Included patients:
For this study, we retrospectively reviewed the data of patients and met the following inclusion criteria. The inclusion criteria were patients aged >18 years with lumbar spinal canal stenosis who underwent a combined operation (indirect decompression) using LLIF with lumbar degenerative spondylolisthesis (DS) at a single institute from January 2016 to July 2019. Basically, surgery by SP was started from January 2019. The method of surgery (SP or DP) was determined at the surgeon’s discretion.
All patients were diagnosed based on detailed history, neurological examinations, radiographic examination, myelograms, computed tomography (CT) after myelography, and/or magnetic resonance imaging (MRI). The indications were neurogenic claudication because of central or foraminal spinal stenosis. The conditions for diagnosis of spondylolisthesis and the inclusion criteria for fusion surgery were (1) more than 5% slip of the lumbar vertebra in a neutral position; or (2) more than 3-mm translation between flexion and extension positions on radiographic evaluation [10]. Stenosis location was recorded by the operating surgeon based on his evaluation of preoperative imaging studies. The exclusion criteria included patients who had undergone previous lumbar spinal surgery or those who were undergoing combined procedures including direct posterior decompression and posterior lumbar fusion.
The patient demographics and operative data (blood loss, operation time, and change in Hb level from before to the first day after surgery) were recorded. Length of stay and the intraoperative complication rate were also recorded for each patient. Imaging consisting of preoperative and postoperative radiological parameters and MRI was examined.
Operative technique (XLIF and PPS fixation):
All patients underwent minimally invasive LLIF surgery utilizing the XLIF technique, which has been described previously [8, 11]. Briefly, the patient was placed in the lateral decubitus position with the hip at the level of the break in the operating table. The chest and hip areas were secured to the table with tape. Once the position was decided, the XLIF was performed as described previously. This facilitates access to the largest number of disc spaces with a relatively small incision. Blunt dissection was then used to access the disc spaces under fluoroscopic guidance. After removal of the disc material with a rongeur, a Cobb elevator was advanced gently under fluoroscopy guidance along the endplates to release the contralateral annulus. Cage-size trials were followed by additional disc curettage and rasping of the endplates. All cages were inserted using two containment sliders to protect the endplates and to keep the graft material inside the cage. For all patients, the side-to-side cage size was decided according to the width of the endplates at that level based on intraoperative fluoroscopic guidance, and titanium cages of a standard 18-mm width were used. The maximum distraction achieved during discectomy using the trial inserts provided guidance as to the height of the cage. The choice of these XLIF cages (CoRoent XL; NuVasive Inc.) was decided by the surgeon. Cage lengths ranged from 45 to 60 mm, and heights from 8 to 11 mm.
Following the XLIF, patients in the DP group were turned to the prone position and then re-prepared and re-draped. Bilateral PPS surgery was then performed with the patient in the prone position. Patients in the SP group remained in the lateral decubitus position for PPS fixation. In the SP group, most PPS procedures used the guidewire-less system VIPER PRIMETM (DePuy Synthes Spine, Raynham, MA, USA). An image in the anteroposterior view was taken to mark the lateral radiographic borders of the pedicles for screw placement. Using a lateral view, the centre of each pedicle was identified and marked [12]. A small incision 2–3 cm lateral to the lateral radiographic borders of each pedicle was made for percutaneous exposure and the stylets were then docked at the junction of the transverse process and the superior articular process. The stylets were then inserted with a hammer to hold the spot within the pedicles. After the stylets were inserted into the pedicle inner rim, an image in the AP view was taken to confirm from the lateral view that the posterior body wall had been reached. At that point, the C-arm was brought to a lateral position to maximize the working space for screw placement. After all screws had been inserted, a rod was passed percutaneously and secured to the screw heads using setscrews.
Radiographical assessment:
X-ray evaluation involved examination of standing erect whole-spine antero-posterior and lateral full-spine radiographs. Radiographic assessment was performed using pre- and postoperative AP and lateral lumbar films to evaluate LL, SDA, SL, and DH (average anterior disc height [ADH], posterior disc heights [PDH], and average disc height [Av DH]). Av DH was defined as the average of anterior and posterior height determined from X-rays. MRI was also performed to determine cage placement (using the sagittal plane on T1-weighted imaging) and central canal dimensions (CSA and diameter using the axial and sagittal planes on T2-weighted imaging) [5, 13]. To determine placement of the XLIF cage, we measured the distance (a) between the anterior edge and the centre of the cage on the superior end plates, and expressed the value (a) divided by the full distance of the endplate (b) using a T1-weighted MRI (Fig. 2). X-ray and MRI were performed before surgery and at approximately 2 weeks and 2 months after surgery. We used a 1.5- or 3.0-T MRI system (Ingenia or Achieva; Philips Medical Systems, Best, the Netherlands) in this study. The average of image measurements determined by two examiners, including the authors, was used in analysis.
Statistical analysis:
Statistical analyses were performed using IBM SPSS Statistics version 20.0 (IBM Corp., Armonk, NY, USA). All values are expressed as mean ± standard deviation. Univariate differences between DP and SP groups were assessed using independent-sample t tests or the Mann–Whitney U test for data that were not normally distributed. The correlations between cage position and radiological parameters were analyzed using Spearman’s product-moment correlation coefficient.
For all statistical analyses, the type 1 error was set at 5% and P < 0.05 was considered to be significant.