1. Thamdrup, B., New Pathways and Processes in the Global Nitrogen Cycle. Annual Review of Ecology, Evolution, and Systematics, 2012. 43(1): p. 407-428.
2. Moreno-Vivian, C., et al., Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol, 1999. 181(21): p. 6573-84.
3. Richardson, D.J. and N.J. Watmough, Inorganic nitrogen metabolism in bacteria. Curr Opin Chem Biol, 1999. 3(2): p. 207-19.
4. Morozkina, E.V. and R.A. Zvyagilskaya, Nitrate reductases: structure, functions, and effect of stress factors. Biochemistry (Mosc), 2007. 72(10): p. 1151-60.
5. Gonzalez, P.J., et al., Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. J Inorg Biochem, 2006. 100(5-6): p. 1015-23.
6. Richardson, D.J., et al., Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci, 2001. 58(2): p. 165-78.
7. Hille, R., J. Hall, and P. Basu, The mononuclear molybdenum enzymes. Chem Rev, 2014. 114(7): p. 3963-4038.
8. Moreno-Vivian, C. and S.J. Ferguson, Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol Microbiol, 1998. 29(2): p. 664-6.
9. Blasco, F., et al., NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol, 1998. 28(3): p. 435-47.
10. Malm, S., et al., The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology, 2009. 155(Pt 4): p. 1332-9.
11. Sohaskey, C.D. and L.G. Wayne, Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol, 2003. 185(24): p. 7247-56.
12. Gouzy, A., Y. Poquet, and O. Neyrolles, Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol, 2014. 12(11): p. 729-37.
13. Williams, M.J., B.D. Kana, and V. Mizrahi, Functional analysis of molybdopterin biosynthesis in mycobacteria identifies a fused molybdopterin synthase in Mycobacterium tuberculosis. J Bacteriol, 2011. 193(1): p. 98-106.
14. Narrandes, N.C., et al., Cleavage of the moaX-encoded fused molybdopterin synthase from Mycobacterium tuberculosis is necessary for activity. BMC Microbiol, 2015. 15: p. 22.
15. Khan, A., et al., Presence of functional nitrate assimilation pathway in Mycobacterium smegmatis. Microbial Pathogenesis, 2008. 44: p. 71-77.
16. Weber, I., et al., Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol, 2000. 35(5): p. 1017-25.
17. Khan, A. and D. Sarkar, Identification of a respiratory-type nitrate reductase and its role for survival of Mycobacterium smegmatis in Wayne model. Microbial Pathogenesis, 2006. 41: p. 90-95.
18. Amon, J., F. Titgemeyer, and A. Burkovski, A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol, 2009. 17(1): p. 20-9.
19. Stermann, M., et al., A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis. J Bacteriol, 2004. 186(9): p. 2856-61.
20. Rice, P., I. Longden, and A. Bleasby, EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet, 2000. 16(6): p. 276-7.
21. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
22. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008. 9: p. 40.
23. Najmudin, S., et al., Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. J Biol Inorg Chem, 2008. 13(5): p. 737-53.
24. Petersen, T.N., et al., SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011. 8(10): p. 785-6.
25. Szklarczyk, D., et al., The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. 2017. 45(D1): p. D362-d368.
26. Rubio, L.M., A. Herrero, and E. Flores, A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. Plant Mol Biol, 1996. 30(4): p. 845-50.
27. Kanehisa, M., et al., KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res, 2016. 44(D1): p. D457-62.
28. Kapopoulou, A., J.M. Lew, and S.T. Cole, The MycoBrowser portal: a comprehensive annotated resource for mycobacterial genomes. Tuberculosis (Edinb), 2011. 91(1): p. 8-13.
29. Zhou, J., A.J. Richardson, and K.E. Rudd, EcoGene-RefSeq:EcoGene tools applied to the RefSeq Prokaryote genomes. 2013.
30. Khan, A. and D. Sarkar, Nitrate reduction pathways in mycobacteria and their implications during latency. Microbiology, 2012. 158(Pt 2): p. 301-7.
31. Hutter, B. and T. Dick, Up-regulation of narX, encoding a putative 'fused nitrate reductase' in anaerobic dormant Mycobacterium bovis BCG. FEMS Microbiol Lett, 1999. 178(1): p. 63-9.
32. Huang, Q., A.E. Abdalla, and J. Xie, Phylogenomics of Mycobacterium Nitrate Reductase Operon. Curr Microbiol, 2015. 71(1): p. 121-8.
33. Parish, T. and N.G. Stoker, Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology, 2000. 146 ( Pt 8): p. 1969-75.
34. Angeby, K.A., L. Klintz, and S.E. Hoffner, Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol, 2002. 40(2): p. 553-5.
35. Morozkina, E.V. and A.V. Kurakov, [Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: a review]. Prikl Biokhim Mikrobiol, 2007. 43(5): p. 607-13.