1. Sitarz, R., et al., Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res, 2018. 10: p. 239-248.
2. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
3. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010. 127(12): p. 2893-917.
4. Joshi, S.S. and B.D. Badgwell, Current treatment and recent progress in gastric cancer. CA Cancer J Clin, 2021. 71(3): p. 264-279.
5. Hamashima, C., Current issues and future perspectives of gastric cancer screening. World J Gastroenterol, 2014. 20(38): p. 13767-74.
6. Smyth, E.C., et al., Gastric cancer. Lancet, 2020. 396(10251): p. 635-648.
7. Feng, W., et al., Non-coding RNAs in regulating gastric cancer metastasis. Clin Chim Acta, 2019. 496: p. 125-133.
8. Zhao, J., et al., Long non-coding RNA Linc00152 is involved in cell cycle arrest, apoptosis, epithelial to mesenchymal transition, cell migration and invasion in gastric cancer. Cell Cycle, 2015. 14(19): p. 3112-23.
9. Peng, Z., et al., Role of epithelial-mesenchymal transition in gastric cancer initiation and progression. World J Gastroenterol, 2014. 20(18): p. 5403-10.
10. Bresnick, A.R., D.J. Weber, and D.B. Zimmer, S100 proteins in cancer. Nat Rev Cancer, 2015. 15(2): p. 96-109.
11. Yap, K.L., et al., Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins, 1999. 37(3): p. 499-507.
12. Zimmer, D.B. and D.J. Weber, The Calcium-Dependent Interaction of S100B with Its Protein Targets. Cardiovasc Psychiatry Neurol, 2010. 2010.
13. Ji, Y.F., et al., S100 family signaling network and related proteins in pancreatic cancer (Review). Int J Mol Med, 2014. 33(4): p. 769-76.
14. Fang, D., et al., S100A16 promotes metastasis and progression of pancreatic cancer through FGF19-mediated AKT and ERK1/2 pathways. Cell Biol Toxicol, 2021.
15. Zhuang, H., et al., Prognostic values and immune suppression of the S100A family in pancreatic cancer. J Cell Mol Med, 2021. 25(6): p. 3006-3018.
16. Zhang, J., et al., S100A16 suppresses the growth and survival of leukaemia cells and correlates with relapse and relapse free survival in adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia. Br J Haematol, 2019. 185(5): p. 836-851.
17. Zhou, W., et al., Up-regulation of S100A16 expression promotes epithelial-mesenchymal transition via Notch1 pathway in breast cancer. J Biomed Sci, 2014. 21: p. 97.
18. Lv, H., et al., MicroRNA-6884-5p Regulates the Proliferation, Invasion, and EMT of Gastric Cancer Cells by Directly Targeting S100A16. Oncol Res, 2020. 28(3): p. 225-236.
19. Jiang, Y., et al., ADAMTS19 Suppresses Cell Migration and Invasion by Targeting S100A16 via the NF-kappaB Pathway in Human Gastric Cancer. Biomolecules, 2021. 11(4).
20. Martin, T.A. and W.G. Jiang, Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta, 2009. 1788(4): p. 872-91.
21. Bhat, A.A., et al., Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front Physiol, 2018. 9: p. 1942.
22. Lauko, A., et al., Junctional Adhesion Molecules in Cancer: A Paradigm for the Diverse Functions of Cell-Cell Interactions in Tumor Progression. Cancer Res, 2020. 80(22): p. 4878-4885.
23. Umeda, K., et al., ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell, 2006. 126(4): p. 741-54.
24. Akizuki, R., et al., ZO-2 Suppresses Cell Migration Mediated by a Reduction in Matrix Metalloproteinase 2 in Claudin-18-Expressing Lung Adenocarcinoma A549 Cells. Biol Pharm Bull, 2019. 42(2): p. 247-254.
25. Gonzalez-Mariscal, L., et al., ZO-2 Is a Master Regulator of Gene Expression, Cell Proliferation, Cytoarchitecture, and Cell Size. Int J Mol Sci, 2019. 20(17).
26. Cong, Y., et al., Tim-3 promotes cell aggressiveness and paclitaxel resistance through NF-kappaB/STAT3 signalling pathway in breast cancer cells. Chin J Cancer Res, 2020. 32(5): p. 564-579.
27. Yang, C.C., et al., Plant galactolipid dLGG suppresses lung metastasis of melanoma through deregulating TNF-alpha-mediated pulmonary vascular permeability and circulating oxylipin dynamics in mice. Int J Cancer, 2018. 143(12): p. 3248-3261.
28. Shinto, O., et al., Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. Br J Cancer, 2010. 102(5): p. 844-51.
29. Kato, Y., et al., Establishment and characterization of a new hypoxia-resistant cancer cell line, OCUM-12/Hypo, derived from a scirrhous gastric carcinoma. Br J Cancer, 2010. 102(5): p. 898-907.
30. Fan, Y., et al., CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer, 2021. 20(1): p. 25.
31. Wu, T., et al., HRD1, an Important Player in Pancreatic beta-Cell Failure and Therapeutic Target for Type 2 Diabetic Mice. Diabetes, 2020. 69(5): p. 940-953.
32. Christiansen, J.J. and A.K. Rajasekaran, Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res, 2006. 66(17): p. 8319-26.
33. Natalwala, A., R. Spychal, and C. Tselepis, Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World J Gastroenterol, 2008. 14(24): p. 3792-7.
34. Wu, H., et al., The role and application of small extracellular vesicles in gastric cancer. Mol Cancer, 2021. 20(1): p. 71.
35. Kim, Y.J., et al., Metastasis-associated protein S100A4 and p53 predict relapse in curatively resected stage III and IV (M0) gastric cancer. Cancer Invest, 2008. 26(2): p. 152-8.
36. Wang, Y.Y., et al., High-level expression of S100A4 correlates with lymph node metastasis and poor prognosis in patients with gastric cancer. Ann Surg Oncol, 2010. 17(1): p. 89-97.
37. Tang, Z., et al., Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer, 2017. 140(7): p. 1620-1632.
38. Minami, S., et al., Proteomic study of sera from patients with bladder cancer: usefulness of S100A8 and S100A9 proteins. Cancer Genomics Proteomics, 2010. 7(4): p. 181-9.
39. Bai, Y., et al., Prognostic values of S100 family members in ovarian cancer patients. BMC Cancer, 2018. 18(1): p. 1256.
40. Sun, X., et al., S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol, 2018. 117(2): p. 275-283.
41. Martin, T.A., et al., Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer, 2004. 40(18): p. 2717-25.
42. Paschoud, S., et al., Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol, 2007. 20(9): p. 947-54.
43. Gao, F., et al., Endothelial Akt1 loss promotes prostate cancer metastasis via beta-catenin-regulated tight-junction protein turnover. Br J Cancer, 2018. 118(11): p. 1464-1475.
44. Luczka, E., et al., Regulation of membrane-type 1 matrix metalloproteinase expression by zonula occludens-2 in human lung cancer cells. Clin Exp Metastasis, 2013. 30(7): p. 833-43.
45. Amaya, E., et al., Activation of the Ca(2+) sensing receptor and the PKC/WNK4 downstream signaling cascade induces incorporation of ZO-2 to tight junctions and its separation from 14-3-3. Mol Biol Cell, 2019. 30(18): p. 2377-2398.
46. Bernassola, F., G. Chillemi, and G. Melino, HECT-Type E3 Ubiquitin Ligases in Cancer. Trends Biochem Sci, 2019. 44(12): p. 1057-1075.
47. Senft, D., J. Qi, and Z.A. Ronai, Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer, 2018. 18(2): p. 69-88.
48. Buetow, L. and D.T. Huang, Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol, 2016. 17(10): p. 626-42.
49. Fujita, Y., et al., Ubiquitin Ligases in Cancer Immunotherapy - Balancing Antitumor and Autoimmunity. Trends Mol Med, 2019. 25(5): p. 428-443.