? Pediatric Research. Nature Publishing Group; 2016;80:306–10.
74. Kelsey CM, Prescott S, McCulloch JA, Trinchieri G, Valladares TL, Dreisbach C, et al. Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. Brain, Behavior, and Immunity [Internet]. 2020 [cited 2020 Nov 26]; Available from: http://www.sciencedirect.com/science/article/pii/S0889159120323771
75. Loughman A, Ponsonby A-L, O’Hely M, Symeonides C, Collier F, Tang MLK, et al. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine. 2020;52:102640.
76. Aguilar-Lopez M, Dinsmoor AM, Ho TTB, Donovan SM. A systematic review of the factors influencing microbial colonization of the preterm infant gut. Gut Microbes. 13:1–33.
77. Feng L, Raman AS, Hibberd MC, Cheng J, Griffin NW, Peng Y, et al. Identifying determinants of bacterial fitness in a model of human gut microbial succession. Proc Natl Acad Sci U S A. 2020;117:2622–33.
78. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonisation in caesarean section birth. Nature. 2019;574:117–21.
79. Gregory KE, LaPlante RD, Shan G, Kumar DV, Gregas M. Mode of Birth Influences Preterm Infant Intestinal Colonization With Bacteroides Over the Early Neonatal Period. Adv Neonatal Care. 2015;15:386–93.
80. Combellick JL, Shin H, Shin D, Cai Y, Hagan H, Lacher C, et al. Differences in the fecal microbiota of neonates born at home or in the hospital. Sci Rep [Internet]. 2018 [cited 2021 Jun 12];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199260/
81. Ruoss JL, Bazacliu C, Russell JT, Cruz D de la, Li N, Gurka MJ, et al. Routine Early Antibiotic Use in SymptOmatic Preterm Neonates: A Pilot Randomized Controlled Trial. The Journal of Pediatrics. 2021;229:294-298.e3.
82. Kim CS, Grady N, Derrick M, Yu Y, Oliphant K, Lu J, et al. Effect of Antibiotic Use Within First 48 Hours of Life on the Preterm Infant Microbiome: A Randomized Clinical Trial. JAMA Pediatr. 2020;
83. Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074.
84. Pichler MJ, Yamada C, Shuoker B, Alvarez-Silva C, Gotoh A, Leth ML, et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat Commun [Internet]. 2020 [cited 2020 Dec 10];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335108/
85. Stinson LF, Sindi ASM, Cheema AS, Lai CT, Mühlhäusler BS, Wlodek ME, et al. The human milk microbiome: who, what, when, where, why, and how? Nutrition Reviews [Internet]. 2020 [cited 2020 Dec 10]; Available from: https://doi.org/10.1093/nutrit/nuaa029
86. Shiozaki A, Yoneda S, Yoneda N, Yonezawa R, Matsubayashi T, Seo G, et al. Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis. PLoS One. 2014;9:e111374.
87. Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 2014;21:32–40.
88. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. American Association for the Advancement of Science; 2016;352:560–4.