Discretizing distribution function in a phase space for an efficient quantum dynamics simulation is non-trivial challenge, in particular for a case that a system is further coupled to environmental degrees of freedom. Such open quantum dynamics is described by a reduced equation of motion (REOM) most notably by a quantum Fokker-Planck equation (QFPE) for a Wigner distribution function (WDF). To develop a discretization scheme that is stable for numerical simulations from the REOM approach, we find that a two-dimensional (2D) periodically invariant system-bath (PISB) model with two heat baths is an ideal platform not only for a periodical system but also for a system confined by a potential. We then derive the numerically ''exact'' hierarchical equations of motion (HEOM) for a discrete WDF in terms of periodically invariant operators in both coordinate and momentum spaces. The obtained equations can treat non-Markovian heat-bath in a non-perturbative manner at finite temperatures regardless of the mesh size. The stability of the present scheme is demonstrated in a high-temperature Markovian case by numerically integrating the discrete QFPE with by a coarse mesh for a 2D free rotor and harmonic potential systems for an initial condition that involves singularity.