1. Basatemur, G.L., et al., Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol, 2019. 16(12): 727-44.
2. Brown, I.A.M., et al., Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol, 2018. 38(9): 1969-85.
3. Méndez-Barbero, N., et al., A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis. EBioMedicine, 2019. 46: 274-89.
4. Virani, S.S., et al., Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation, 2020. 141(9): e139-e596.
5. Jaminon, A., et al., The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci, 2019. 20(22).
6. Gomez, D. and G.K. Owens, Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res, 2012. 95(2): 156-64.
7. Campbell, J.H. and G.R. Campbell, Smooth muscle phenotypic modulation--a personal experience. Arterioscler Thromb Vasc Biol, 2012. 32(8): 1784-9.
8. Heusch, G., et al., Cardiovascular remodelling in coronary artery disease and heart failure. Lancet, 2014. 383(9932): 1933-43.
9. Giacoppo, D., et al., Treatment strategies for coronary in-stent restenosis: systematic review and hierarchical Bayesian network meta-analysis of 24 randomised trials and 4880 patients. Bmj, 2015. 351: h5392.
10. Guo, X., et al., LDL Receptor Gene-ablated Hamsters: A Rodent Model of Familial Hypercholesterolemia With Dominant Inheritance and Diet-induced Coronary Atherosclerosis. EBioMedicine, 2018. 27: 214-24.
11. Reaves, S.K., et al., Regulation of intestinal apolipoprotein B mRNA editing levels by a zinc-deficient diet and cDNA cloning of editing protein in hamsters. J Nutr, 2000. 130(9): 2166-73.
12. Byrne, R.A., et al., Coronary balloon angioplasty, stents, and scaffolds. Lancet, 2017. 390(10096): 781-92.
13. Li, Q., et al., Homozygous receptors for insulin and not IGF-1 accelerate intimal hyperplasia in insulin resistance and diabetes. Nat Commun, 2019. 10(1): 4427.
14. Wang, C., et al., Small intestine proteomics coupled with serum metabolomics reveal disruption of amino acid metabolism in Chinese hamsters with type 2 diabetes mellitus. J Proteomics, 2020. 223: 103823.
15. Peterson, S.M., et al., Notch2 and Proteomic Signatures in Mouse Neointimal Lesion Formation. Arterioscler Thromb Vasc Biol, 2018. 38(7): 1576-93.
16. Hansmeier, N., et al., Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry. J Proteome Res, 2018. 17(1): 164-76.
17. Alrefai, M.T., et al., Functional Assessment of Pluripotent and Mesenchymal Stem Cell Derived Secretome in Heart Disease. Ann Stem Cell Res, 2019. 2(1): 29-36.
18. Lee, R., et al., A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin Proteomics, 2017. 14: 22.
19. Zhang, H., et al., Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A, 2018. 115(29): E6927-e36.
20. Tuñón, J., et al., Proteomics and metabolomics in biomarker discovery for cardiovascular diseases: progress and potential. Expert Rev Proteomics, 2016. 13(9): 857-71.
21. Ozaki, T., et al., Proteomic analysis of protein changes in plasma by balloon test occlusion. J Clin Neurosci, 2020. 72: 397-401.
22. Suna, G., et al., Extracellular Matrix Proteomics Reveals Interplay of Aggrecan and Aggrecanases in Vascular Remodeling of Stented Coronary Arteries. Circulation, 2018. 137(2): 166-83.
23. Ucciferri, N., et al., Extracellular matrix characterization in plaques from carotid endarterectomy by a proteomics approach. Talanta, 2017. 174: 341-46.
24. Langley, S.R., et al., Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest, 2017. 127(4): 1546-60.
25. Yu, Y., et al., Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. Geroscience, 2020.
26. Oksjoki, R., et al., Receptors for the anaphylatoxins C3a and C5a are expressed in human atherosclerotic coronary plaques. Atherosclerosis, 2007. 195(1): 90-9.
27. Speidl, W.S., et al., The complement component C5a is present in human coronary lesions in vivo and induces the expression of MMP-1 and MMP-9 in human macrophages in vitro. Faseb j, 2011. 25(1): 35-44.
28. Guo, R.F. and P.A. Ward, Role of C5a in inflammatory responses. Annu Rev Immunol, 2005. 23: 821-52.
29. Zhang, C., et al., Complement 5a receptor mediates angiotensin II-induced cardiac inflammation and remodeling. Arterioscler Thromb Vasc Biol, 2014. 34(6): 1240-8.
30. Chen, L., et al., Increased Complement 3 With Suppression of miR-145 Induces the Synthetic Phenotype in Vascular Smooth Muscle Cells From Spontaneously Hypertensive Rats. J Am Heart Assoc, 2019. 8(10): e012327.
31. Neinast, M., D. Murashige, and Z. Arany, Branched Chain Amino Acids. Annu Rev Physiol, 2019. 81: 139-64.
32. Nie, C., et al., Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci, 2018. 19(4).
33. Adeva-Andany, M.M., et al., Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids, 2017. 49(6): 1005-28.
34. Li, Y., et al., Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics, 2020. 10(12): 5623-40.
35. Tobias, D.K., et al., Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ Genom Precis Med, 2018. 11(4): e002157.
36. Costa, R.L.B., H.S. Han, and W.J. Gradishar, Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat, 2018. 169(3): 397-406.
37. Mangge, H., et al., Branched-chain amino acids are associated with cardiometabolic risk profiles found already in lean, overweight and obese young. J Nutr Biochem, 2016. 32: 123-7.
38. Zhang, L. and J. Han, Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun, 2017. 486(2): 224-31.
39. Heiss, E.H., et al., Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3'-monoxime. Vascul Pharmacol, 2016. 83: 47-56.
40. Zhao, X., et al., PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim Biophys Sin (Shanghai), 2020. 52(1): 9-17.
41. Tomas, L., et al., Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur Heart J, 2018. 39(24): 2301-10.
42. Vora, S. and U. Francke, Assignment of the human gene for liver-type 6-phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L antibody. Proc Natl Acad Sci U S A, 1981. 78(6): 3738-42.
43. Sola-Penna, M., et al., Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. IUBMB Life, 2010. 62(11): 791-6.
44. Gibb, A.A., et al., Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochem J, 2017. 474(16): 2785-801.
45. Li, L., et al., TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation. Nat Commun, 2018. 9(1): 4683.
46. Feng, Y., et al., A20 targets PFKL and glycolysis to inhibit the progression of hepatocellular carcinoma. Cell Death Dis, 2020. 11(2): 89.
47. Wang, J., et al., Development and validation of a hypoxia-related prognostic signature for breast cancer. Oncol Lett, 2020. 20(2): 1906-14.
48. Webb, B.A., et al., The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J Cell Biol, 2017. 216(8): 2305-13.
49. Attanasio, F., et al., Novel invadopodia components revealed by differential proteomic analysis. Eur J Cell Biol, 2011. 90(2-3): 115-27.
50. Kohnhorst, C.L., et al., Identification of a multienzyme complex for glucose metabolism in living cells. J Biol Chem, 2017. 292(22): 9191-203.
51. Feng, Y., et al., Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med, 2018. 7(12): 6124-36.
52. Kolappan, S., et al., Structures of lactate dehydrogenase A (LDHA) in apo, ternary and inhibitor-bound forms. Acta Crystallogr D Biol Crystallogr, 2015. 71(Pt 2): 185-95.
53. Cai, H., et al., LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol, 2019. 9: 1446.
54. Pathria, G., et al., Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. Embo j, 2018. 37(20).
55. Jin, L., et al., Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene, 2017. 36(27): 3797-806.
56. Kim, J.H., et al., Lactate dehydrogenase-A is indispensable for vascular smooth muscle cell proliferation and migration. Biochem Biophys Res Commun, 2017. 492(1): 41-47.
57. Song, Y.J., et al., Inhibition of lactate dehydrogenase A suppresses inflammatory response in RAW 264.7 macrophages. Mol Med Rep, 2019. 19(1): 629-37.