1. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical Activity and Exercise Recommendations for Stroke Survivors. Stroke [Internet]. 2014 Aug;45(8):2532–53. Available from: https://www.ahajournals.org/doi/10.1161/STR.0000000000000022
2. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. Quinn TJ, editor. PLoS One [Internet]. 2014 Feb 4;9(2):e87987. Available from: https://dx.plos.org/10.1371/journal.pone.0087987
3. van Kammen K, Boonstra AM, van der Woude LH V., Reinders-Messelink HA, den Otter R. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. J Neuroeng Rehabil [Internet]. 2017 Dec 20;14(1):32. Available from: http://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0244-z
4. Lünenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil [Internet]. 2007 Dec 23;4(1):1. Available from: https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-4-1
5. Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: A scoping review. J Neuroeng Rehabil [Internet]. 2016;13(1):1–10. Available from: http://dx.doi.org/10.1186/s12984-016-0162-5
6. Peurala SH, Tarkka IM, Pitkänen K, Sivenius J. The Effectiveness of Body Weight-Supported Gait Training and Floor Walking in Patients With Chronic Stroke. Arch Phys Med Rehabil [Internet]. 2005 Aug;86(8):1557–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003999305002108
7. Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M, et al. Treadmill Training With Partial Body Weight Support Compared With Physiotherapy in Nonambulatory Hemiparetic Patients. Stroke [Internet]. 1995 Jun;26(6):976–81. Available from: https://www.ahajournals.org/doi/10.1161/01.STR.26.6.976
8. Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev [Internet]. 2017 Aug 17;2017(8). Available from: http://doi.wiley.com/10.1002/14651858.CD002840.pub4
9. Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev [Internet]. 2020 Oct 22;2020(10):CD006185. Available from: http://doi.wiley.com/10.1002/14651858.CD006185.pub5
10. Androwis GJ, Pilkar R, Ramanujam A, Nolan KJ. Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke. Front Neurol [Internet]. 2018 Aug 7;9(AUG):1–12. Available from: https://www.frontiersin.org/article/10.3389/fneur.2018.00630/full
11. Alamro RA, Chisholm AE, Williams AMM, Carpenter MG, Lam T. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury. J Neuroeng Rehabil [Internet]. 2018 Dec 20;15(1):109. Available from: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-018-0453-0
12. Rosati G, Rodà A, Avanzini F, Masiero S. On the Role of Auditory Feedback in Robot-Assisted Movement Training after Stroke: Review of the Literature. Comput Intell Neurosci [Internet]. 2013;2013:1–15. Available from: http://www.hindawi.com/journals/cin/2013/586138/
13. Zhang C, Li-Tsang CWP, Au RKC. Robotic approaches for the rehabilitation of upper limb recovery after stroke: a systematic review and meta-analysis. Int J Rehabil Res [Internet]. 2017 Mar [cited 2020 Dec 8];40(1):19–28. Available from: https://journals.lww.com/00004356-201703000-00003
14. Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM R. 2018;10(9):S174–88.
15. Young AJ, Ferris DP. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE Trans Neural Syst Rehabil Eng [Internet]. 2017 Feb;25(2):171–82. Available from: https://ieeexplore.ieee.org/document/7393837/
16. Huysamen K, Bosch T, de Looze M, Stadler KS, Graf E, O’Sullivan LW. Evaluation of a passive exoskeleton for static upper limb activities. Appl Ergon [Internet]. 2018;70(February):148–55. Available from: https://doi.org/10.1016/j.apergo.2018.02.009
17. Panizzolo FA, Galiana I, Asbeck AT, Siviy C, Schmidt K, Holt KG, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J Neuroeng Rehabil [Internet]. 2016;13(1). Available from: http://dx.doi.org/10.1186/s12984-016-0150-9
18. Calabrò RS, Cacciola A, Bertè F, Manuli A, Leo A, Bramanti A, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci [Internet]. 2016 Apr 18;37(4):503–14. Available from: http://link.springer.com/10.1007/s10072-016-2474-4
19. Hsu C-J, Kim J, Roth EJ, Rymer WZ, Wu M. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking. Neurorehabil Neural Repair [Internet]. 2017 Dec 16;31(12):1042–52. Available from: http://journals.sagepub.com/doi/10.1177/1545968317740972
20. Krishnan C, Ranganathan R, Kantak SS, Dhaher YY, Rymer WZ. Active robotic training improves locomotor function in a stroke survivor. J Neuroeng Rehabil [Internet]. 2012 Aug 20;9(1):57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22906099
21. Emken JL, Benitez R, Reinkensmeyer DJ. Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroeng Rehabil [Internet]. 2007;4(1):8. Available from: http://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-4-8
22. De Luca A, Bellitto A, Mandraccia S, Marchesi G, Pellegrino L, Coscia M, et al. Exoskeleton for Gait Rehabilitation: Effects of Assistance, Mechanical Structure, and Walking Aids on Muscle Activations. Appl Sci [Internet]. 2019 Jul 18;9(14):2868. Available from: https://www.mdpi.com/2076-3417/9/14/2868
23. Harbourne RT, Stergiou N. Movement Variability and the Use of Nonlinear Tools: Principles to Guide Physical Therapist Practice. Phys Ther [Internet]. 2009 Mar 1;89(3):267–82. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2652347&tool=pmcentrez&rendertype=abstract%5Cnhttp://ptjournal.apta.org/content/89/3/267.short
24. Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG. Allowing Intralimb Kinematic Variability During Locomotor Training Poststroke Improves Kinematic Consistency: A Subgroup Analysis From a Randomized Clinical Trial. Phys Ther [Internet]. 2009 Aug 1;89(8):829–39. Available from: https://academic.oup.com/ptj/article/89/8/829/2737681
25. Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, et al. Implications of Assist-As-Needed Robotic Step Training after a Complete Spinal Cord Injury on Intrinsic Strategies of Motor Learning. J Neurosci [Internet]. 2006 Oct 11;26(41):10564–8. Available from: https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2266-06.2006
26. van Asseldonk EHF, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FCT, van der Kooij H. The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans Neural Syst Rehabil Eng [Internet]. 2008 Aug;16(4):360–70. Available from: https://ieeexplore.ieee.org/document/4520283/
27. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced Gait-Related Improvements After Therapist- Versus Robotic-Assisted Locomotor Training in Subjects With Chronic Stroke. Stroke [Internet]. 2008 Jun;39(6):1786–92. Available from: https://www.ahajournals.org/doi/10.1161/STROKEAHA.107.504779
28. Sylos-Labini F, La Scaleia V, D’Avella A, Pisotta I, Tamburella F, Scivoletto G, et al. EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci [Internet]. 2014 Jun 16;8(JUNE):1–12. Available from: http://journal.frontiersin.org/article/10.3389/fnhum.2014.00423/abstract
29. Lin J, Hu G, Ran J, Chen L, Zhang X, Zhang Y. Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: a cross-sectional study. J Neuroeng Rehabil [Internet]. 2020 Dec 13;17(1):5. Available from: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-0641-6
30. Meseguer-Henarejos A-B, Sánchez-Meca J, López-Pina J-A, Carles-Hernández R. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis. Eur J Phys Rehabil Med [Internet]. 2018 Aug;54(4):576–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28901119
31. Gandolla M, Guanziroli E, D’Angelo A, Cannaviello G, Molteni F, Pedrocchi A. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population. Front Neurorobot [Internet]. 2018 Mar 19;12(MAR):1–11. Available from: http://journal.frontiersin.org/article/10.3389/fnbot.2018.00010/full
32. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol [Internet]. 2000 Oct 1 [cited 2018 Mar 14];10(5):361–74. Available from: https://www.sciencedirect.com/science/article/pii/S1050641100000274
33. O’Callaghan BPF, Doheny EP, Goulding C, Fortune E, Lowery MM. Adaptive gait segmentation algorithm for walking bout detection using tri-axial accelerometers. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) [Internet]. IEEE; 2020. p. 4592–5. Available from: https://ieeexplore.ieee.org/document/9176460/
34. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern [Internet]. 1979 Jan;9(1):62–6. Available from: http://ieeexplore.ieee.org/document/4310076/
35. Flood MW, O’Callaghan B, Lowery MM. Gait Event Detection from Accelerometry using the Teager-Kaiser Energy Operator. IEEE Trans Biomed Eng [Internet]. 2019;9294(c):1–1. Available from: https://ieeexplore.ieee.org/document/8723520/
36. Kaiser JF. Some useful properties of Teager’s energy operators. IEEE Int Conf Acoust Speech Signal Process [Internet]. 1993;149–52 vol.3. Available from: http://ieeexplore.ieee.org/document/319457/
37. Besomi M, Hodges PW, Clancy EA, Van Dieën J, Hug F, Lowery M, et al. Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. J Electromyogr Kinesiol [Internet]. 2020;53(June):102438. Available from: https://doi.org/10.1016/j.jelekin.2020.102438
38. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation. IEEE Trans Neural Syst Rehabil Eng [Internet]. 2010 Feb;18(1):38–48. Available from: https://ieeexplore.ieee.org/document/5280197/
39. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw [Internet]. 2015;67(1). Available from: http://www.jstatsoft.org/v67/i01/
40. Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture [Internet]. 2005 Aug;22(1):51–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966636204001171
41. Nedergård H, Arumugam A, Sandlund M, Bråndal A, Häger CK. Effect of robotic-assisted gait training on objective biomechanical measures of gait in persons post-stroke: a systematic review and meta-analysis. J Neuroeng Rehabil [Internet]. 2021;18(1):1–22. Available from: https://doi.org/10.1186/s12984-021-00857-9
42. Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech [Internet]. 2006 Jan;39(10):1769–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002192900500268X
43. Daly JJ, Roenigk K, Cheng R, Ruff RL. Abnormal Leg Muscle Latencies and Relationship to Dyscoordination and Walking Disability after Stroke. Rehabil Res Pract. 2011;2011:1–8.
44. Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation [Internet]. 1st ed. Vol. 110, Handbook of Clinical Neurology. Elsevier B.V.; 2013. 93–103 p. Available from: http://dx.doi.org/10.1016/B978-0-444-52901-5.00008-3
45. Levin MF, Kleim JA, Wolf SL. What Do Motor “Recovery” and “Compensation” Mean in Patients Following Stroke? Neurorehabil Neural Repair [Internet]. 2009 May 5;23(4):313–9. Available from: http://journals.sagepub.com/doi/10.1177/1545968308328727
46. Poritz JMP, Taylor HB, Francisco G, Chang S-H. User satisfaction with lower limb wearable robotic exoskeletons. Disabil Rehabil Assist Technol [Internet]. 2020 Apr 2;15(3):322–7. Available from: https://doi.org/10.1080/17483107.2019.1574917
47. Swank C, Wang-Price S, Gao F, Almutairi S. Walking With a Robotic Exoskeleton Does Not Mimic Natural Gait: A Within-Subjects Study. JMIR Rehabil Assist Technol [Internet]. 2019 Jan 14;6(1):e11023. Available from: http://rehab.jmir.org/2019/1/e11023/
48. Hidler JM, Wall AE. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech [Internet]. 2005 Feb;20(2):184–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268003304002384
49. MacKay-Lyons MJ, Makrides L. Exercise capacity early after stroke. Arch Phys Med Rehabil [Internet]. 2002 Dec;83(12):1697–702. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003999302005889
50. Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil [Internet]. 2015 Mar;21(2):122–32. Available from: https://meridian.allenpress.com/tscir/article/doi/10.1310/sci2102-122