1. Chen, Y., Chao, K. & Kim, M. S. Machine vision technology for agricultural applications. Comput. Electron. Agr. 36, 173-191 (2002).
2. Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10, 81-92 (2016).
3. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391-400 (2010).
4. Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).
5. Lu, H., Carroll, G. M., Neale, N. R. & Beard, M. C. Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano 13, 939-953 (2019).
6. Livache, C., Martinez, B., Goubet, N., Ramade, J. & Lhuillier, E. Road Map for Nanocrystal Based Infrared Photodetectors. Front. Chem. 6, 575, (2018).
7. Otani, Y. Snapshot full Stokes imager by polarization cameras and its application to bio-imaging. In Ultra-High-Definition Imaging Systems IV.1170904 (SPIE OPTO, 2021); https://doi.org/10. 1117/12.2587339
8. Lei, W., Antoszewski, J. & Faraone, L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2, 041303 (2015).
9. Kinch, M. A. The rationale for ultra-small pitch IR systems. In Infrared Technology and Applications XL.907032 (SPIE Defense & Security, 2014). https://doi.org/10.1117/12.2051335
10. Rogalski, A. Infrared detectors(CRC press, 2010).
11. Fuentes-Hernandez, C. et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698-701 (2020).
12. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366-371 (2017).
13. Pal, B. N. et al. High-Sensitivity p-n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots. Adv. Funct. Mater. 22, 1741-1748 (2012).
14. Sliz, R. et al. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors. ACS Nano 13, 11988-11995 (2019).
15. Manders, J. R. et al. Low-Noise Multispectral Photodetectors Made from All Solution-Processed Inorganic Semiconductors. Adv. Funct. Mater. 24, 7205-7210 (2014).
16. Zhang, J. et al. Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 9, 7151-7163 (2015).
17. Zhang, C. et al. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots. Chem. Mater. 29, 3615-3622 (2017).
18. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000-1010 (2004).
19. Wang, R. et al. Highly Efficient Inverted Structural Quantum Dot Solar Cells. Adv. Mater. 30, 1704882 (2018).
20. Lee, J. W., Kim, D. Y. & So, F. Unraveling the Gain Mechanism in High Performance Solution-Processed PbS Infrared PIN Photodiodes. Adv. Funct. Mater. 25, 1233-1238 (2015).
21. Dong, R. et al. An Ultraviolet-to-NIR Broad Spectral Nanocomposite Photodetector with Gain. Adv. Opt. Mater. 2, 549-554 (2014).
22. Yoo, J., Jeong, S., Kim, S. & Je, J. H. A Stretchable Nanowire UV-Vis-NIR Photodetector with High Performance. Adv. Mater. 27, 1712-1717 (2015).
23. Wei, Y. et al. Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity. Adv. Funct. Mater. 28, 1706690 (2018).
24. Qiao, K. K. et al. Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI2 incorporation. RSC Adv. 7, 52947-52954 (2017).
25. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 4, 40-44 (2009).
26. Fuentes-Hernandez, C. et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698-701 (2020).
27. Geremew, A. et al. Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. Nanoscale 11, 20171-20178 (2019).
28. Liu, H., Lhuillier, E. & Guyot-Sionnest, P. 1/f noise in semiconductor and metal nanocrystal solids. J. Appl. Phys. 115, 154309 (2014).
29. Carey, G. H., Levina, L., Comin, R., Voznyy, O. & Sargent, E. H. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation. Adv. Mater. 27, 3325-3330 (2015).
30. Zhitomirsky, D. et al. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nat. Commun. 5, 3803 (2014).
31. Appendix I: F-stop noise, scene-referenced SNR, and Dynamic Range. (Imatest, 2021); https://www.imatest.com/docs/noise/
32. Teraphongphom, N., Kong, C. S., Warram, J. M. & Rosenthal, E. L. Specimen mapping in head and neck cancer using fluorescence imaging. Laryngoscope 2, 447-452 (2017).
33. Hamamatsu, InGaAs camera C10633-13 -23. (Hamamatsu, 2013); https://www. hamamatsu. com/jp/en/product/type/C14041-10U/index.html